Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects; Inclusion and Exclusion Criteria
2.2. Electroconvulsive Therapy Procedures
2.3. Immunology Parameter Assay
2.4. Statistic Analysis
3. Results
3.1. Cytokine Concentrations and PANSS Score Changes Post-ECT
3.2. Cytokines and PANSS Score Correlations During ECT Procedures
4. Discussion
5. Conclusions
6. Limitations
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, D.; Wang, Y.; Chen, Y.; Yu, L.; Wu, Z.; Liu, R.; Ren, J.; Fang, X.; Zhang, C. Differences in inflammatory marker profiles and cognitive functioning between deficit and nondeficit schizophrenia. Front. Immunol. 2022, 13, 958–972. [Google Scholar] [CrossRef]
- Galińska-Skok, B.; Waszkiewicz, N. Markers of Schizophrenia-A Critical Narrative Update. J. Clin. Med. 2022, 7, 3964. [Google Scholar] [CrossRef]
- Modzelewski, S.; Naumowicz, M.; Suprunowicz, M.; Oracz, A.J.; Waszkiewicz, N. The Impact of Seasonality on Mental Health Disorders: A Narrative Review and Extension of the Immunoseasonal Theory. J. Clin. Med. 2025, 14, 1119. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Noto, C.; Maes, M.; Ota, V.K.; Teixeira, A.L.; Bressan, R.A.; Gadelha, A.; Brietzke, E. High predictive value of immune inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry 2015, 16, 422–429. [Google Scholar] [CrossRef]
- Leboyer, M.; Godin, O.; Terro, E.; Boukouaci, W.; Lu, C.L.; Andre, M.; Aouizerate, B.; Berna, F.; Barau, C.; Capdevielle, D.; et al. Immune Signatures of Treatment-Resistant Schizophrenia: A FondaMental Academic Centers of Expertise for Schizophrenia (FACE-SZ) Study. Schizophr. Bull. Open 2021, 2, sgab012. [Google Scholar] [CrossRef]
- Enache, D.; Nikkheslat, N.; Fathalla, D.; Morgan, B.P.; Lewis, S.; Drake, R.; Deakin, B.; Walters, J.; Lawrie, S.M.; Egerton, A.; et al. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 2021, 230, 1–8. [Google Scholar] [CrossRef]
- Aytac, H.M.; Ozdilli, K.; Tuncel, F.C.; Pehlivan, M.; Pehlivan, S. Tumor Necrosis Factor-alpha (TNF-)-238 G/A Polymorphism Is Associated with the Treatment Resistance and Attempted Suicide in Schizophrenia. Immunol. Investig. 2022, 51, 368–380. [Google Scholar] [CrossRef]
- Dahan, S.; Bragazzi, N.L.; Yogev, A.; Bar-Gad, M.; Barak, V.; Amital, H.; Amital, D. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 2018, 268, 467–472. [Google Scholar] [CrossRef]
- Davis, J.; Moylan, S.; Harvey, B.H.; Maes, M.; Berk, M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust. N. Z. J. Psychiatry 2014, 48, 512–529. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in chizophrenia: An Updated Review. Front. Psychiatry 2019, 6, 892. [Google Scholar]
- Chenniappan, R.; Nandeesha, H.; Kattimani, S.; Nanjaiah, N.D. Interleukin-17 and Interleukin-10 Association with Disease Progression in Schizophrenia. Ann. Neurosci. 2020, 27, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.H.; Tan, Y.L.; Yan, S.X.; Tian, L.; Tan, S.P.; Wang, Z.R.; Yang, F.D.; Yoon, J.H.; Zunta-Soares, G.B.; Soares, J.C.; et al. Decreased serum TNF-alpha levels in chronic schizophrenia patients on long-term antipsychotics: Correlation with psychopathology and cognition. Psychopharmacology 2015, 232, 165–172. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, W.; Li, H.; Peng, F.; Wang, F.; Li, N. Increased ratio of high sensitivity C-reactive protein to interleukin-10 as a potential peripheral biomarker of schizophrenia and aggression. Int. J. Psychophysiol. 2017, 114, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Song, X.; Zhao, J.; Gao, J.; Li, X.; Yang, G.; Wang, X.; Harrington, A.; Fan, X.; Lv, L. Activation of Th17 cells in drug naïve, first episode schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 51, 78–82. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, L.; Liu, F.; Wu, R.; Guo, W.; Ou, J.; Zhang, X.; Zhao, J. Altered Serum Tumor Necrosis Factor and Interleukin-1β in First-Episode Drug-Naive and Chronic Schizophrenia. Front. Neurosci. 2018, 12, 296. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 12, 1696–1709. [Google Scholar] [CrossRef]
- Chen, W.; Gou, M.; Wang, L.; Li, N.; Li, W.; Tong, J.; Zhou, Y.; Xie, T.; Yu, T.; Feng, W.; et al. Inflammatory disequilibrium and lateral ventricular enlargement in treatment-resistant schizophrenia. Eur. Neuropsychopharmacol. 2023, 72, 18–29. [Google Scholar] [CrossRef]
