The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update
Abstract
:1. Introduction
2. Methodology
3. Epidemiology and Pathophysiology of Female Infertility
4. AI Algorithms/Approaches in Female Infertility
5. The Role of AI in Contemporary Female Infertility Diagnosis
Cited Ref. | Study Design | Condition(s) Studied | # of Women/ Samples | Algorithm(s) Tested | Key Findings |
---|---|---|---|---|---|
Shanmugavadivel et al., 2024 [23] | Retrospective cohort study | PCOS | 541 | NR, NB, SVM |
|
Yu et al., 2024 [7] | Retrospective cohort study | POI | 10 | RF, Boruta |
|
Zad et al., 2024 [24] | Retrospective cohort study | PCO | 30,601 | LR, SVM, GB, RF |
|
Qu et al., 2024 [8] | Retrospective cohort study | PCO, DOR, POI, Endometriosis, RIF, RPL | 257 | LR, SGD, NN, GB, RF |
|
Lee et al., 2024 [25] | Retrospective cohort study | Endometrial CD138+ plasma cells as a diagnostic biomarker for endometrial inflammation | 193 | CNN |
|
Kitaya et al., 2024 [26] | Retrospective cohort study | Endometrial micropolyps in infertile women with CE | 244 | CNN |
|
Diaz-Gimeno 2024 [27] | Prospective multicenter study | Risk of endometrial failure | 281 | SVM, RF |
|
Xiong et al., 2023 [28] | Retrospective cohort study | CE | 248 | XGB |
|
Dabi et al., 2023 [29] | Prospective cohort study | Endometriosis | 200 | RF |
|
Yu et al., 2022 [30] | Prospective cohort study | Premature ovarian failure (POF) | 120 | Mean shift algorithm |
|
Suha and Islam, 2022 [31] | Retrospective cohort study | PCO | 594 | CNN, XGB |
|
Kangasniemi et. al., 2022 [32] | Case control study | PCO | 91 | CNN |
|
Jakubczyk et al., 2022 [9] | Prospective cohort study | Idiopathic female infertility | 116 | RF, DT, k-NN, DNN, SVM, XGB |
|
Liu and Ren, 2021 [33] | Prospective cohort study | Tubal patency | 30 | CNN |
|
6. Applications of AI in ART
7. Challenges and Limitations
7.1. Concerns Regarding Data Quality, Integrity, and Safety
7.2. Relative Complexity of Female Infertility
7.3. Technical, Operational, and Financial Challenges/Limitations
7.4. Regulatory and Ethical Concerns
8. Future Directions
- Integration and analysis of multi-omics and real-time data by AI in daily practice: AI systems are anticipated to increasingly combine genomic, proteomic, and metabolomic data with real-time physiological monitoring of reproductive health [86,87]. This integration could enable better counseling and more precise and personalized diagnostics and treatment recommendations, addressing the multifactorial nature of infertility.
- Explainable AI (XAI): As AI adoption grows, the demand for transparent and interpretable AI models will rise. XAI tools will help clinicians understand AI predictions, ensuring trust and accountability in critical reproductive health decisions [89].
- Global data standardization and federated learning: The development of global consortia and the adoption of federated learning approaches will improve data sharing while maintaining patient privacy. This collaboration will refine AI algorithms and expand their applicability across diverse populations.
- Remote and wearable technologies: AI integration with wearable devices will facilitate continuous monitoring of ovulatory cycles, hormonal levels, and other reproductive parameters that can be monitored non-invasively. These innovations will empower patients with actionable insights, bridging gaps in access to fertility care [34].
