The Association Between Peripheral Arterial Disease and Long-Term Bleeding Events in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mythili, S.; Malathi, N. Diagnostic markers of acute myocardial infarction. Biomed. Rep. 2015, 3, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Nishihira, K.; Nakai, M.; Kuriyama, N.; Kadooka, K.; Honda, Y.; Emori, H.; Yamamoto, K.; Nishino, S.; Kudo, T.; Ogata, K.; et al. Guideline-Directed Medical Therapy for Elderly Patients with Acute Myocardial Infarction Who Undergo Percutaneous Coronary Intervention-Insights from a Retrospective Observational Study. Circ. J. 2024, 88, 931–937. [Google Scholar] [CrossRef]
- Pappalardo, A.; Mamas, M.A.; Imola, F.; Ramazzotti, V.; Manzoli, A.; Prati, F.; El-Omar, M. Percutaneous coronary intervention of unprotected left main coronary artery disease as culprit lesion in patients with acute myocardial infarction. JACC Cardiovasc. Interv. 2011, 4, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, J.B.; Marso, S.P.; Pencina, M.; Stolker, J.M.; Kennedy, K.F.; Rihal, C.; Barsness, G.; Piana, R.N.; Goldberg, S.L.; Cutlip, D.E.; et al. Prognostic impact of periprocedural bleeding and myocardial infarction after percutaneous coronary intervention in unselected patients: Results from the EVENT (evaluation of drug-eluting stents and ischemic events) registry. JACC Cardiovasc. Interv. 2009, 2, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, I.C. Gastrointestinal bleeding after percutaneous coronary intervention: Not just a short-term complication but a long-term marker of mortality risk. Catheter. Cardiovasc. Interv. 2020, 95, E146–E147. [Google Scholar] [CrossRef]
- Marquis-Gravel, G.; Dalgaard, F.; Jones, A.D.; Lokhnygina, Y.; James, S.K.; Harrington, R.A.; Wallentin, L.; Steg, P.G.; Lopes, R.D.; Storey, R.F.; et al. Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes with or Without PCI. J. Am. Coll. Cardiol. 2020, 76, 162–171. [Google Scholar] [CrossRef]
- Kwok, C.S.; Tiong, D.; Pradhan, A.; Andreou, A.Y.; Nolan, J.; Bertrand, O.F.; Curzen, N.; Urban, P.; Myint, P.K.; Zaman, A.G.; et al. Meta-Analysis of the Prognostic Impact of Anemia in Patients Undergoing Percutaneous Coronary Intervention. Am. J. Cardiol. 2016, 118, 610–620. [Google Scholar] [CrossRef]
- Nakamura, M.; Kimura, K.; Kimura, T.; Ishihara, M.; Otsuka, F.; Kozuma, K.; Kosuge, M.; Shinke, T.; Nakagawa, Y.; Natsuaki, M.; et al. JCS 2020 Guideline Focused Update on Antithrombotic Therapy in Patients with Coronary Artery Disease. Circ. J. 2020, 84, 831–865. [Google Scholar] [CrossRef]
- Urban, P.; Mehran, R.; Colleran, R.; Angiolillo, D.J.; Byrne, R.A.; Capodanno, D.; Cuisset, T.; Cutlip, D.; Eerdmans, P.; Eikelboom, J.; et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: A consensus document from the Academic Research Consortium for High Bleeding Risk. Eur. Heart J. 2019, 40, 2632–2653. [Google Scholar] [CrossRef]
- Guan, S.; Xu, X.; Li, Y.; Li, J.; Guan, M.; Wang, X.; Jing, Q.; Huo, Y.; Han, Y. Impact of Diabetes Mellitus on Antithrombotic Management Patterns and Long-Term Clinical Outcomes in Patients with Acute Coronary Syndrome: Insights from the EPICOR Asia Study. J. Am. Heart Assoc. 2020, 9, e013476. [Google Scholar] [CrossRef]