- Patlola, S.R.; Donohoe, G.; McKernan, D.P. Anti-inflammatory effects of 2nd generation antipsychotics in patients with schizophrenia: A systematic review and meta-analysis. J. Psychiatr. Res. 2023, 160, 126–136. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, S.; Shi, Y.; Yang, Y.; Zhang, Y.; Xia, L.; Zhang, K.; Liu, H. Pro-inflammatory cytokine levels are elevated in female patients with schizophrenia treated with clozapine. Psychopharmacology 2022, 239, 765–771. [Google Scholar] [CrossRef]
- Juckel, G.; Manitz, M.P.; Brüne, M.; Friebe, A.; Heneka, M.T.; Wolf, R.J. Microglial activation in a neuroinflammational animal model of schizophrenia—A pilot study. Schizophr. Res. 2011, 131, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Gober, R.; Dallmeier, J.; Davis, D.; Brzostowicki, D.; de Rivero Vaccari, J.P.; Cyr, B.; Barreda, A.; Sun, X.; Gultekin, S.H.; Garamszegi, S.; et al. Increased inflammasome protein expression identified in microglia from postmortem brains with schizophrenia. J. Neuropathol. Exp. Neurol. 2024, 83, 951–966. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G.; Krupp, I.M. Schizophrenia as an immunologic disorder: I. Demonstration of antibrain globulins by fluorescent antibody techniques. Arch. Gen. Psychiatry 1967, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.S.; Maes, M. The macrophage-T-lymphocyte theory of schizophrenia: Additional evidence. Med. Hypotheses 1995, 45, 135–141. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Noto, C.; Kanchanatawan, B.; Anderson, G.; Kubera, M.; Carvalho, A.F.; Maes, M. The RoleofAberrations in the Immune-Inflammatory Response System (IRS) and the Compensatory Immune-Regulatory Reflex System (CIRS) in Different Phenotypes of Schizophrenia: The IRS-CIRS Theory of Schizophrenia. Mol. Neurobiol. 2020, 57, 778–797. [Google Scholar] [CrossRef]
- Al-Dujaili, A.H.; Mousa, R.F.; Al-Hakeim, H.K.; Maes, M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations with Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr. Bull. 2021, 47, 530–541. [Google Scholar] [CrossRef]
- Arandjelovic, S.; Dragojlovic, N.; Li, X.; Myers, R.R.; Campana, W.M.; Gonias, S.L. A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury. J. Neurochem. 2007, 103, 694–705. [Google Scholar] [CrossRef]
- Lesh, T.A.; Careaga, M.; Rose, D.R.; McAllister, A.K.; Van de Water, J.; Carter, C.S.; Ashwood, P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: Relationships to brain structure and symptoms. J. Neuroinflammation 2018, 15, 165. [Google Scholar] [CrossRef]
- Lin, C.; Chen, K.; Yu, J.; Feng, W.; Fu, W.; Yang, F.; Zhang, X.; Chen, D. Relationship between TNF-α levels and psychiatric symptoms in first-episode drug-naïve patients with schizophrenia before and after risperidone treatment and in chronic patients. BMC Psychiatry 2021, 21, 561. [Google Scholar] [CrossRef]
- Noto, M.N.; Maes, M.; Nunes, S.O.V.; Ota, V.K.; Rossaneis, A.C.; Verri, W.A., Jr.; Cordeiro, Q.; Belangero, S.I.; Gadelha, A.; Bressan, R.A.; et al. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur. Neuropsychopharmacol. 2019, 29, 416–431. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kanchanatawan, B. In (deficit) schizophrenia, a general cognitive decline partly mediates the effects of neuro-immune and neuro-oxidative toxicity on the symptomatome and quality of life. CNS Spectr. 2021, 12, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Tian, B.; Han, H.B. Serum interleukin-6 in schizophrenia: A system review and meta-analysis. Cytokine 2021, 141, 155441. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.; Siskind, D.; Amft, M.; Wagner, E.; Yakimov, V.; Shih-Jung Liu, Z.; Walder, K.; Warren, N. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: A systematic review and network meta-analysis. Lancet Psychiatry 2023, 10, 60–271, Erratum in: Lancet Psychiatry 2023, 10, e13. [Google Scholar] [CrossRef]
- Yan, J.; Xia, Q.; Sun, X.; Yang, P.; Gao, H.; Pan, Z.; Gao, J.; Zhang, L.; Wang, M.; Wang, K.; et al. Dysregulation of interleukin-8 is involved in the onset and relapse of schizophrenia: An independent validation and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 13, 111018. [Google Scholar]
- Debnath, M.; Berk, M. Th17 pathway-mediated immunopathogenesis of schizophrenia: Mechanisms and implications. Schizophr. Bull. 2014, 40, 1412–1420. [Google Scholar] [CrossRef]
- Maes, M.; Bocchio Chiavetto, L.; Bignotti, S.; Battisa Tura, G.; Pioli, R.; Boin, F.; Kenis, G.; Bosmans, E.; de Jongh, R.; Lin, A.; et al. Effects of atypical antipsychotics on the inflammatory response system in schizophrenic patients resistant to treatment with typical neuroleptics. Eur. Neuropsychopharmacol. 2000, 10, 119–124. [Google Scholar] [CrossRef]