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Medenica, S.; Zivanovic, D.; Batkoska, L.; Marinelli, S.; Basile, G.; Perino, A.; Cucinella, G.; Gullo, G.; Zaami, S. The Future Is Coming: Artificial Intelligence in the Treatment of Infertility Could Improve Assisted Reproduction Outcomes-The Value of Regulatory Frameworks. Diagn. Basel Switz. 2022, 12, 2979. [Google Scholar] [CrossRef] [PubMed]
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef]
- Hanson, B.; Johnstone, E.; Dorais, J.; Silver, B.; Peterson, C.M.; Hotaling, J. Female Infertility, Infertility-Associated Diagnoses, and Comorbidities: A Review. J. Assist. Reprod. Genet. 2017, 34, 167–177. [Google Scholar] [CrossRef]
- Lunenfeld, B.; Bilger, W.; Longobardi, S.; Kirsten, J.; D’Hooghe, T.; Sunkara, S.K. Decision Points for Individualized Hormonal Stimulation with Recombinant Gonadotropins for Treatment of Women with Infertility. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2019, 35, 1027–1036. [Google Scholar] [CrossRef]
- Andreu-Perez, J.; Poon, C.C.Y.; Merrifield, R.D.; Wong, S.T.C.; Yang, G.-Z. Big Data for Health. IEEE J. Biomed. Health Inform. 2015, 19, 1193–1208. [Google Scholar] [CrossRef]
- Yu, Z.; Li, M.; Peng, W. Exploring Biomarkers of Premature Ovarian Insufficiency Based on Oxford Nanopore Transcriptional Profile and Machine Learning. Sci. Rep. 2023, 13, 11498. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, M.; Wang, Y.; Qu, L.; Wang, R.; Liu, H.; Wang, L.; Nie, Z. Rapid Screening of Infertility-Associated Gynecological Conditions via Ambient Glow Discharge Mass Spectrometry Utilizing Urine Metabolic Fingerprints. Talanta 2024, 274, 125969. [Google Scholar] [CrossRef]
- Jakubczyk, P.; Paja, W.; Pancerz, K.; Cebulski, J.; Depciuch, J.; Uzun, Ö.; Tarhan, N.; Guleken, Z. Determination of Idiopathic Female Infertility from Infrared Spectra of Follicle Fluid Combined with Gonadotrophin Levels, Multivariate Analysis and Machine Learning Methods. Photodiagnosis Photodyn. Ther. 2022, 38, 102883. [Google Scholar] [CrossRef]
- Sengupta, P.; Dutta, S.; Liew, F.; Samrot, A.; Dasgupta, S.; Rajput, M.A.; Slama, P.; Kolesarova, A.; Roychoudhury, S. Reproductomics: Exploring the Applications and Advancements of Computational Tools. Physiol. Res. 2024, 73, 687–702. [Google Scholar] [CrossRef]
- Dabi, Y.; Suisse, S.; Marie, Y.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Forlani, S.; Bouteiller, D.; et al. New Class of RNA Biomarker for Endometriosis Diagnosis: The Potential of Salivary piRNA Expression. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 291, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yang, M.; Wang, Y.; Guo, Y.; Liu, Y.; Fang, C.; Li, T. Aging Endometrium in Young Women: Molecular Classification of Endometrial Aging-Based Markers in Women Younger than 35 Years with Recurrent Implantation Failure. J. Assist. Reprod. Genet. 2022, 39, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Li, Y.; Geng, Y.; Gao, C.; Chen, G.; Wang, H.; Ma, D.; Liao, S. Artificial Intelligence in Reproductive Medicine. Reprod. Camb. Engl. 2019, 158, R139–R154. [Google Scholar] [CrossRef]
- Hanassab, S.; Abbara, A.; Yeung, A.C.; Voliotis, M.; Tsaneva-Atanasova, K.; Kelsey, T.W.; Trew, G.H.; Nelson, S.M.; Heinis, T.; Dhillo, W.S. The Prospect of Artificial Intelligence to Personalize Assisted Reproductive Technology. NPJ Digit. Med. 2024, 7, 55. [Google Scholar] [CrossRef]
