New Clinical Advances in Minimally Invasive Coronary Surgery
Abstract
:1. Introduction
2. Historical Perspective
2.1. Evolution of Minimally Invasive Coronary Surgery
2.2. Technological Advancements
3. Current Techniques in Minimally Invasive Coronary Surgery
3.1. Direct Vision
3.2. Endoscope-Assisted Coronary Artery Bypass
3.3. Robot-Assisted Coronary Artery Bypass
3.4. Totally Endoscopic Coronary Artery Bypass
4. Advances in Surgical Techniques and Technologies
4.1. Enhanced Imaging Techniques
4.2. Advanced Surgical Tools
4.3. Innovations in Anesthesia and Pain Management
5. Patient Selection and Preoperative Considerations
6. Short-Term and Long-Term Outcomes
7. Challenges and Future Directions
7.1. Technical Challenges
7.2. Research and Development
7.3. Integration into Clinical Practice
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients with Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 151, e771–e862. [Google Scholar] [PubMed]
- Doenst, T.; Borger, M.; Falk, V.; Milojevic, M. ESC/EACTS guideline for chronic coronary syndrome-invasive treatment perspectives important for daily practice. Eur. J. Cardiothorac. Surg. 2024, 66, ezae360. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, J.; Casselman, F. Minimally invasive surgical coronary artery revascularization—Current status and future perspectives in an era of interventional advances. J. Vis. Surg. 2023, 9, 21. [Google Scholar] [CrossRef]
- Holubec, T.; Dahle, G.; Bonaros, N. Editorial: Minimally invasive cardiac surgery: State of the art and current challenges. Front. Cardiovasc. Med. 2023, 10, 1286868. [Google Scholar] [CrossRef] [PubMed]
- Oosterlinck, W.; Algoet, M.; Balkhy, H.H. Minimally Invasive Coronary Surgery: How Should It Be Defined? Innovations 2023, 18, 22–27. [Google Scholar] [CrossRef]
- Claessens, J.; Rottiers, R.; Vandenbrande, J.; Gruyters, I.; Yilmaz, A.; Kaya, A.; Stessel, B. Quality of life in patients undergoing minimally invasive cardiac surgery: A systematic review. Indian. J. Thorac. Cardiovasc. Surg. 2023, 39, 367–380. [Google Scholar] [CrossRef]
- Goetz, R.H.; Rohman, M.; Haller, J.D.; Dee, R.; Rosenak, S.S. Internal mammary-coronary artery anastomosis. A nonsuture method employing tantalum rings. J. Thorac. Cardiovasc. Surg. 1961, 41, 378–386. [Google Scholar] [CrossRef]
- Benetti, F.J.; Ballester, C. Use of thoracoscopy and a minimal thoracotomy, in mammary-coronary bypass to left anterior descending artery, without extracorporeal circulation. Experience in 2 cases. J. Cardiovasc. Surg. 1995, 36, 159–161. [Google Scholar]
- Calafiore, A.M.; Angelini, G.D. Left anterior small thoracotomy (LAST) for coronary artery revascularisation. Lancet 1996, 347, 263–264. [Google Scholar] [CrossRef]
- Atife, M.; Okondo, E.; Jaffer, A.; Noel, J.; Dasgupta, P.; Challacombe, B. Intuitive’s da Vinci vs Medtronic’s Hugo: Real life observations from a robot naïve perspective. J. Robot. Surg. 2024, 18, 4. [Google Scholar] [CrossRef]
- Loulmet, D.; Carpentier, A.; d’Attellis, N.; Berrebi, A.; Cardon, C.; Ponzio, O.; Aupècle, B.; Relland, J.Y. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J. Thorac. Cardiovasc. Surg. 1999, 118, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Mohr, F.W.; Falk, V.; Diegeler, A.; Autschback, R. Computer-enhanced coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 1999, 117, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Falk, V.; Diegeler, A.; Walther, T.; Jacobs, S.; Raumans, J.; Mohr, F.W. Total endoscopic off-pump coronary artery bypass grafting. Heart Surg. Forum 2000, 3, 29–31. [Google Scholar] [PubMed]