- Valiuliene, G.; Valiulis, V.; Dapsys, K.; Vitkeviciene, A.; Gerulskis, G.; Navakauskiene, R.; Germanavicius, A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur. J. Neurosci. 2021, 53, 3791–3802. [Google Scholar] [CrossRef]
- Szota, A.M.; Radajewska, I.; Ćwiklińska-Jurkowska, M.; Lis, K.; Grudzka, P.; Dróżdż, W. Changes in IL-6, IL-12, IL-5, IL-10 and TGF-β1 Concentration in Patients with Treatment-Resistant Schizophrenia (TRS) Following Electroconvulsive Therapy (ECT)-A Pilot Study. Biomedicines 2024, 12, 2637. [Google Scholar] [CrossRef]
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef]
- Cooper, S.J.; Reynolds, G.P.; With expert co-authors (in alphabetical order); Barnes, T.; England, E.; Haddad, P.M.; Heald, A.; Holt, R.; Lingford-Hughes, A.; Osborn, D.; et al. BAP guidelines on the management of weight gain, metabolic disturbances and cardiovascular risk associated with psychosis and antipsychotic drug treatment. J. Psychopharmacol. 2016, 30, 717–748. [Google Scholar] [CrossRef] [PubMed]
- Na, E.; Yim, S.J.; Lee, J.; Kim, J.M.; Hong, K.; Hong, M.H.; Han, H. Relationships among medication adherence, insight, and neurocognition in chronic schizophrenia. Psychiatry Clin. Neurosci. 2015, 69, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Ishii, J.; Kodaka, F.; Miyata, H.; Yamadera, W.; Seto, H.; Higuchi, H.; Tsuruoka, Y.; Shigeta, M. Association between functional recovery and medication adherence in schizophrenia. Neuropsychopharmacol. Rep. 2022, 42, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Siskind, D.; Orr, S.; Sinha, S.; Yu, O.; Brijball, B.; Warren, N.; MacCabe, J.H.; Smart, S.E.; Kisely, S. Rates of treatment-resistant schizophrenia from first-episode cohorts: Systematic review and meta-analysis. Br. J. Psychiatry 2022, 220, 115–120. [Google Scholar] [CrossRef]
- Diniz, E.; Fonseca, L.; Rocha, D.; Trevizol, A.; Cerqueira, R.; Ortiz, B.; Brunoni, A.R.; Bressan, R.; Correll, C.U.; Gadelha, A. Treatment resistance in schizophrenia: A meta-analysis of prevalence and correlates. Braz. J. Psychiatry 2023, 45, 448–458. [Google Scholar] [CrossRef]
- Correll, C.U.; Agid, O.; Crespo-Facorro, B.; de Bartolomeis, A.; Fagiolini, A.; Seppälä, N.; Howes, O.D. A Guideline and Checklist for Initiating and Managing Clozapine Treatment in Patients with Treatment-Resistant Schizophrenia. CNS Drugs 2022, 36, 659–679. [Google Scholar] [CrossRef]
- Wagner, E.; Kane, J.M.; Correll, C.U.; Howes, O.; Siskind, D.; Honer, W.G.; Lee, J.; Falkai, P.; Schneider-Axmann, T.; Hasan, A. TRRIP Working Group. Clozapine Combination and Augmentation Strategies in Patients With Schizophrenia-Recommendations From an International Expert Survey Among the Treatment Response and Resistance in Psychosis (TRRIP) Working Group. Schizophr. Bull. 2020, 46, 1459–1470. [Google Scholar] [CrossRef]
- Wingralek, Z.; Banaszek, A.; Nowak, K.; Próchnicki, M. ECT on a world map—A narrative review of the use of electroconvulsive therapy and its frequency in the world. Curr. Probl. Psychiatry 2022, 23, 86–103. [Google Scholar] [CrossRef]
- Grover, S.; Sahoo, S.; Rabha, A.; Koirala, R. ECT in schizophrenia: A review of the evidence. Acta Neuropsychiatr. 2019, 31, 115–127. [Google Scholar] [CrossRef]
- Yi, S.; Wang, Q.; Wang, W.; Hong, C.; Ren, Z. Efficacy of repetitive transcranial magnetic stimulation (rTMS) on negative symptoms and cognitive functioning in schizophrenia: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res. 2024, 333, 115728. [Google Scholar] [CrossRef]
- Cheng, P.W.C.; Louie, L.L.C.; Wong, Y.L.; Wong, S.M.C.; Leung, W.Y.; Nitsche, M.A.; Chan, W.C. The effects of transcranial direct current stimulation (tDCS) on clinical symptoms in schizophrenia: A systematic review and meta-analysis. Asian J. Psychiatr. 2020, 53, 102392. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.J.; Cooper, J.J. Therapeutic Uses of Seizures in Neuropsychiatry. Focus (Am. Psychiatr. Publ). 2019, 17, 13–17. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, A.M.; Mekala, H.M.; Venigalla, H.; Ahmed, R.; Etman, A.; Esang, M.; Qureshi, M. Combined Use of Electroconvulsive Therapy and Antipsychotics (Both Clozapine and Non-Clozapine) in Treatment Resistant Schizophrenia: A Comparative Meta-Analysis. Heliyon 2017, 3, e00429. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Awata, S.; Matsuoka, H. One-Year Outcome after Response to ECT in Middle-Aged and Elderly Patients with Intractable Catatonic Schizophrenia. J. ECT 2004, 20, 99–106. [Google Scholar] [CrossRef] [PubMed]