- Akahori, H.; Masuyama, T.; Imanaka, T.; Nakao, K.; Ozaki, Y.; Kimura, K.; Ako, J.; Noguchi, T.; Suwa, S.; Fujimoto, K.; et al. Impact of peripheral artery disease on prognosis after myocardial infarction: The J-MINUET study. J. Cardiol. 2020, 76, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Ban, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Association of Asymptomatic Low Ankle-Brachial Index with Long-Term Clinical Outcomes in Patients after Acute Myocardial Infarction. J. Atheroscler. Thromb. 2022, 29, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Ban, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Hatori, M.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; et al. Association of Increased Inter-arm Blood Pressure Difference with Long-term Clinical Outcomes in Patients with Acute Myocardial Infarction Who Underwent Percutaneous Coronary Intervention. Intern. Med. 2024, 63, 1043–1051. [Google Scholar] [CrossRef]
- Shamaki, G.R.; Markson, F.; Soji-Ayoade, D.; Agwuegbo, C.C.; Bamgbose, M.O.; Tamunoinemi, B.M. Peripheral Artery Disease: A Comprehensive Updated Review. Curr. Probl. Cardiol. 2022, 47, 101082. [Google Scholar] [CrossRef] [PubMed]
- Slovut, D.P.; Lipsitz, E.C. Surgical technique and peripheral artery disease. Circulation 2012, 126, 1127–1138. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Sawano, M.; Yamaji, K.; Kohsaka, S.; Inohara, T.; Numasawa, Y.; Ando, H.; Iida, O.; Shinke, T.; Ishii, H.; Amano, T. Contemporary use and trends in percutaneous coronary intervention in Japan: An outline of the J-PCI registry. Cardiovasc. Interv. Ther. 2020, 35, 218–226. [Google Scholar] [CrossRef]
- Konoma, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Hatori, M.; Tamanaha, Y.; Kasahara, T.; Watanabe, Y.; Yamamoto, K.; et al. Impact of the Japanese Version of High Bleeding Risk Criteria on Clinical Outcomes in Patients with ST-segment Elevation Myocardial Infarction. J. Atheroscler. Thromb. 2024, 31, 917–930. [Google Scholar] [CrossRef]
- Hori, Y.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Association of peak C-reactive protein with long-term clinical outcomes in patients with ST-segment elevation myocardial infarction. Heart Vessel. 2023, 38, 764–772. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Hatori, M.; Kasahara, T.; Ishibashi, S.; Watanabe, Y.; et al. Determinants of In-hospital Death in Non-ST-segment Elevation Myocardial Infarction with Triple-vessel Disease. Intern Med. 2024, 64, 993–999. [Google Scholar] [CrossRef]
- Yanase, T.; Sakakura, K.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Seguchi, M.; Wada, H.; Momomura, S.-I.; Fujita, H. Comparison of Clinical Characteristics of Acute Myocardial Infarction Between Young (<55 Years) and Older (55 to <70 Years) Patients. Int. Heart J. 2021, 62, 33–41. [Google Scholar] [PubMed]