- Farhat, F.; Aubert, S.; Blanc, P.; Jegaden, O. Totally endoscopic off-pump bilateral internal thoracic artery bypass grafting. Eur. J. Cardiothorac. Surg. 2004, 26, 845–847. [Google Scholar] [CrossRef]
- Bonatti, J.; Rehman, A.; Schwartz, K.; Deshpande, S.; Kon, Z.; Lehr, E.; Zimrin, D.; Griffith, B. Robotic totally endoscopic triple coronary artery bypass grafting on the arrested heart: Report of the first successful clinical case. Heart Surg. Forum 2010, 13, E394–E396. [Google Scholar] [CrossRef]
- Bonatti, J.; Wehman, B.; de Biasi, A.R.; Jeudy, J.; Griffith, B.; Lehr, E.J. Totally endoscopic quadruple coronary artery bypass grafting is feasible using robotic technology. Ann. Thorac. Surg. 2012, 93, e111–e112. [Google Scholar] [CrossRef]
- Kitahara, H.; Hirai, T.; Nathan, S.; Balkhy, H.H. First report of a hybrid robotic beating-heart quadruple totally endoscopic coronary artery bypass: Toward complete revascularization. Eur. J. Cardiothorac. Surg. 2019, 56, 1011–1013. [Google Scholar] [CrossRef]
- McGinn JTJr Usman, S.; Lapierre, H.; Pothula, V.R.; Mesana, T.G.; Ruel, M. Minimally invasive coronary artery bypass grafting: Dual-center experience in 450 consecutive patients. Circulation 2009, 120 (Suppl. 11), S78–S84. [Google Scholar]
- Endo, Y.; Nakamura, Y.; Kuroda, M.; Ito, Y.; Hori, T. The Utility of a 3D Endoscope and Robot-Assisted System for MIDCAB. Ann. Thorac. Cardiovasc. Surg. 2019, 25, 200–204. [Google Scholar] [CrossRef]
- Wilbring, M. Advancing Minimally Invasive Cardiac Surgery-Let’s Take a Look into the Future. J. Clin. Med. 2025, 14, 904. [Google Scholar] [CrossRef]
- Ashenhurst, C.; Toubar, O.; Guo, M.H.; Issa, H.; Ponnambalam, M.; Ruel, M. Early and long-term outcomes of less invasive approaches to coronary artery bypass surgery. Vessel Plus 2024, 8, 3. [Google Scholar] [CrossRef]
- Nakayama, M.; Holsinger, F.C.; Chevalier, D.; Orosco, R.K. The dawn of robotic surgery in otolaryngology-head and neck surgery. Jpn. J. Clin. Oncol. 2019, 49, 404–411. [Google Scholar] [CrossRef]
- Marino, M.V.; Shabat, G.; Gulotta, G.; Komorowski, A.L. From illusion to reality: A brief history of robotic surgery. Surg. Innov. 2018, 25, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Moreno, Y.; Echevarria, S.; Vidal-Valderrama, C.; Pianetti, L.; Cordova-Guilarte, J.; Navarro-Gonzalez, J.; Acevedo-Rodríguez, J.; Dorado-Avila, G.; Osorio-Romero, L.; Chavez-Campos, C.; et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus 2023, 15, e42370. [Google Scholar] [CrossRef]
- Morrell, A.L.; Morrell-Junior, A.C.; Morrell, A.G.; Mendes, J.M.; Tustumi, F.; DE-Oliveira-E-Silva, L.G.; Morrell, A. The history of robotic surgery and its evolution: When illusion becomes reality. Rev. Col. Bras. Cir. 2021, 48, e20202798. [Google Scholar] [CrossRef]
- Cerny, S.; Oosterlinck, W.; Onan, B.; Singh, S.; Segers, P.; Bolcal, C.; Alhan, C.; Navarra, E.; Pettinari, M.; Van Praet, F.; et al. Robotic Cardiac Surgery in Europe: Status 2020. Front. Cardiovasc. Med. 2022, 8, 827515. [Google Scholar] [CrossRef] [PubMed]