- Cai, J.; Chen, S.; Guo, S.; Wang, S.; Li, L.; Liu, X.; Zheng, K.; Liu, Y.; Chen, S. RegEMR: A Natural Language Processing System to Automatically Identify Premature Ovarian Decline from Chinese Electronic Medical Records. BMC Med. Inform. Decis. Mak. 2023, 23, 126. [Google Scholar] [CrossRef]
- Mendizabal-Ruiz, G.; Chavez-Badiola, A.; Aguilar Figueroa, I.; Martinez Nuño, V.; Flores-Saiffe Farias, A.; Valencia-Murilloa, R.; Drakeley, A.; Garcia-Sandoval, J.P.; Cohen, J. Computer Software (SiD) Assisted Real-Time Single Sperm Selection Associated with Fertilization and Blastocyst Formation. Reprod. Biomed. Online 2022, 45, 703–711. [Google Scholar] [CrossRef]
- Huang, W.-L.; Liao, S.-L.; Huang, H.-L.; Su, Y.-X.; Jerng, J.-S.; Lu, C.-Y.; Ho, W.-S.; Xu, J.-R. A Case Study of Lean Digital Transformation through Robotic Process Automation in Healthcare. Sci. Rep. 2024, 14, 14626. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Fertility Evaluation of Infertile Women: A Committee Opinion. Fertil. Steril. 2021, 116, 1255–1265. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Horne, A.W.; Gibson, D.A.; Roberts, N.; Saunders, P.T.K. Endometriosis: Recent Advances That Could Accelerate Diagnosis and Improve Care. Trends Mol. Med. 2024, 30, 875–889. [Google Scholar] [CrossRef]
- Yao, M.W.M.; Jenkins, J.; Nguyen, E.T.; Swanson, T.; Menabrito, M. Patient-Centric In Vitro Fertilization Prognostic Counseling Using Machine Learning for the Pragmatist. Semin. Reprod. Med. 2024, 42, 112–129. [Google Scholar] [CrossRef]
- Verma, P.; Maan, P.; Gautam, R.; Arora, T. Unveiling the Role of Artificial Intelligence (AI) in Polycystic Ovary Syndrome (PCOS) Diagnosis: A Comprehensive Review. Reprod. Sci. Thousand Oaks Calif 2024, 31, 2901–2915. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Jin, W.; Ding, J.; Yin, T.; Zhang, Y.; Yang, J. Machine-Intelligence for Developing a Potent Signature to Predict Ovarian Response to Tailor Assisted Reproduction Technology. Aging 2021, 13, 17137–17154. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavadivel, K.; Dhar, M.S.; Manesh, T.R.; Al-Shehari, T.; Alsadhan, N.A.; Yimer, T.E. Optimized Polycystic Ovarian Disease Prognosis and Classification Using AI Based Computational Approaches on Multi-Modality Data. BMC Med. Inform. Decis. Mak. 2024, 24, 281. [Google Scholar] [CrossRef] [PubMed]
- Zad, Z.; Jiang, V.S.; Wolf, A.T.; Wang, T.; Cheng, J.J.; Paschalidis, I.C.; Mahalingaiah, S. Predicting Polycystic Ovary Syndrome with Machine Learning Algorithms from Electronic Health Records. Front. Endocrinol. 2024, 15, 1298628. [Google Scholar] [CrossRef]
- Lee, S.; Arffman, R.K.; Komsi, E.K.; Lindgren, O.; Kemppainen, J.A.; Metsola, H.; Rossi, H.-R.; Ahtikoski, A.; Kask, K.; Saare, M.; et al. AI-Algorithm Training and Validation for Identification of Endometrial CD138+ Cells in Infertility-Associated Conditions; Polycystic Ovary Syndrome (PCOS) and Recurrent Implantation Failure (RIF). J. Pathol. Inform. 2024, 15, 100380. [Google Scholar] [CrossRef]
- Kitaya, K.; Yasuo, T.; Yamaguchi, T.; Morita, Y.; Hamazaki, A.; Murayama, S.; Mihara, T.; Mihara, M. Construction of Deep Learning-Based Convolutional Neural Network Model for Automatic Detection of Fluid Hysteroscopic Endometrial Micropolyps in Infertile Women with Chronic Endometritis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 297, 249–253. [Google Scholar] [CrossRef]