- Sato, F.; Maeda, N.; Yamada, T.; Namazui, H.; Fukuda, S.; Natsukawa, T.; Nagao, H.; Murai, J.; Masuda, S.; Tanaka, Y.; et al. Association of Epicardial, Visceral, and Subcutaneous Fat with Cardiometabolic Diseases. Circ. J. 2018, 82, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, K.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Hatori, M.; Kasahara, T.; Watanabe, Y.; Ishibashi, S.; et al. Comparison of clinical outcomes between proximal and non-proximal right coronary artery occlusion in patients with inferior ST-segment elevation myocardial infarction. J Cardiol. 2024, 85, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Hatori, M.; Tamanaha, Y.; Kasahara, T.; Watanabe, Y.; Yamamoto, K.; et al. Impact of Excessive Increase in Systolic Blood Pressure after Exercise on Clinical Outcomes in Patients with ST-Segment Elevation Myocardial Infarction. J. Clin. Med. 2023, 12, 6928. [Google Scholar] [CrossRef]
- Tsukui, T.; Sakakura, K.; Taniguchi, Y.; Yamamoto, K.; Seguchi, M.; Jinnouchi, H.; Wada, H.; Fujita, H. Factors associated with poor clinical outcomes of ST-elevation myocardial infarction in patients with door-to-balloon time <90 minutes. PLoS ONE 2020, 15, e0241251. [Google Scholar]
- Saw, J.; Bhatt, D.L.; Moliterno, D.J.; Brener, S.J.; Steinhubl, S.R.; Lincoff, A.M.; Tcheng, J.E.; Harrington, R.A.; Simoons, M.; Hu, T.; et al. The influence of peripheral arterial disease on outcomes: A pooled analysis of mortality in eight large randomized percutaneous coronary intervention trials. J. Am. Coll. Cardiol. 2006, 48, 1567–1572. [Google Scholar] [CrossRef]
- Gupta, R.; Kirtane, A.J.; Ozan, M.O.; Witzenbichler, B.; Rinaldi, M.J.; Metzger, D.C.; Weisz, G.; Stuckey, T.D.; Brodie, B.R.; Mehran, R.; et al. Platelet Reactivity and Clinical Outcomes After Coronary Artery Implantation of Drug-Eluting Stents in Subjects with Peripheral Arterial Disease: Analysis From the ADAPT-DES Study (Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents). Circ Cardiovasc Interv. 2017, 10, e004904. [Google Scholar] [CrossRef]
- Bashar, H.; Matetić, A.; Curzen, N.; Mamas, M.A. Impact of extracardiac vascular disease on outcomes of 1.4 million patients undergoing percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2022, 100, 737–746. [Google Scholar] [CrossRef]
- Gao, M.; Oliva, A.; Sharma, R.; Kalaba, F.; Sartori, S.; Farhan, S.; Smith, K.; Vogel, B.; Krishnan, P.; Dangas, G.; et al. Impact of Peripheral Arterial Disease on Clinical Outcomes of Patients Undergoing Complex vs Noncomplex Percutaneous Coronary Intervention. Am. J. Cardiol. 2025, 247, 76–83. [Google Scholar] [CrossRef]
- Pinxterhuis, T.H.; Ploumen, E.H.; Zocca, P.; Doggen, C.J.M.; Schotborgh, C.E.; Anthonio, R.L.; Roguin, A.; Danse, P.W.; Benit, E.; Aminian, A.; et al. Risk of bleeding after percutaneous coronary intervention and its impact on further adverse events in clinical trial participants with comorbid peripheral arterial disease. Int. J. Cardiol. 2023, 374, 27–32. [Google Scholar] [CrossRef]
- Tung, Y.C.; See, L.C.; Chang, S.H.; Liu, J.R.; Kuo, C.T.; Chang, C.J. Impact of bleeding during dual antiplatelet therapy in patients with coronary artery disease. Sci. Rep. 2020, 10, 21345. [Google Scholar] [CrossRef] [PubMed]