- Görtzen, Q.; Akca, F. A review of nomenclature in minimally invasive coronary artery bypass grafting-the anarchy of terminology. Interdiscip. Cardiovasc. Thorac. Surg. 2024, 40, ivae204. [Google Scholar] [CrossRef]
- Jinghui, L.; Yin, Y.; Xiaokaitijiang, M.; Yipeng, T.; Lianqun, W.; Yunpeng, B.; Zhejun, Z.; Nan, J.; Qiang, W.; Qingliang, C.; et al. Comparison of clinical effects of coronary artery bypass grafting between left anterior small thoracotomy approach and lower-end sternal splitting approach. J. Int. Med. Res. 2024, 52, 3000605241247656. [Google Scholar] [CrossRef]
- Greenspu, H.G.; Adourian, U.A.; Fonger, J.D.; Fan, J.S. Minimally invasive direct coronary artery bypass (MIDCAB): Surgical techniques and anesthetic considerations. J. Cardiothorac. Vasc. Anesth. 1996, 10, 507–509. [Google Scholar] [CrossRef]
- Živković, I.; Mićović, S.; Milačić, P. First-in-human µCAB™ coronary revascularization surgery. Innovations 2023, 18, 185–189. [Google Scholar] [CrossRef]
- Su, P.; Gu, S.; Liu, Y.; Zhang, X.; Yan, J.; An, X.; Gao, J.; Xin, Y.; Zhou, J. Off-Pump Coronary Artery Bypass Grafting with Mini-Sternotomy in the Treatment of Triple-Vessel Coronary Artery Disease. Int. Heart J. 2018, 59, 474–481. [Google Scholar] [CrossRef]
- Mavioglu, I.; Vallely, M.P. Minimally invasive off-pump anaortic coronary artery bypass (MACAB). J. Card. Surg. 2022, 37, 4944–4951. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.F.; Edelman, J.J.; Seco, M.; Bannon, P.G.; Wilson, M.K.; Byrom, M.J.; Thourani, V.; Lamy, A.; Taggart, D.P.; Puskas, J.D.; et al. Coronary Artery Bypass Grafting With and Without Manipulation of the Ascending Aorta: A Network Meta-Analysis. J. Am. Coll. Cardiol. 2017, 69, 924–936. [Google Scholar] [CrossRef]
- Kikuchi, K.; Une, D.; Suzuki, K.; Endo, Y.; Matsuyama, T.; Osaka, S.; Kurata, A. Off-Pump Minimally Invasive Coronary Artery Bypass Grafting With a Heart Positioner: Direct Retraction for a Better Exposure. Innovations 2015, 10, 183–187. [Google Scholar]
- Yilmaz, A.; Robic, B.; Starinieri, P.; Polus, F.; Stinkens, R.; Stessel, B. A new viewpoint on endoscopic CABG: Technique description and clinical experience. J. Cardiol. 2020, 75, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Babliak, O.; Demianenko, V.; Melnyk, Y.; Revenko, K.; Pidgayna, L.; Stohov, O. Complete coronary revascularization via left anterior thoracotomy. Innovations 2019, 14, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Vlassov, G.P.; Ermolov, A.S.; Deyneka, K.S.; Travine, N.O.; Belinskiy, M.B.; Klimovskiy, S.D.; Zhuravlev, I.V. Multivessel minimally invasive coronary surgery with endoscopic support. Heart Surg. Forum. 1999, 2, 305–309. [Google Scholar]
- Vassiliades, T.A. Atraumatic coronary artery bypass (ACAB): Techniques and outcome. Heart Surg. Forum 2001, 4, 331–334. [Google Scholar]
- Akca, F.; Ter Woorst, J. Learning Curve of Thoracoscopic Nonrobotic Harvest of the Left Internal Mammary Artery in Minimally Invasive Coronary Artery Bypass Grafting. Innovations 2023, 18, 262–265. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Ninomiya, M.; Maemura, T.; Takamoto, S. Needle-guided mini-entry in video-assisted coronary artery bypass. Eur. J. Cardiothorac. Surg. 2003, 24, 644–646. [Google Scholar] [CrossRef]