- Diaz-Gimeno, P.; Sebastian-Leon, P.; Spath, K.; Marti-Garcia, D.; Sanchez-Reyes, J.M.; Vidal, M.D.C.; Devesa-Peiro, A.; Sanchez-Ribas, I.; Martinez-Martinez, A.; Pellicer, N.; et al. Predicting Risk of Endometrial Failure: A Biomarker Signature That Identifies a Novel Disruption Independent of Endometrial Timing in Patients Undergoing Hormonal Replacement Cycles. Fertil. Steril. 2024, 122, 352–364. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, W.; Liu, S.; Liu, K.; Wang, J.; Qin, P.; Liu, Y.; Jiang, Q. The Combination of CD138/MUM1 Dual-Staining and Artificial Intelligence for Plasma Cell Counting in the Diagnosis of Chronic Endometritis. Am. J. Reprod. Immunol. 2023, 89, e13671. [Google Scholar] [CrossRef]
- Dabi, Y.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Haury, J.; Golfier, F.; Jornea, L.; Bouteiller, D.; et al. Endometriosis-Associated Infertility Diagnosis Based on Saliva microRNA Signatures. Reprod. Biomed. Online 2023, 46, 138–149. [Google Scholar] [CrossRef]
- Yu, L.; Qing, X. Diagnosis of Idiopathic Premature Ovarian Failure by Color Doppler Ultrasound under the Intelligent Segmentation Algorithm. Comput. Math. Methods Med. 2022, 2022, 2645607. [Google Scholar] [CrossRef]
- Suha, S.A.; Islam, M.N. An Extended Machine Learning Technique for Polycystic Ovary Syndrome Detection Using Ovary Ultrasound Image. Sci. Rep. 2022, 12, 17123. [Google Scholar] [CrossRef] [PubMed]
- Kangasniemi, M.H.; Komsi, E.K.; Rossi, H.-R.; Liakka, A.; Khatun, M.; Chen, J.C.; Paulson, M.; Hirschberg, A.L.; Arffman, R.K.; Piltonen, T.T. Artificial Intelligence Deep Learning Model Assessment of Leukocyte Counts and Proliferation in Endometrium from Women with and without Polycystic Ovary Syndrome. FS Sci. 2022, 3, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ren, Q. Magnetic Resonance Imaging Feature Analysis and Evaluation of Tubal Patency under Convolutional Neural Network in the Diagnosis of Infertility. Contrast Media Mol. Imaging 2021, 2021, 5175072. [Google Scholar] [CrossRef] [PubMed]
- Cromack, S.C.; Walter, J.R. Consumer Wearables and Personal Devices for Tracking the Fertile Window. Am. J. Obstet. Gynecol. 2024, 231, 516–523. [Google Scholar] [CrossRef]
- Yu, J.-L.; Su, Y.-F.; Zhang, C.; Jin, L.; Lin, X.-H.; Chen, L.-T.; Huang, H.-F.; Wu, Y.-T. Tracking of Menstrual Cycles and Prediction of the Fertile Window via Measurements of Basal Body Temperature and Heart Rate as Well as Machine-Learning Algorithms. Reprod. Biol. Endocrinol. RBE 2022, 20, 118. [Google Scholar] [CrossRef]
- Tan, S.; Leonardi, M.; Lo, G.; Lee, E. Role of Ultrasonography in the Diagnosis of Endometriosis in Infertile Women: Ovarian Endometrioma, Deep Endometriosis, and Superficial Endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 92, 102450. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Du, M.; Liu, Z. Artificial Intelligence in the Assessment of Female Reproductive Function Using Ultrasound: A Review. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2022, 41, 1343–1353. [Google Scholar] [CrossRef]
- Kitaya, K.; Yasuo, T.; Yamaguchi, T. Bridging the Diagnostic Gap between Histopathologic and Hysteroscopic Chronic Endometritis with Deep Learning Models. Med. Kaunas Lith. 2024, 60, 972. [Google Scholar] [CrossRef]