- Golomb, B.A.; Dang, T.T.; Criqui, M.H. Peripheral arterial disease: Morbidity and mortality implications. Circulation 2006, 114, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.F.; Weinberg, M.D.; Olin, J.W. Peripheral artery disease. Part 1, clinical evaluation and noninvasive diagnosis. Nat. Rev. Cardiol. 2011, 8, 405–418. [Google Scholar] [CrossRef]
- Freisinger, E.; Malyar, N.M.; Reinecke, H. Peripheral artery disease is associated with high in-hospital mortality particularly in males with acute myocardial infarction in a nationwide real-world setting. Vasa 2016, 45, 169–174. [Google Scholar] [CrossRef]
- Ishii, H. Nutritional Status as a Predictor of Clinical Prognosis in Patients with Peripheral Artery Disease. J. Atheroscler. Thromb. 2020, 27, 132–133. [Google Scholar] [CrossRef]
- Singh, S.; Bailey, K.R.; Noheria, A.; Kullo, I.J. Frailty across the spectrum of ankle-brachial index. Angiology 2012, 63, 229–236. [Google Scholar] [CrossRef]
- Secemsky, E.A.; Yeh, R.W.; Kereiakes, D.J.; Cutlip, D.E.; Steg, P.G.; Massaro, J.M.; Apruzzese, P.K.; Mauri, L.; on behalf of the Dual Antiplatelet Therapy Study Investigators. Extended Duration Dual Antiplatelet Therapy After Coronary Stenting Among Patients with Peripheral Arterial Disease: A Subanalysis of the Dual Antiplatelet Therapy Study. JACC Cardiovasc. Interv. 2017, 10, 942–954. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007, 45, S5–S67. [Google Scholar] [CrossRef]
- Beiswenger, A.C.; Jo, A.; Harth, K.; Kumins, N.H.; Shishehbor, M.H.; Kashyap, V.S. A systematic review of the efficacy of aspirin monotherapy versus other antiplatelet therapy regimens in peripheral arterial disease. J. Vasc. Surg. 2018, 67, 1922–1932.e6. [Google Scholar] [CrossRef]
- Mant, J. Rivaroxaban plus aspirin, compared with aspirin alone, reduced cardiovascular events in patients with stable peripheral or carotid artery disease, but increased the risk of major bleeding. BMJ Evid. Based Med. 2018, 23, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, K.W.; Palmerini, T.; Stone, G.W.; Lee, M.S.; Colombo, A.; Chieffo, A.; Feres, F.; Abizaid, A.; Bhatt, D.L.; et al. Racial Differences in Ischaemia/Bleeding Risk Trade-Off during Anti-Platelet Therapy: Individual Patient Level Landmark Meta-Analysis from Seven RCTs. Thromb. Haemost. 2019, 119, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, S.; Miyata, H.; Ueda, I.; Masoudi, F.A.; Peterson, E.D.; Maekawa, Y.; Kawamura, A.; Fukuda, K.; Roe, M.T.; Rumsfeld, J.S. An international comparison of patients undergoing percutaneous coronary intervention: A collaborative study of the National Cardiovascular Data Registry (NCDR) and Japan Cardiovascular Database-Keio interhospital Cardiovascular Studies (JCD-KiCS). Am. Heart J. 2015, 170, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; van Klaveren, D.; James, S.; Heg, D.; Räber, L.; Feres, F.; Pilgrim, T.; Hong, M.-K.; Kim, H.-S.; Colombo, A.; et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: A pooled analysis of individual-patient datasets from clinical trials. Lancet 2017, 389, 1025–1034. [Google Scholar] [CrossRef]
- Yao, J.; Chen, K.; He, Z.; Chen, D. Impact of frailty on outcomes of elderly patients with atrial fibrillation: A systematic review and meta-analysis. Pak. J. Med. Sci. 2025, 41, 891–901. [Google Scholar] [CrossRef]