- Reichenspurner, H.; Damiano, R.J.; Mack, M.; Boehm, D.H.; Gulbins, H.; Detter, C.; Meiser, B.; Ellgass, R.; Reichart, B. Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 1999, 118, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Davidavicius, G.; Van Praet, F.; Mansour, S.; Casselman, F.; Bartunek, J.; Degrieck, I.; Wellens, F.; De Geest, R.; Vanermen, H.; Wijns, W.; et al. Hybrid revascularization strategy: A pilot study on the association of robotically enhanced minimally invasive direct coronary artery bypass surgery and fractional-flow-reserve-guided percutaneous coronary intervention. Circulation 2005, 112 (Suppl. S9), I317–I322. [Google Scholar] [CrossRef]
- Aluthman, U.; Bafageeh, S.W.; Ashour, M.A.; Barnawi, H.I.; Bogis, A.A.; Alamri, R.; Elmahrouk, A.F.; AlGhamdi, S.A.; Ismaeil, N.; Shihata, M.; et al. A robotic-assisted hybrid coronary revascularization program: Establishment and early experience in the Middle East. J. Card. Surg. 2022, 37, 4783–4789. [Google Scholar] [CrossRef] [PubMed]
- Ducko, C.T.; Stephenson, E.R.; Sankholkar, S.; Damiano, R.J. Robotically-assisted coronary artery bypass surgery: Moving toward a completely endoscopic procedure. Heart Surg. Forum 1999, 2, 29–37. [Google Scholar] [PubMed]
- Torregrossa, G.; Amabile, A.; Nisivaco, S.; Algoet, M.; Oosterlinck, W.; Balkhy, H.H. The Stradivari violin of robotic heart surgery: The robotic EndoWrist stabilizer. Innovations 2024, 19, 612–615. [Google Scholar] [CrossRef]
- Fortuni, F.; Ciliberti, G.; De Chiara, B.; Conte, E.; Franchin, L.; Musella, F.; Vitale, E.; Piroli, F.; Cangemi, S.; Cornara, S.; et al. Advancements and applications of artificial intelligence in cardiovascular imaging: A comprehensive review. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae136. [Google Scholar] [CrossRef]
- Barison, A.; Timoteo, A.T.; Liga, R.; Borodzicz-Jazdzyk, S.; El Messaoudi, S.; Luong, C.; Mandoli, G.E.; Moscatelli, S.; Ramkisoensing, A.A.; Moharem-Elgamal, S.; et al. Cardiovascular imaging research and innovation in 2023. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae029. [Google Scholar] [CrossRef]
- Dagnino, G.; Kundrat, D. Robot-assistive minimally invasive surgery: Trends and future directions. Int. J. Intell. Robot. Appl. 2024, 8, 812–826. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Man, J.; Yang, J.; Wang, H.; Zhang, Y.; Yang, L. Comparison of perioperative outcomes and prognosis between Da Vinci surgical system and Hinotori system in urologic tumor surgery: Evidence from controlled trials. J. Robotic Surg. 2025, 19, 88. [Google Scholar] [CrossRef]
- Bai, K.; Su, H.; Chen, Y.; Sun, Z.; Wang, L. Focused section on advances in robotics and artificial intelligence for minimally invasive surgery. Int. J. Intell. Robot. Appl. 2024, 8, 809–811. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, X.T.; Xue, F.S. Efficacy of erector spinae plane block for postoperative analgesia after minimally invasive cardiac surgery. Can. J. Anaesth. 2024, 71, 1049–1050. [Google Scholar] [CrossRef] [PubMed]
- Darras, M.; Schneider, C.; Marguerite, S.; Saadé, S.; Maechel, A.L.; Oulehri, W.; Collange, O.; Mazzucotelli, J.P.; Mertes, P.M.; Kindo, M. Multimodal analgesia with parasternal plane block protocol within an enhanced recovery after cardiac surgery program decreases opioid use. JTCVS Open 2024, 22, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Nisivaco, S.; Patel, B.; Coleman, C.; Kitahara, H.; Torregrossa, G.; Balkhy, H.H. Postoperative Day 1 Discharge After Robotic Totally Endoscopic Coronary Bypass: The Ultimate in Enhanced Recovery After Surgery. Innovations 2023, 18, 159–166. [Google Scholar] [CrossRef]