- van Diermen, L.; van den Ameele, S.; Kamperman, A.M.; Sabbe, B.C.G.; Vermeulen, T.; Schrijvers, D.; Birkenhäger, T.K. Prediction of Electroconvulsive Therapy Response and Remission in Major Depression: Meta-Analysis. Br. J. Psychiatry 2018, 212, 71–80. [Google Scholar] [CrossRef]
- Wang, G.; Zheng, W.; Li, X.B.; Wang, S.B.; Cai, D.B.; Yang, X.H.; Ungvari, G.S.; Xiang, Y.T.; Correll, C.U. ECT augmentation of clozapine for clozapine-resistant schizophrenia: A meta-analysis of randomized controlled trials. J. Psychiatr. Res. 2018, 105, 23–32. [Google Scholar] [CrossRef]
- Kartalci, S.; Karabulut, A.B.; Erbay, L.G.; Acar, C. Effects of Electroconvulsive Therapy on Some Inflammatory Factors in Patients with Treatment-Resistant Schizophrenia. J. ECT 2016, 32, 174–179. [Google Scholar] [CrossRef]
- Xiao, W.; Zhan, Q.; Ye, F.; Tang, X.; Li, J.; Dong, H.; Sha, W.; Zhang, X. Elevated serum vascular endothelial growth factor in treatment-resistant schizophrenia treated with electroconvulsive therapy: Positive association with therapeutic effects. World J. Biol. Psychiatry 2019, 20, 150–158. [Google Scholar] [CrossRef]
- Akbas, I.; Balaban, O.D. Changes in serum levels of brain-derived neurotrophic factor with electroconvulsive therapy and pharmacotherapy and its clinical correlates in male schizophrenia patients. Acta Neuropsychiatr. 2022, 34, 99–105. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Massuda, R.; Torres, M.; Camargo, D.; Fries, G.R.; Gama, C.S.; Belmonte-de-Abreu, P.S.; Kapczinski, F.; Lobato, M.I. Improvement of schizophrenia with electroconvulsive therapy and serum brain-derived neurotrophic factor levels: Lack of association in a pilot study. Psychiatry Clin. Neurosci. 2010, 64, 663–665. [Google Scholar] [CrossRef]
- Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.; Birnbaum, M.L.; Bloomfield, M.A.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; et al. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. Am. J. Psychiatry 2017, 174, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Campana, M.; Falkai, P.; Siskind, D.; Hasan, A.; Wagner, E. Characteristics and definitions of ultra-treatment-resistant schizophrenia—A systematic review and meta-analysis. Schizophr. Res. 2021, 228, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42, S90–S94. [Google Scholar] [CrossRef] [PubMed]
- Wojdacz, R.; Święcicki, Ł.; Antosik-Wójcińska, A. Comparison of the effect of intravenous anesthetics used for anesthesia during electroconvulsive therapy on the hemodynamic safety and the course of ECT. Psychiatr Pol. 2017, 30, 1039–1058, (In English, Polish). [Google Scholar] [CrossRef]
- Canbek, O.; Ipekcıoglu, D.; Menges, O.O.; Atagun, M.I.; Karamustafalıoglu, N.; Cetinkaya, O.Z.; Ilnem, M.C. Comparison of Propofol, Etomidate, and Thiopental in Anesthesia for Electroconvulsive Therapy: A Randomized, Double-blind Clinical Trial. J. ECT 2015, 31, 91–97. [Google Scholar] [CrossRef]
- Lally, J.; Tully, J.; Robertson, D.; Stubbs, B.; Gaughran, F.; MacCabe, J.H. Augmentation of clozapine with electroconvulsive therapy in treatment resistant schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2016, 171, 215–224. [Google Scholar] [CrossRef]
- Lee, M.D.; Wagenmakers, E.J. Bayesian Modeling for Cognitive Science: A Practical Course; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Weiner, R.D.; Reti, I.M. Key updates in the clinical application of electroconvulsive therapy. Int. Rev. Psychiatry 2017, 2, 54–62. [Google Scholar] [CrossRef]
- Li, J.; Ye, F.; Xiao, W.; Tang, X.; Sha, W.; Zhang, X.; Wang, J. Increased serum brain-derived neurotrophic factor levels following electroconvulsive therapy or antipsychotic treatment in patients with schizophrenia. Eur. Psychiatry 2016, 36, 23–28. [Google Scholar] [CrossRef]
- Shahin, O.; Gohar, S.M.; Ibrahim, W.; El-Makawi, S.M.; Fakher, W.; Taher, D.B.; Abdel Samie, M.; Khalil, M.A.; Saleh, A.A. Brain Derived neurotrophic factor (BDNF) plasma level increases in patients with resistant schizophrenia treated with electroconvulsive therapy (ECT). Int. J. Psychiatry Clin. Pract. 2022, 26, 370–375. [Google Scholar] [CrossRef]
- Martinotti, G.; Ricci, V.; Di Nicola, M.; Caltagirone, C.; Bria, P.; Angelucci, F. Brain-derived neurotrophic factor and electrocon vulsive therapy in a schizophrenic patient with treatment-resistant paranoid-hallucinatory symptoms. J. ECT 2011, 27, 44–46. [Google Scholar] [CrossRef]