- Jost, E.; Kosian, P.; Jimenez Cruz, J.; Albarqouni, S.; Gembruch, U.; Strizek, B.; Recker, F. Evolving the Era of 5D Ultrasound? A Systematic Literature Review on the Applications for Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology. J. Clin. Med. 2023, 12, 6833. [Google Scholar] [CrossRef]
- Liang, X.; Liang, J.; Zeng, F.; Lin, Y.; Li, Y.; Cai, K.; Ni, D.; Chen, Z. Evaluation of Oocyte Maturity Using Artificial Intelligence Quantification of Follicle Volume Biomarker by Three-Dimensional Ultrasound. Reprod. Biomed. Online 2022, 45, 1197–1206. [Google Scholar] [CrossRef]
- Zhao, N.; Hao, T.; Zhang, F.; Ni, Q.; Zhu, D.; Wang, Y.; Shi, Y.; Mi, X. Application of Machine Learning Techniques in the Diagnosis of Endometriosis. BMC Womens Health 2024, 24, 491. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.-W.; He, Y.; Feng, Y.-X.; Wang, X.-H. Identification of Programmed Cell Death-Related Genes and Diagnostic Biomarkers in Endometriosis Using a Machine Learning and Mendelian Randomization Approach. Front. Endocrinol. 2024, 15, 1372221. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Ren, W.; Wang, T.; Han, Y.; Ma, W.; Wang, M.; Fu, F.; Li, Y.; Wang, S. Assessment and Quantification of Ovarian Reserve on the Basis of Machine Learning Models. Front. Endocrinol. 2023, 14, 1087429. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yin, Z.; Xu, J.; Wu, H.; Wang, Y. The Inflammatory State of Follicular Fluid Combined with Negative Emotion Indicators Can Predict Pregnancy Outcomes in Patients with PCOS. Reprod. Sci. Thousand Oaks Calif 2024, 31, 2493–2507. [Google Scholar] [CrossRef]
- Beilby, K.; Hammarberg, K. ChatGPT: A Reliable Fertility Decision-Making Tool? Hum. Reprod. Oxf. Engl. 2024, 39, 443–447. [Google Scholar] [CrossRef]
- Devranoglu, B.; Gurbuz, T.; Gokmen, O. ChatGPT’s Efficacy in Queries Regarding Polycystic Ovary Syndrome and Treatment Strategies for Women Experiencing Infertility. Diagn. Basel Switz. 2024, 14, 1082. [Google Scholar] [CrossRef]
- Chervenak, J.; Lieman, H.; Blanco-Breindel, M.; Jindal, S. The Promise and Peril of Using a Large Language Model to Obtain Clinical Information: ChatGPT Performs Strongly as a Fertility Counseling Tool with Limitations. Fertil. Steril. 2023, 120, 575–583. [Google Scholar] [CrossRef]
- Sütcüoğlu, B.M.; Güler, M. Appropriateness of Premature Ovarian Insufficiency Recommendations Provided by ChatGPT. Menopause 2023, 30, 1033–1037. [Google Scholar] [CrossRef]
- Jiang, V.S.; Pavlovic, Z.J.; Hariton, E. The Role of Artificial Intelligence and Machine Learning in Assisted Reproductive Technologies. Obstet. Gynecol. Clin. North Am. 2023, 50, 747–762. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; He, S.; Wang, X.; Liu, X.; Xie, X.; Bao, H. Derivation and Validation of the First Web-Based Nomogram to Predict the Spontaneous Pregnancy after Reproductive Surgery Using Machine Learning Models. Front. Endocrinol. 2024, 15, 1378157. [Google Scholar] [CrossRef]
- Li, Y.; Duan, Y.; Yuan, X.; Cai, B.; Xu, Y.; Yuan, Y. A Novel Nomogram for Individualized Gonadotropin Starting Dose in GnRH Antagonist Protocol. Front. Endocrinol. 2021, 12, 688654. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Shen, X.; Song, W.; Liu, Y.; Qi, L.; Zhang, F. The Development of Nomograms to Predict Blastulation Rate Following Cycles of In Vitro Fertilization in Patients With Tubal Factor Infertility, Polycystic Ovary Syndrome, or Endometriosis. Front. Endocrinol. 2021, 12, 751373. [Google Scholar] [CrossRef] [PubMed]