- Diegeler, A.; Matin, M.; Falk, V.; Binner, C.; Walther, T.; Autschbach, R.; Mohr, F.W. Indication and patient selection in minimally invasive and òff-pump’ coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 1999, 16 (Suppl. S1), S79–S82. [Google Scholar] [CrossRef]
- Kirov, H.; Caldonazo, T.; Mukharyamov, M.; Toshmatov, S.; Fischer, J.; Schneider, U.; Siemeni, T.; Doenst, T. Cardiac surgery 2023 reviewed. Thorac. Cardiovasc. Surg. 2024, 72, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.; Zittermann, A.; Sunavsky, J.; Gilis-Januszewski, T.; Rojas, S.V.; Götte, J.; Opacic, D.; Radakovic, D.; El-Hachem, G.; Razumov, A.; et al. Early and late outcomes after minimally invasive direct coronary artery bypass vs. full sternotomy off-pump coronary artery bypass grafting. Front. Cardiovasc. Med. 2024, 11, 1298466. [Google Scholar] [CrossRef]
- Raja, S.G.; Garg, S.; Rochon, M.; Daley, S.; De Robertis, F.; Bahrami, T. Short-term clinical outcomes and long-term survival of minimally invasive direct coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2018, 7, 621–627. [Google Scholar] [CrossRef]
- Ushioda, R.; Hirofuji, A.; Yoongtong, D.; Sakboon, B.; Cheewinmethasiri, J.; Lokeskrawee, T.; Patumanond, J.; Lawanaskol, S.; Kamiya, H.; Arayawudhikul, N. Multi-vessel coronary artery grafting: Analyzing the minimally invasive approach and its safety. Front. Cardiovasc. Med. 2024, 11, 1391881. [Google Scholar] [CrossRef]
- Guangxin, Z.; Liqun, C.; Lin, L.; Jiaji, L.; Xiaolong, M.; Yuxiao, Z.; Qiuyue, H.; Qingyu, K. The efficacy of minimally invasive coronary artery bypass grafting (mics cabg) for patients with coronary artery diseases and diabetes: A single center retrospective study. J. Cardiothorac. Surg. 2024, 19, 244. [Google Scholar] [CrossRef]
- Huang, G.H.; Zhang, H.J.; Chi, L.Q.; You, B.; Bo, P.; Sun, G.L. Efficacy of off-pump minimally invasive via a single left intercostal space incision compared with median sternotomy multi-vesselcoronary artery bypass grafting. Zhonghua Yi Xue Za Zhi 2023, 103, 2516–2521. [Google Scholar]
- Liang, L.; Ma, X.; Kong, Q.; Xiao, W.; Liu, J.; Chi, L.; Zhu, J. Comparing patient outcomes following minimally invasive coronary artery bypass grafting surgery vs. coronary artery bypass grafting: A single-center retrospective cohort study. Cardiovasc. Diagn. Ther. 2022, 12, 378–388. [Google Scholar] [CrossRef]
- Xu, Z.F.; Ling, Y.P.; Cui, Z.Q.; Zhao, H.; Gong, Y.C.; Fu, Y.H.; Yang, H.; Wan, F. Feasibility and safety of minimally invasive cardiac coronary artery bypass grafting surgery for patients with multivessel coronary artery disease: Early outcome and short-mid-term follow up results. Beijing Da Xue Xue Bao Yi Xue Ban 2020, 52, 863–869. [Google Scholar] [PubMed]
- Stanislawski, R.; Aboul-Hassan, S.S.; Marczak, J.; Stankowski, T.; Peksa, M.; Nawotka, M.; Cichon, R. Early and long-term clinical outcomes after minimally invasive direct coronary artery bypass grafting versus off-pump coronary surgery via sternotomy in isolated proximal left anterior descending artery disease: A propensity score matching analysis. J. Card. Surg. 2020, 35, 3412–3419. [Google Scholar] [CrossRef]