- Nitta, M.; Nakano, S.; Kaneko, M.; Fushimi, K.; Hibi, K.; Shimizu, S. In-Hospital Mortality in Patients with Cardiogenic Shock Requiring Veno-Arterial Extracorporeal Membrane Oxygenation with Concomitant Use of Impella vs. Intra-Aortic Balloon Pump—A Retrospective Cohort Study Using a Japanese Claims-Based Database. Circ. J. 2024, 88, 1276–1285. [Google Scholar] [CrossRef]
All (n = 1391) | PAD (n = 210) | Non-PAD (n = 1181) | p-Value | |
---|---|---|---|---|
Age, years | 71.0 (61.0–78.0) | 77.0 (70.0–82.3) | 70.0 (60.0–78.0) | <0.001 |
Male, n (%) | 1099 (79.0) | 156 (74.3) | 943 (79.8) | 0.080 |
Body mass index (kg/m2) | 23.8 (21.6–26.0) | 22.8 (20.6–25.4) | 23.9 (21.8–26.1) | <0.001 |
Ankle–brachial index | 1.11 (1.01–1.18) | 0.78 (0.65–0.90) | 1.13 (1.05–1.19) | <0.001 |
Ankle–brachial pulse wave velocity (cm/s) | 1606 (1379–1923) (n = 1383) | 1796 (1459–2293) (n = 206) | 1588 (1361–1876) (n = 1177) | <0.001 |
Inter-arm blood pressure difference (mmHg) | 2.0 (1.0–4.0) (n = 1361) | 4.0 (2.0–10.0) (n = 197) | 2.0 (1.0–4.0) (n = 1164) | <0.001 |
Current smoker, n (%) | 474 (34.2) (n = 1386) | 68 (32.5) (n = 209) | 406 (34.5) (n = 1177) | 0.635 |
Comorbidities | ||||
Hypertension, n (%) | 1127 (81.0) | 180 (85.7) | 947 (80.2) | 0.069 |
Hyperlipidemia, n (%) | 831 (59.7) | 134 (63.8) | 697 (59.0) | 0.195 |
Diabetes mellitus, n (%) | 592 (42.6) | 109 (51.9) | 483 (40.9) | 0.003 |
Anemia, n (%) | 413 (29.7) | 104 (49.5) | 309 (26.2) | <0.001 |
Atrial fibrillation, n (%) | 198 (14.2) | 37 (17.6) | 161 (13.6) | 0.134 |
Chronic renal failure on hemodialysis, n (%) | 47 (3.4) | 19 (9.0) | 28 (2.4) | <0.001 |
History of previous PCI, n (%) | 247 (17.8) | 61 (29.0) | 186 (15.7) | <0.001 |
History of previous CABG, n (%) | 39 (2.8) | 11 (5.2) | 28 (2.4) | 0.037 |
History of previous EVT, n (%) | 43 (3.3) | 43 (20.5) | 0 (0.0) | <0.001 |
History of previous MI, n (%) | 167 (12.0) | 40 (19.0) | 127 (10.8) | 0.001 |
History of cerebral infarction, n (%) | 135 (9.7) | 35 (16.7) | 100 (8.5) | <0.001 |
History of PAD surgery, n (%) | 23 (1.7) | 23 (11.0) | 0 (0.0) | <0.001 |
Laboratory data | ||||
Serum creatinine (mg/dL) | 0.85 (0.69–1.05) | 1.04 (0.80–1.52) | 0.83 (0.68–1.000) | <0.001 |
eGFR, (mL/min/1.73 m2) | 65.9 (49.8–81.0) | 49.6 (34.0–66.8) | 68.5 (53.7–82.7) | <0.001 |
Hemoglobin levels (g/dL) | 13.7 (12.4–15.0) | 12.7 (11.1–14.0) | 13.9 (12.7–15.2) | <0.001 |
Brain natriuretic peptide (pg/mL) | 106.0 (35.5–397.3) (n = 1378) | 498.4 (108.1–1029.5) (n = 206) | 90/2 (32.3–287.2) (n = 1172) | <0.001 |
Peak creatine kinase (U/L) | 702.0 (207.8–2059.0) | 393.5 (148.5–1269.0) | 778.0 (225.8–2137.5) | <0.001 |
Peak creatine kinase-MB (U/L) | 56.0 (11.0–205.0) (n = 1389) | 25.0 (8.0–124.0) | 62.0 (13.0–215.0) (n = 1179) | <0.001 |
Hemoglobin A1c (%) | 6.1 (5.7–7.0) (n = 1384) | 6.3 (5.8–7.2) (n = 206) | 6.1 (5.7–7.0) (n = 1178) | 0.015 |
Platelets, (×103/μL) | 21.9 (18.2–26.6) | 22.0 (17.9–28.2) | 21.9 (18.2–26.6) | 0.775 |
C-reactive protein (mg/μL) | 0.20 (0.09–0.79) | 0.51 (0.17–2.46) | 0.18 (0.09–0.59) | <0.001 |
Type of acute myocardial infarction | ||||
STEMI, n (%) | 811 (58.3) | 82 (39.0) | 729 (61.7) | <0.001 |