- Ivanov, M.V.; Zubov, D.S. Electroconvulsive therapy in treatment of resistant schizophrenia: Biological markers of efficacy and safety. Zh. Nevrol. Psikhiatrii Im. S.S. Korsakova 2019, 119, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, M.; Dong, Y.; Liu, N.; Wang, X.; Yang, B.; Li, Z.; Li, S. Immunoinflammatory features and cognitive function in treatment-resistant schizophrenia: Unraveling distinct patterns in clozapine-resistant patients. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 28, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frydecka, D.; Krzystek-Korpacka, M.; Lubeiro, A.; Stramecki, F.; Stańczykiewicz, B.; Beszłej, J.A.; Piotrowski, P.; Kotowicz, K.; Szewczuk-Bogusławska, M.; Pawlak-Adamska, E.; et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol. Psychiatry 2008, 63, 801–808. [Google Scholar] [CrossRef]
- Balõtšev, R.; Koido, K.; Vasar, V.; Janno, S.; Kriisa, K.; Mahlapuu, R.; Ljubajev, U.; Parksepp, M.; Veiksaar, P.; Volke, V.; et al. Inflammatory, cardio-metabolic and diabetic profiling of chronic schizophrenia. Eur. Psychiatry 2017, 39, 1–10. [Google Scholar] [CrossRef]
- Borovcanin, M.; Jovanovic, I.; Radosavljevic, G.; Dejanovic, S.D.; Bankovic, D.; Arsenijevic, N.; Lukic, M.L. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J. Psychiatr. Res. 2012, 46, 1421–1426. [Google Scholar] [CrossRef]
- Dimitrov, D.H.; Lee, S.; Yantis, J.; Valdez, C.; Paredes, R.M.; Braida, N.; Velligan, D.; Walss-Bass, C. Differential correlations between inflammatory cytokines and psychopathology in veterans with schizophrenia: Potential role for IL-17 pathway. Schizophr. Res. 2013, 151, 29–35. [Google Scholar] [CrossRef]
- Maes, M.; Carvalho, A.F. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol. Neurobiol. 2018, 55, 8885–8903. [Google Scholar] [CrossRef]
- Sobiś, J.; Rykaczewska-Czerwińska, M.; Świętochowska, E.; Gorczyca, P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol. Rep. 2015, 67, 353–359. [Google Scholar] [CrossRef]
- Ajami, A.; Abedian, F.; Hamzeh Hosseini, S.; Akbarian, E.; Alizadeh-Navaei, R.; Taghipour, M. Serum TNF-α, IL-10 and IL-2 in schizophrenic patients before and after treatment with risperidone and clozapine. Iran J. Immunol. 2014, 11, 200–209. [Google Scholar]
- Eftekharian, M.M.; Omrani, M.D.; Arsang-Jang, S.; Taheri, M.; Ghafouri-Fard, S. Serum cytokine profile in schizophrenic patients. Hum. Antibodies 2019, 27, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, V.V.; Scaini, G.; Colpo, G.D.; Doifode, T.; Pinjari, O.F.; Teixeira, A.L.; Petronilho, F.; Macêdo, D.; Quevedo, J.; Barichello, T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 2020, 9, 577. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Li, N.; Wang, F.; Xiang, H.; Zhang, Z. Plasma levels of Th17- related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016, 246, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.H.; Yang, G.G.; Tan, Y.L.; Tan, S.P.; Wang, Z.R.; De Yang, F.; Okusaga, O.; Soares, J.C.; Zhang, X.Y. Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: Relationship to psychopathology. Schizophr. Res. 2014, 156, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Noto, C.S.; Gadelha, A.; Belangero, S.I.; Smith, M.A.; de Aguiar, B.W.; Panizzuti, B.; Mari Jde, J.; Gama, C.S.; Bressan, R.A.; Brietzke, E. Association of biomarkers and depressive symptoms in schizophrenia. Neurosci. Lett. 2011, 505, 282–285. [Google Scholar] [CrossRef]
- Xiu, M.H.; Tian, L.; Chen, S.; Tan, Y.L.; Chen, J.; Chen, N.; De Yang, F.; Licino, J.; Kosten, T.R.; et al. Contribution of IL-10 and its-592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia. Brain Behav. Immun. 2016, 57, 116–124. [Google Scholar] [CrossRef]
- Bouma, M.G.; Buurman, W.A. Assay of soluble tumor necrosis factor receptors. Methods Mol. Med. 2000, 36, 91–100. [Google Scholar]
- Tourjman, V.; Kouassi, É.; Koué, M.È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [Google Scholar] [CrossRef]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef]
- Malmqvist, A.; Schwieler, L.; Orhan, F.; Fatouros-Bergman, H.; Bauer, M.; Flyckt, L.; Cervenka, S.; Engberg, G.; Piehl, F. Karolinska Schizophrenia Project (KaSP) consortium; Erhardt, S. Increased peripheral levels of TARC/CCL17 in first episode psychosis patients. Schizophr. Res. 2019, 210, 221–227. [Google Scholar] [CrossRef]