- Ballester, M.; Oppenheimer, A.; d’Argent, E.M.; Touboul, C.; Antoine, J.-M.; Coutant, C.; Daraï, E. Nomogram to Predict Pregnancy Rate after ICSI-IVF Cycle in Patients with Endometriosis. Hum. Reprod. Oxf. Engl. 2012, 27, 451–456. [Google Scholar] [CrossRef]
- Guo, X.; Zhan, H.; Zhang, X.; Pang, Y.; Xu, H.; Zhang, B.; Lao, K.; Ding, P.; Wang, Y.; Han, L. Predictive Models for Starting Dose of Gonadotropin in Controlled Ovarian Hyperstimulation: Review and Progress Update. Hum. Fertil. Camb. Engl. 2023, 26, 1609–1616. [Google Scholar] [CrossRef]
- AlSaad, R.; Abd-Alrazaq, A.; Choucair, F.; Ahmed, A.; Aziz, S.; Sheikh, J. Harnessing Artificial Intelligence to Predict Ovarian Stimulation Outcomes in In Vitro Fertilization: Scoping Review. J. Med. Internet Res. 2024, 26, e53396. [Google Scholar] [CrossRef]
- Ferrand, T.; Boulant, J.; He, C.; Chambost, J.; Jacques, C.; Pena, C.-A.; Hickman, C.; Reignier, A.; Fréour, T. Predicting the Number of Oocytes Retrieved from Controlled Ovarian Hyperstimulation with Machine Learning. Hum. Reprod. Oxf. Engl. 2023, 38, 1918–1926. [Google Scholar] [CrossRef]
- Houri, O.; Gil, Y.; Danieli-Gruber, S.; Shufaro, Y.; Sapir, O.; Hochberg, A.; Ben-Haroush, A.; Wertheimer, A. Prediction of Oocyte Maturation Rate in the GnRH Antagonist Flexible IVF Protocol Using a Novel Machine Learning Algorithm—A Retrospective Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 284, 100–104. [Google Scholar] [CrossRef]
- Palay, P.; Fathi, D.; Fathi, R. Oocyte Quality Evaluation: A Review of Engineering Approaches toward Clinical Challenges. Biol. Reprod. 2023, 108, 393–407. [Google Scholar] [CrossRef]
- Jiang, V.S.; Kandula, H.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Cherouveim, P.; Souter, I.; Dimitriadis, I.; Bormann, C.L.; Shafiee, H. The Use of Voting Ensembles to Improve the Accuracy of Deep Neural Networks as a Non-Invasive Method to Predict Embryo Ploidy Status. J. Assist. Reprod. Genet. 2023, 40, 301–308. [Google Scholar] [CrossRef]
- Correa, N.; Cerquides, J.; Arcos, J.L.; Vassena, R.; Popovic, M. Personalizing the First Dose of FSH for IVF/ICSI Patients through Machine Learning: A Non-Inferiority Study Protocol for a Multi-Center Randomized Controlled Trial. Trials 2024, 25, 38. [Google Scholar] [CrossRef]
- Wang, G.; Wang, K.; Gao, Y.; Chen, L.; Gao, T.; Ma, Y.; Jiang, Z.; Yang, G.; Feng, F.; Zhang, S.; et al. A Generalized AI System for Human Embryo Selection Covering the Entire IVF Cycle via Multi-Modal Contrastive Learning. Patterns 2024, 5, 100985. [Google Scholar] [CrossRef] [PubMed]
- Bori, L.; Dominguez, F.; Fernandez, E.I.; Del Gallego, R.; Alegre, L.; Hickman, C.; Quiñonero, A.; Nogueira, M.F.G.; Rocha, J.C.; Meseguer, M. An Artificial Intelligence Model Based on the Proteomic Profile of Euploid Embryos and Blastocyst Morphology: A Preliminary Study. Reprod. Biomed. Online 2021, 42, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liao, R.; Chan, C.; Greenblatt, E.M. Deep Learning Analysis of Endometrial Histology as a Promising Tool to Predict the Chance of Pregnancy after Frozen Embryo Transfers. J. Assist. Reprod. Genet. 2023, 40, 901–910. [Google Scholar] [CrossRef]