NSTEMI, n (%) | 580 (41.7) | 128 (61.0) | 452 (38.3) | |
Cardiopulmonary arrest out of hospital, n (%) | 47 (3.4) | 5 (2.4) | 42 (3.6) | 0.533 |
Killip classification of 1 or 2, n (%) | 1145 (82.3) | 149 (71.0) | 996 (84.3) | <0.001 |
Killip classification of 3 or 4, n (%) | 246 (17.7) | 61 (29.0) | 185 (15.7) | |
Cardiogenic shock at admission, n (%) | 103 (7.4) | 22 (10.5) | 81 (6.9) | 0.084 |
Vital sings | ||||
Systolic blood pressure at admission (mmHg) | 141.0 (122.0–163.0) | 140.0 (117.8–163.0) | 142.0 (123.0–163.0) | 0.279 |
Diastolic blood pressure at admission (mmHg) | 83.0 (71.0–97.0) | 79.0 (66.0–92.0) | 84.0 (72.0–98.0) | <0.001 |
Heart rate at admission (bpm) | 80.0 (67.0–96.0) | 85.0 (67.8–102.3) | 79.0 (67.0–95.0) | 0.003 |
Left ventricular ejection fraction (%) | 54.0 (42.0–62.7) | 47.1 (35.6–61.7) | 55.0 (43.5–63.0) | <0.001 |
Medication at admission | ||||
Aspirin, n (%) | 350 (25.8) (n = 1356) | 86 (41.5) (n = 207) | 264 (23.0) (n = 1149) | <0.001 |
Thienopyridine, n (%) | 197 (14.5) (n = 1356) | 63 (30.4) (n = 207) | 134 (11.7) (n = 1149) | <0.001 |
Statins, n (%) | 445 (32.8) (n = 1356) | 98 (47.3) (n = 207) | 347 (30.2) (n = 1149) | <0.001 |
ACE inhibitors or ARBs, n (%) | 523 (38.6) (n = 1355) | 112 (54.1) (n = 207) | 411 (35.8) (n = 1148) | <0.001 |
Beta-blockers, n (%) | 306 (22.6) (n = 1355) | 74 (35.7) (n = 207) | 232 (20.2) (n = 1148) | <0.001 |
Calcium channel blocker, n (%) | 501 (37.0) (n = 1355) | 97 (46.9) (n = 207) | 404 (35.2) (n = 1148) | 0.002 |
Diuretics, n (%) | 232 (17.1) (n = 1355) | 60 (29.0) (n = 207) | 172 (15.0) (n = 1148) | <0.001 |
Oral antidiabetic, n (%) | 370 (27.3) (n = 1355) | 75 (36.2) (n = 207) | 295 (25.7) (n = 1148) | 0.001 |
Insulin, n (%) | 78 (5.8) (n = 1355) | 20 (9.7) (n = 207) | 58 (5.1) (n = 1148) | 0.014 |
Direct oral anticoagulants, n (%) | 44 (3.2) (n = 1355) | 10 (4.8) (n = 207) | 34 (3.0) (n = 1148) | 0.197 |
Warfarin, n (%) | 29 (2.1) (n = 1355) | 5 (2.4) (n = 207) | 24 (2.1) (n = 1148) | 0.793 |
Mechanical complications after PCI | ||||
Ventricular septal perforation, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Cardiac free wall rupture, n (%) | 3 (0.2) | 0 (0.0) | 3 (0.3) | 1.000 |
Papillary muscle rupture, n (%) | 4 (0.3) | 1 (0.5) | 3 (0.3) | 0.481 |
Mechanical circulatory support | ||||
PCPS, n (%) | 21 (1.5) | 2 (1.0) | 19 (1.6) | 0.758 |
Intra-aortic balloon pumping, n (%) | 408 (29.3) | 68 (32.4) | 340 (28.8) | 0.324 |
Impella, n (%) | 5 (0.4) | 0 (0.0) | 5 (0.4) | 1.000 |
Medical therapy during hospitalization | ||||
Temporary pacing, n (%) | 54 (3.9) | 10 (4.8) | 44 (3.7) | 0.441 |
Mechanical ventilation, n (%) | 88 (6.3) | 18 (8.6) | 70 (5.9) | 0.165 |
NPPV, n (%) | 112 (8.1) | 32 (15.2) | 80 (6.8) | <0.001 |
Continuous hemofiltration, n (%) | 18 (1.3) | 6 (2.9) | 12 (1.0) | 0.042 |
All (n = 1391) | PAD (n = 210) | Non-PAD (n = 1181) | p-Value | |
---|---|---|---|---|
Number of narrowed coronary arteries | 0.002 | |||
Single, n (%) | 664 (46.3) | 87 (36.7) | 567 (48.0) | |
Double, n (%) | 449 (32.3) | 71 (33.8) | 378 (32.0) | |
Triple, n (%) | 298 (21.4) | 62 (29.5) | 236 (20.0) | |
Infarct-related artery | 0.727 | |||