- Asevedo, E.; Gadelha, A.; Noto, C.; Mansur, R.B.; Zugman, A.; Belangero, S.I.; Berberian, A.A.; Scarpato, B.S.; Leclerc, E.; Teixeira, A.L.; et al. Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J. Psychiatr. Res. 2013, 47, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Kho, K.H.; Blansjaar, B.A.; de Vries, S.; Babuskova, D.; Zwinderman, A.H.; Linszen, D.H. Electroconvulsive therapy for the treatment of clozapine nonresponders suffering from schizophrenia—An open label study. Eur. Arch. Psychiatry Clin. Neurosci. 2004, 254, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Petrides, G.; Malur, C.; Braga, R.J.; Bailine, S.H.; Schooler, N.R.; Malhotra, A.K.; Kane, J.M.; Sanghani, S.; Goldberg, T.E.; John, M.; et al. Electroconvulsive Therapy Augmentation in Clozapine-Resistant chizophrenia: A Prospective, Randomized Study. Focus (Am. Psychiatr. Publ.) 2019, 17, 76–82. [Google Scholar]
- Masoudzadeh, A.; Khalilian, A.R. Comparative study of clozapine, electroshock and the combination of ECT with clozapine in treatment-resistant schizophrenic patients. Pak. J. Biol. Sci. 2007, 10, 4287–4290. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, S.H.; Lee, N.Y.; Youn, T.; Lee, J.H.; Chung, S.; Kim, Y.S.; Chung, I.W. Effectiveness of Electroconvulsive Therapy Augmentation on Clozapine-Resistant Schizophrenia. Psychiatry Investig. 2017, 14, 58–62. [Google Scholar] [CrossRef]
- Sampogna, G.; Della Rocca, B.; Di Vincenzo, M.; Catapano, P.; Del Vecchio, V.; Volpicelli, A.; Martiadis, V.; Signorelli, M.S.; Ventriglio, A.; Fiorillo, A. Innovations and criticisms of the organization of mental health care in Italy. Int. Rev. Psychiatry 2024, 1–10. [Google Scholar] [CrossRef]
- Rogers, J.P.; Oldham, M.A.; Fricchione, G.; Northoff, G.; Ellen Wilson, J.; Mann, S.C.; Francis, A.; Wieck, A.; Elizabeth Wachtel, L.; Lewis, G.; et al. Evidence-based consensus guidelines for the management of catatonia: Recommendations from the British Association for Psychopharmacology. J. Psychopharmacol. 2023, 37, 327–369. [Google Scholar] [CrossRef]
- Pelzer, A.C.; van der Heijden, F.M.; den Boer, E. Systematic review of catatonia treatment. Neuropsychiatr. Dis. Treat. 2018, 14, 317–326. [Google Scholar] [CrossRef]
- Beach, S.R.; Luccarelli, J.; Praschan, N.; Fusunyan, M.; Fricchione, G.L. Molecular and immunological origins of catatonia. Schizophr. Res. 2024, 263, 169–177. [Google Scholar] [CrossRef]
- Williams, D.; Campbell, K. Electroconvulsive Therapy for the Treatment of the Behavioural and Psychological Symptoms of Dementia: A Review of Clinical Effectiveness and Guidelines [Internet]; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019; Volume 22. [Google Scholar]
- Steen, K.; Narang, P.; Lippmann, S. Electroconvulsive Therapy in Multiple Sclerosis. Innov. Clin Neurosci. 2015, 12, 28–30. [Google Scholar]
- Zeiler, F.A.; Matuszczak, M.; Teitelbaum, J.; Gillman, L.M.; Kazina, C.J. Electroconvulsive therapy for refractory status epilepticus: A systematic review. Seizure 2016, 35, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Narang, P.; Glowacki, A.; Lippmann, S. Electroconvulsive Therapy Intervention for Parkinson’s Disease. Innov. Clin. Neurosci. 2015, 12, 25–28. [Google Scholar] [PubMed]
- Sinclair, D.J.; Zhao, S.; Qi, F.; Nyakyoma, K.; Kwong, J.S.; Adams, C.E. Electroconvulsive therapy for treatment-resistant schizophrenia. Cochrane Database Syst. Rev. 2019, 3, CD011847. [Google Scholar]
- Chanpattana, W.; Sackeim, H.A. Electroconvulsive therapy in treatment-resistant schizophrenia: Prediction of response and the nature of symptomatic improvement. J. ECT 2010, 26, 289–298. [Google Scholar] [CrossRef]
- Rosenquist, P.B.; Miller, B.; Pillai, A. The Antipsychotic Effects of ECT: A Review of Possible Mechanisms. J. ECT 2014, 30, 125–131. [Google Scholar] [CrossRef]
- Rojas, M.; Ariza, D.; Ortega, Á.; Riaño-Garzón, M.E.; Chávez-Castillo, M.; Pérez, J.L.; Cudris-Torres, L.; Bautista, M.J.; Medina-Ortiz, O.; Rojas-Quintero, J.; et al. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine-Immune Therapeutic Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2022, 23, 6918. [Google Scholar] [CrossRef]
- Gay, F.; Romeo, B.; Martelli, C.; Benyamina, A.; Hamdani, N. Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: A Meta-analysis. Psychiatry Res. 2021, 297, 113735. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kim, M.; Lho, S.K.; Oh, S.; Kim, S.H.; Kwon, J.S. Systematic Review of the Neural Effect of Electroconvulsive Therapy in Patients with Schizophrenia: Hippocampus and Insula as the Key Regions of Modulation. Psychiatry Investig. 2021, 18, 486–499. [Google Scholar] [CrossRef]
- Arancibia, M.; Vargas, C.; Abarca, M.; Fernández, J.; Pena, D.; Cavieres, Á. Posibles mecanismos de acción de la terapia electroconvulsiva en esquizofrenia: Revisión de la evidencia disponible en investigación con seres humanos [A review about the putative mechanisms of action of electroconvulsive therapy in schizophrenia in human research]. Rev. Méd. Chile 2022, 150, 1493–1500. [Google Scholar]