- Ilcheva, L.; Risteski, P.; Tudorache, I.; Häussler, A.; Papadopoulos, N.; Odavic, D.; Rodriguez Cetina Biefer, H.; Dzemali, O. Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery. J. Clin. Med. 2023, 12, 7210. [Google Scholar] [CrossRef] [PubMed]
- Nabi, Z.; Manchu, C.; Reddy, D.N. Robotics in interventional endoscopy—Evolution and the way forward. Indian. J. Gastroenterol. 2024, 43, 966–975. [Google Scholar] [CrossRef] [PubMed]
- McBride, K.; Steffens, D.; Stanislaus, C.; Solomon, M.; Anderson, T.; Thanigasalam, R.; Leslie, S.; Bannon, P.G. Detailed cost of robotic-assisted surgery in the Australian public health sector: From implementation to a multi-specialty caseload. BMC Health Serv. Res. 2021, 21, 108. [Google Scholar] [CrossRef]
- von Hattburg, A.T. Trend Overview 2025: Key Developments in Biomedical Science & Research. Am. J. Biomed. Sci. Res. 2025, 25, 328–330. [Google Scholar]
Generation | Year Introduced | Key Features |
---|---|---|
Da Vinci Standard | 2000 | Three arms (one endoscope, two instruments), console with two handles, minimized hand tremors, scaled-down movements for precision |
Da Vinci S System | 2003 | 3D HD camera, touchscreen display, improved ergonomics, enhanced vision system |
Da Vinci Si System | 2009 | Dual console surgery, improved training for non-expert surgeons, upgraded image system, real-time fluorescence imaging, enhanced 3D HD vision, better instrument control |
Da Vinci Xi System | 2014 | Multiport access, advanced features for improved anatomical exposure, reduced reliance on surgical assistant, modular and flexible design, improved energy efficiency, enhanced vision and instrument capabilities |
Author | Year of Publication | Total Number of Patients | Number of MICS Patients | Number of CCABG Patients | Key Outcomes |
---|---|---|---|---|---|
Ushioda et al. [58] * | 2024 | 1220 | 149 | 149 | Similar hospital stays, intensive care unit stays, postoperative complications, MACCE, and 30-day mortality; lower total graft number and fewer distal anastomoses with MICS. |
Guangxin et al. [59] | 2024 | 104 | 52 | 52 | Comparable graft patency rates; reduced blood loss and wound complications with MICS. |
Huang et al. [60] | 2023 | 444 | 179 | 265 | Similar number of grafts, perioperative complications, and mortality; reduced blood loss, shorter hospital stays, and longer operation durations with MICS |
Liang et al. [61] * | 2022 | 344 | 172 | 172 | Similar in-hospital outcomes; shorter hospital stays and faster recovery with MICS. |
Xu et al. [62] * | 2020 | 536 | 85 | 85 | Similar in-hospital outcomes; shorter hospital stays and faster recovery with MICS. |
Stanislawski et al. [63] *,† | 2020 | 194 | 111 | 93 | Similar in-hospital outcomes; lower chest tube drainage and shorter hospital stay with MICS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, S.G. New Clinical Advances in Minimally Invasive Coronary Surgery. J. Clin. Med. 2025, 14, 3142. https://doi.org/10.3390/jcm14093142
Raja SG. New Clinical Advances in Minimally Invasive Coronary Surgery. Journal of Clinical Medicine. 2025; 14(9):3142. https://doi.org/10.3390/jcm14093142
Chicago/Turabian StyleRaja, Shahzad G. 2025. "New Clinical Advances in Minimally Invasive Coronary Surgery" Journal of Clinical Medicine 14, no. 9: 3142. https://doi.org/10.3390/jcm14093142
APA StyleRaja, S. G. (2025). New Clinical Advances in Minimally Invasive Coronary Surgery. Journal of Clinical Medicine, 14(9), 3142. https://doi.org/10.3390/jcm14093142