Left main–left anterior descending artery, n (%) | 706 (50.8) | 102 (48.6) | 604 (51.1) | |
Right coronary artery, n (%) | 471 (33.9) | 77 (36.7) | 394 (33.4) | |
Left circumflex artery, n (%) | 205 (14.7) | 30 (13.6) | 175 (14.9) | |
Graft, n (%) | 9 (0.6) | 2 (0.9) | 7 (0.6) | |
50% ≥ stenosis at the left main coronary trunk, n (%) | 132 (9.5) | 33 (15.7) | 99 (8.4) | 0.002 |
First TIMI flow (0,1,2,3) | <0.0001 | |||
0, n (%) | 523 (37.6) | 56 (26.7) | 467 (39.5) | |
1, n (%) | 94 (6.8) | 9 (4.3) | 85 (7.2) | |
2, n (%) | 250 (18.0) | 38 (18.1) | 212 (18.0) | |
3, n (%) | 524 (37.7) | 107 (51.0) | 417 (35.3) | |
Final TIMI flow (0,1,2,3) | 0.754 | |||
0, n (%) | 7 (0.5) | 1 (0.5) | 6 (0.5) | |
1, n (%) | 9 (0.6) | 2 (1.0) | 7 (0.6) | |
2, n (%) | 48 (3.5) | 5 (2.4) | 43 (3.6) | |
3, n (%) | 1327 (95.4) | 202 (96.2) | 1125 (95.3) | |
Chronic total occlusion in non-culprit arteries, n (%) | 190 (13.7) | 46 (21.9) | 144 (12.2) | <0.001 |
Use of aspiration catheter, n (%) | 168 (12.1) | 14 (6.7) | 154 (13.0) | 0.008 |
Final PCI procedure | <0.001 | |||
Plain old balloon angioplasty, n (%) | 43 (3.1) | 7 (3.3) | 36 (3.0) | |
Drug-coated balloon, n (%) | 85 (6.1) | 28 (13.3) | 57 (4.8) | |
Bare metal stent, n (%) | 14 (1.0) | 3 (1.4) | 11 (0.9) | |
Drug-eluting stent, n (%) | 1228 (88.3) | 169 (80.5) | 1059 (89.7) | |
POBA and thrombectomy, n (%) | 9 (0.6) | 0 (0.0) | 9 (0.8) | |
Aspiration only, n (%) | 7 (0.5) | 2 (1.0) | 5 (0.4) | |
Wire did not cross the lesion, n (%) | 5 (0.4) | 1 (0.5) | 4 (0.3) | |
Approach site | <0.001 | |||
Radial, n (%) | 1032 (74.2) | 127 (60.5) | 905 (76.6) | |
Brachial, n (%) | 14 (1.0) | 9 (4.3) | 5 (0.4) | |
Femoral, n (%) | 345 (24.8) | 74 (35.2) | 261 (22.9) | |
Catheter size (Fr) | <0.001 | |||
6 Fr, n (%) | 1010 (72.6) | 125 (59.5) | 885 (74.9) | |
7 Fr, n (%) | 367 (26.4) | 81 (38.6) | 286 (24.2) | |
8 Fr, n (%) | 14 (1.0) | 4 (1.9) | 10 (0.8) |
All (n = 1391) | PAD (n = 210) | Non-PAD (n = 1181) | p-Value | |
---|---|---|---|---|
Total bleeding event, n (%) | 186 (13.4) | 52 (24.8) | 134 (11.3) | <0.001 |
BARC type 3 bleeding, n (%) | 151 (10.9) | 42 (20.0) | 109 (9.2) | <0.001 |
- BARC type 3a bleeding, n (%) | 108 (7.8) | 29 (13.8) | 79 (6.7) | 0.001 |
- BARC type 3b bleeding, n (%) | 64 (4.6) | 19 (9.0) | 45 (3.8) | 0.002 |
- BARC type 3c bleeding, n (%) | 9 (0.6) | 0 (0.0) | 9 (0.8) | 0.371 |
BARC type 5 bleeding, n (%) | 38 (2.7) | 6 (2.9) | 32 (2.7) | 0.820 |
- BARC type 5a bleeding, n (%) | 15 (1.1) | 3 (1.4) | 12 (1.0) | 0.485 |
- BARC type 5b bleeding, n (%) | 23 (1.7) | 3 (1.4) | 20 (1.7) | 1.0000 |
Bleeding site | ||||
Gastrointestinal bleeding, n (%) | 44 (3.2) | 9 (4.3) | 35 (3.0) | 0.289 |
Intra-abdominal bleeding, n (%) | 12 (0.9) | 3 (1.4) | 9 (0.8) | 0.406 |
Access site-related bleeding, n (%) | 27 (1.9) | 12 (5.7) | 15 (1.3) | <0.001 |
Intracranial bleeding, n (%) | 5 (0.4) | 1 (0.5) | 4 (0.3) | 0.559 |
Required VA-ECMO, n (%) | 20 (1.4) | 3 (1.4) | 17 (1.4) | 1.000 |
Hematuria, n (%) | 9 (0.6) | 4 (1.9) | 5 (0.4) | 0.034 |
Others, n (%) | 64 (4.6) | 19 (9.0) | 45 (3.8) | 0.002 |
MACEs, n (%) | 278 (20.0) | 86 (41.0) | 192 (16.3) | <0.001 |