- Huang, J.; Wang, X. Alteration of microRNA expression in lymphocytes in patients with first-episode schizophrenia. BMC Psychiatry 2025, 25, 210. [Google Scholar] [CrossRef]
- Nishiguchi, M.; Kikuyama, H.; Kanazawa, T.; Tsutsumi, A.; Kaneko, T.; Uenishi, H.; Kawabata, Y.; Kawashige, S.; Koh, J.; Yoneda, H. Increases in iPS Transcription Factor (Oct4, Sox2, c-Myc, and Klf4) Gene Expression after Modified Electroconvulsive Therapy. Psychiatry Investig. 2015, 12, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Kanazawa, T.; Nishiguchi, M.; Kikuyama, H.; Tsutsumi, A.; Uenishi, H.; Kawabata, Y.; Kawashige, S.; Nishizawa, Y.; Maruyama, S.; et al. Microarray Analysis of Human Blood During Electroconvulsive Therapy. J. ECT 2015, 31, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Tan, Q.; Yu, M.; Wang, P.; Wang, T.; Yuan, J.; Liu, D.; Chen, D.; Huang, C.; Tan, Y.; et al. Transcriptome Sequencing Reveals the Potential Mechanisms of Modified Electroconvulsive Therapy in Schizophrenia. Psychiatry Investig. 2021, 18, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Davarinejad, O.; Hendesi, K.; Shahi, H.; Brand, S.; Khazaie, H. A Pilot Study on Daily Intensive ECT over 8 Days Improved Positive and Negative Symptoms and General Psychopathology of Patients with Treatment-Resistant Schizophrenia up to 4Weeks After Treatment. Neuropsychobiology 2019, 77, 83–91. [Google Scholar] [CrossRef]
- Kawashima, H.; Yamasaki, S.; Kubota, M.; Hazama, M.; Fushimi, Y.; Miyata, J.; Murai, T.; Suwa, T. commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. Neuroimage Clin. 2023, 38, 103429. [Google Scholar] [CrossRef]
- Choe, E.; Kim, M.; Choi, S.; Oh, H.; Jang, M.; Park, S.; Kwon, J.S. MRI textural plasticity in limbic gray matter associated with clinical response to electroconvulsive therapy for psychosis. Mol. Psychiatry 2024, 26, 1453–1460. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Z.; Xi, Y.; Sun, J.; Liu, P.; Li, P.; Jia, J.; Yin, H.; Qin, W. Predicting responses to electro convulsive therapy in schizophrenia patients undergoing antipsychotic treatment: Baseline functional connectivity among regions with strong electric field distributions. Psychiatry Res. Neuroimaging 2020, 299, 111059. [Google Scholar] [CrossRef]
- Rodrigues, F.M.; Ramos, D.; Xavier, R.F.; Ito, J.T.; Souza, A.P.; Fernandes, R.A.; Cecchini, R.; Rossi e Silva, R.C.; Macchione, M.; Toledo-Arruda, A.C.; et al. Nasal and systemic inflammatory profile after short term smoking cessation. Respir. Med. 2014, 108, 999–1006. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef]
- Stelzhammer, V.; Rothermund, M.; Guest, P.C.; Michael, N.; Sondermann, C.; Kluge, W.; Martins-de-Souza, D.; Rahmoune, H.; Bahn, S. Proteomic changes induced by anaesthesia and muscle relaxant treatment prior to electroconvulsive therapy. Proteomics Clin. Appl. 2011, 5, 644–649. [Google Scholar] [CrossRef]
Variable | N | Mean Difference | Std. Deviation | Std. Error Mean | Bayes Factor | t | df | Sig.(2-Tailed) | Power of the Test |
---|---|---|---|---|---|---|---|---|---|
IL-1β_pre IL-1β_post | 8 | 0.15 | 0.23 | 0.08 | 1.16 | 1.77 | 7 | 0.120 | 0.989 |
IP-10_pre—IP-10_post | 8 | 0.29 | 0.32 | 0.11 | 0.46 | 2.55 | 7 | 0.038 | 0.984 |
IL-17_pre—IL-17_post | 8 | 0.17 | 0.17 | 0.06 | 0.33 | 2.81 | 7 | 0.026 | 0.681 |
IL-10_pre—IL-10_post | 8 | 2.6 | 0.73 | 0.26 | 0 | 10.04 | 7 | <0.001 | 1.000 |
sIL-2R_pre—sIL-2R_post | 8 | 0.06 | 0.12 | 0.04 | 1.76 | 1.38 | 7 | 0.210 | 0.232 |
TNF-α_pre—TNF-α_post | 8 | 0.01 | 0.11 | 0.04 | 3.74 | 0.31 | 7 | 0.765 | 0.082 |
PANSSPositive symptoms_pre—PANSSPositive symptoms_post | 8 | 0.5 | 0,3 | 0.11 | 0.04 | 4.7 | 7 | 0.002 | 0.980 |
PANSS Negative symptoms_pre—PANSS Negative symptoms_post | 8 | 0.38 | 0.21 | 0.08 | 0.03 | 5.06 | 7 | 0.001 | 0.991 |
PANSS Global psychopathology_pre -PANSS Global psychopathology_post | 8 | 0.42 | 0.17 | 0.06 | 0.01 | 6.87 | 7 | <0.001 | 1.000 |
PANSS Total score_pre—PANSS Total score | 8 | 0.42 | 0.13 | 0.05 | 0 | 9.23 | 7 | <0.001 | 1.000 |
Mean Difference | Pooled Std. Error Difference | Bayes Factor b | t | df | Sig.(2-Tailed) | Power of the Test | |
---|---|---|---|---|---|---|---|
Control: Pre-ECT | |||||||
IL-1β | −1.49 | 0.32 | 0.007 | −4.66 | 19 | <0.001 | 1 |
IP-10 | −45.86 | 7.74 | 0.001 | −5.925 | 19 | <0.001 | 0.999 |
IL-17 | −51.37 | 16 | 0.102 | −3.21 | 19 | 0.005 | 0.99 |