All-cause death, n (%) | 117 (8.4) | 39 (18.6) | 78 (6.6) | <0.001 |
- Cardiac death, n (%) | 46 (3.3) | 22 (10.5) | 24 (2.0) | <0.001 |
Non-fatal myocardial infarction, n (%) | 97 (7.0) | 26 (12.4) | 71 (6.0) | 0.002 |
Readmission for heart failure, n (%) | 135 (9.7) | 47 (22.4) | 88 (7.5) | <0.001 |
(a) | |||
Composite endpoint | Hazard ratios | 95% confidence interval | p-value |
Total bleeding events | |||
PAD group | Reference | ||
Unadjusted PAD group | 2.515 | 1.824–3.468 | <0.001 |
Adjusted PAD group | 1.509 | 1.056–2.156 | 0.024 |
Composite endpoint | Hazard ratios | 95% confidence interval | p-value |
BARC 5 bleeding events | |||
PAD group | Reference | ||
Unadjusted PAD group | 1.141 | 0.476–2.730 | 0.771 |
Adjusted PAD group | 0.591 | 0.229–1.523 | 0.276 |
BARC 3 bleeding events | |||
PAD group | Reference | ||
Unadjusted PAD group | 2.511 | 1.757–3.588 | <0.001 |
Adjusted PAD group | 1.672 | 1.121–2.493 | 0.012 |
(b) | |||
Composite endpoint | Hazard ratios | 95% confidence interval | p-value |
MACE | |||
PAD group | Reference | ||
Unadjusted PAD group | 3.361 | 2.604–4.340 | <0.001 |
Adjusted PAD group | 2.152 | 1.510–3.066 | <0.001 |
Component endpoints | Hazard ratios | 95% confidence interval | p-value |
All-cause death | |||
PAD group | Reference | ||
Unadjusted PAD group | 3.398 | 2.312–4.995 | <0.001 |
Adjusted PAD group | 1.768 | 1.149–2.722 | 0.010 |
Non-fatal myocardial infarction | |||
PAD group | Reference | ||
Unadjusted high PAD group | 2.595 | 1.653–4.072 | <0.001 |
Adjusted high PAD group | 2.582 | 1.456–4.580 | 0.001 |
Readmission for heart failure | |||
PAD group | Reference | ||
Unadjusted PAD group | 3.712 | 2.602–5.295 | <0.001 |
Adjusted PAD group | 2.118 | 1.261–3.560 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Yamamoto, K.; Tsukui, T.; Hatori, M.; Kasahara, T.; Ishibashi, S.; Watanabe, Y.; et al. The Association Between Peripheral Arterial Disease and Long-Term Bleeding Events in Patients with Acute Myocardial Infarction. J. Clin. Med. 2025, 14, 3183. https://doi.org/10.3390/jcm14093183
Ban S, Sakakura K, Jinnouchi H, Taniguchi Y, Yamamoto K, Tsukui T, Hatori M, Kasahara T, Ishibashi S, Watanabe Y, et al. The Association Between Peripheral Arterial Disease and Long-Term Bleeding Events in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine. 2025; 14(9):3183. https://doi.org/10.3390/jcm14093183
Chicago/Turabian StyleBan, Soichiro, Kenichi Sakakura, Hiroyuki Jinnouchi, Yousuke Taniguchi, Kei Yamamoto, Takunori Tsukui, Masashi Hatori, Taku Kasahara, Shun Ishibashi, Yusuke Watanabe, and et al. 2025. "The Association Between Peripheral Arterial Disease and Long-Term Bleeding Events in Patients with Acute Myocardial Infarction" Journal of Clinical Medicine 14, no. 9: 3183. https://doi.org/10.3390/jcm14093183
APA StyleBan, S., Sakakura, K., Jinnouchi, H., Taniguchi, Y., Yamamoto, K., Tsukui, T., Hatori, M., Kasahara, T., Ishibashi, S., Watanabe, Y., Seguchi, M., & Fujita, H. (2025). The Association Between Peripheral Arterial Disease and Long-Term Bleeding Events in Patients with Acute Myocardial Infarction. Journal of Clinical Medicine, 14(9), 3183. https://doi.org/10.3390/jcm14093183