IL-10 | −95.49 | 10.56 | <0.001 | −9.041 | 19 | <0.001 | 0.99 |
sIL-2R | −74.66 | 397.07 | 3.18 | −0.188 | 19 | 0.853 | 0.912 |
TNF-α | −0.38 | 0.56 | 2.666 | −0.687 | 19 | 0.5 | 0.779 |
Mean Difference | Pooled Std. Error Difference | Bayes Factor b | t | df | Sig.(2-Tailed) | Power of the Test | |
---|---|---|---|---|---|---|---|
Control: Post-ECT | |||||||
IL-1β | −1.06 | 0.327 | 0.095 | −3.249 | 19 | 0.004 | 0.95 |
IP-10 | −27.2 | 7.135 | 0.033 | −3.812 | 19 | 0.001 | 0.944 |
IL-17 | −25.83 | 16.352 | 1.228 | −1.58 | 19 | 0.131 | 0.915 |
IL-10 | −3.08 | 1.981 | 1.26 | −1.557 | 19 | 0.136 | 0.907 |
sIL-2R | 58.19 | 411.39 | 3.2 | 0.141 | 19 | 0.889 | 0.06 |
TNF-α | −0.25 | 0.496 | 2.906 | −0.508 | 19 | 0.618 | 0.187 |
Pre\Post | IL-1ß | IP-10 | IL-17 | IL-10 | sIL-2R | TNF-α |
---|---|---|---|---|---|---|
IL-1ß | 0.80 * | 0.18 | 0.01 | 0.39 | −0.02 | 0.15 |
IP-10 | −0.09 | 0.43 | 0.10 | −0.04 | 0.43 | −0.07 |
IL-17 | 0.31 | −0.06 | 0.76 * | −0.52 | −0.51 | 0.58 |
IL-10 | −0.02 | 0.33 | −0.51 | −0.08 | −0.29 | −0.54 |
sIL-2R | 0.42 | −0.09 | −0.55 | 0.29 | 0.75 * | −0.15 |
TNF-α | 0.19 | −0.06 | 0.11 | 0.10 | 0.23 | 0.84 ** |
Interleukin | IL-1β | IP-10 | IL-17 | IL-10 | sIL-2R | TNF-α |
---|---|---|---|---|---|---|
IL-1β | 1.00 | −0.37 | −0.57 * | −0.37 | −0.12 | −0.32 |
IP-10 | −0.37 | 1.00 | 0.43 | 0.83 ** | 0.61 * | 0.37 |
IL-17 | −0.57 * | 0.43 | 1.00 | 0.51 | 0.29 | 0.36 |
IL-10 | −0.37 | 0.83 ** | 0.51 | 1.00 | 0.38 | 0.23 |
sIL-2R | −0.12 | 0.61 * | 0.29 | 0.38 | 1.00 | −0.22 |
TNF-α | −0.32 | 0.37 | 0.36 | 0.23 | −0.22 | 1.00 |
Variable | PANSS Positive Symptoms | PANSS Negative Symptoms | PANSS General Psychopathology | PANSS Total Score |
---|---|---|---|---|
IL-1ß | 0.64 * | 0.57 | 0.49 | 0.61 |
IP-10 | 0.37 | 0.14 | 0.30 | 0.30 |
IL-17 | 0.03 | 0.02 | −0.11 | −0.04 |
IL-10 | 0.37 | 0.14 | 0.07 | 0.19 |
sIL-2R | 0.44 | 0.06 | 0.42 | 0.37 |
TNF-α | 0.35 | 0.39 | 0.62 | 0.53 |
PANSS Positive Symptoms | PANSS Negative Symptoms | PANSS General Psychopathology | PANSS Total Score | |
---|---|---|---|---|
IL-1ß | −0.07 | −0.30 | −0.38 | −0.39 |
IP-10 | 0.34 | −0.12 | −0.45 | −0.24 |
IL-17 | 0.31 | −0.04 | 0.05 | 0.12 |
IL-10 | 0.15 | 0.07 | −0.05 | 0.07 |
sIL-2R | −0.39 | −0.11 | −0.40 | −0.47 |
TNF-α | 0.42 | −0.47 | 0.31 | 0.20 |
Variable | PANSS Positive Symptoms_Diff | PANSS Negative Symptoms_Diff | PANSS General Psychopathology_Diff | PANSS Total Score_Diff |
---|---|---|---|---|
IL-1ß_Diff | 0.30 | 0.07 | −0.26 | 0.01 |
IP-10_Diff | −0.12 | 0.70 * | 0.24 | 0.36 |
IL-17_Diff | 0.22 | 0.27 | −0.11 | 0.13 |
IL-10_Diff | 0.33 | 0.16 | 0.71 ** | 0.56 |
sIL-2R_Diff | −0.14 | 0.08 | −0.61 | −0.37 |
TNF-α_Diff | 0.41 | 0.68 * | 0.25 | 0.60 |
Cytokine/Receptor | Function | Antipsychotics | ECT | |
---|---|---|---|---|
SCZ | FEP | |||
IL-1β/IL-1RA | Pro-inflammatory/ Anti-inflammatory | ↓/0 | ↓/ | 0 ^/ |
IL-2/sIL-2R | Pro-inflammatory/ Anti-inflammatory | 0/↑ | 0/ | 0 ^/ |
IL-6/sIL-6R | Pro-inflammatory | 0/0 | ↓/ | ↓ #/ |
IL-12 | Pro-inflammatory | ↑ | ↓ # | |
IL-17 | Pro-inflammatory | 0 | ↓ ^ | |
IP-10 | Pro-inflammatory | ↓ ^ | ||
IFN-γ | Pro-inflammatory | ↓ | ↓ | |
TNF-α | Pro-inflammatory and Anti-inflammatory | 0 | ↓ | ↓ **; 0 ^ |
IL-4 | Adaptive and Anti-inflammatory | 0 | ↓ | ↑ * |
IL-5 | Anti-inflammatory | 0 # | ||
IL-10 | Anti-inflammatory | 0 | ↓ | ↓ # |
TGF-β1 | Anti-inflammatory | 0 | ↑ *; 0 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szota, A.M.; Ćwiklińska-Jurkowska, M.; Radajewska, I.; Lis, K.; Grudzka, P.; Dróżdż, W. Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients—A Preliminary Study. J. Clin. Med. 2025, 14, 3170. https://doi.org/10.3390/jcm14093170
Szota AM, Ćwiklińska-Jurkowska M, Radajewska I, Lis K, Grudzka P, Dróżdż W. Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients—A Preliminary Study. Journal of Clinical Medicine. 2025; 14(9):3170. https://doi.org/10.3390/jcm14093170
Chicago/Turabian StyleSzota, Anna Maria, Małgorzata Ćwiklińska-Jurkowska, Izabela Radajewska, Kinga Lis, Przemysław Grudzka, and Wiktor Dróżdż. 2025. "Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients—A Preliminary Study" Journal of Clinical Medicine 14, no. 9: 3170. https://doi.org/10.3390/jcm14093170
APA StyleSzota, A. M., Ćwiklińska-Jurkowska, M., Radajewska, I., Lis, K., Grudzka, P., & Dróżdż, W. (2025). Effect of Electroconvulsive Therapy (ECT) on IL-1β, IP-10, IL-17, TNFα, IL-10 and Soluble IL-2 Receptor in Treatment-Resistant Schizophrenia (TRS) Patients—A Preliminary Study. Journal of Clinical Medicine, 14(9), 3170. https://doi.org/10.3390/jcm14093170