- Lee, T.; Natalwala, J.; Chapple, V.; Liu, Y. A Brief History of Artificial Intelligence Embryo Selection: From Black-Box to Glass-Box. Hum. Reprod. Oxf. Engl. 2024, 39, 285–292. [Google Scholar] [CrossRef]
- Jiang, V.S.; Bormann, C.L. Noninvasive Genetic Screening: Current Advances in Artificial Intelligence for Embryo Ploidy Prediction. Fertil. Steril. 2023, 120, 228–234. [Google Scholar] [CrossRef]
- Hall, J.M.M.; Nguyen, T.V.; Dinsmore, A.W.; Perugini, D.; Perugini, M.; Fukunaga, N.; Asada, Y.; Schiewe, M.; Lim, A.Y.X.; Lee, C.; et al. Use of Federated Learning to Develop an Artificial Intelligence Model Predicting Usable Blastocyst Formation from Pre-ICSI Oocyte Images. Reprod. Biomed. Online 2024, 49, 104403. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, Q.; Feng, X.; Huang, H.; Xu, H.; Tian, B.; Liu, J.; Yu, Q.; Guo, N.; Liu, Q.; et al. Development of Deep Learning Algorithms for Predicting Blastocyst Formation and Quality by Time-Lapse Monitoring. Commun. Biol. 2021, 4, 415. [Google Scholar] [CrossRef]
- Fjeldstad, J.; Qi, W.; Siddique, N.; Mercuri, N.; Nayot, D.; Krivoi, A. Segmentation of Mature Human Oocytes Provides Interpretable and Improved Blastocyst Outcome Predictions by a Machine Learning Model. Sci. Rep. 2024, 14, 10569. [Google Scholar] [CrossRef]
- Rajendran, S.; Brendel, M.; Barnes, J.; Zhan, Q.; Malmsten, J.E.; Zisimopoulos, P.; Sigaras, A.; Ofori-Atta, K.; Meseguer, M.; Miller, K.A.; et al. Automatic Ploidy Prediction and Quality Assessment of Human Blastocysts Using Time-Lapse Imaging. Nat. Commun. 2024, 15, 7756. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Zhao, D.; Chang, X.; Li, Y.; Lin, H.; Wei, H.; Wang, H.; Mi, Y.; Huang, L.; et al. Clinical Outcomes of Single Blastocyst Transfer with Machine Learning Guided Noninvasive Chromosome Screening Grading System in Infertile Patients. Reprod. Biol. Endocrinol. RBE 2024, 22, 61. [Google Scholar] [CrossRef]
- Jin, L.; Si, K.; Li, Z.; He, H.; Wu, L.; Ma, B.; Ren, X.; Huang, B. Multiple Collapses of Blastocysts after Full Blastocyst Formation Is an Independent Risk Factor for Aneuploidy—A Study Based on AI and Manual Validation. Reprod. Biol. Endocrinol. RBE 2024, 22, 81. [Google Scholar] [CrossRef]
- Ueno, S.; Berntsen, J.; Ito, M.; Okimura, T.; Kato, K. Correlation between an Annotation-Free Embryo Scoring System Based on Deep Learning and Live Birth/Neonatal Outcomes after Single Vitrified-Warmed Blastocyst Transfer: A Single-Centre, Large-Cohort Retrospective Study. J. Assist. Reprod. Genet. 2022, 39, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xie, X.; Cai, D.; Yan, P.; Ding, C.; Wen, Y.; Xu, Y.; Gao, F.; Zhou, C.; Li, G.; et al. Knowledge-Embedded Spatio-Temporal Analysis for Euploidy Embryos Identification in Couples with Chromosomal Rearrangements. Chin. Med. J. 2024, 137, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Austin, C.; Warty, R.R.; Tiktin, C.; Rolnik, D.L.; Momeni, M.; Rezatofighi, H.; Reddy, S.; Smith, V.; Vollenhoven, B.; et al. Embryo Selection through Artificial Intelligence versus Embryologists: A Systematic Review. Hum. Reprod. Open 2023, 2023, hoad031. [Google Scholar] [CrossRef] [PubMed]
- Fjeldstad, J.; Qi, W.; Mercuri, N.; Siddique, N.; Meriano, J.; Krivoi, A.; Nayot, D. An Artificial Intelligence Tool Predicts Blastocyst Development from Static Images of Fresh Mature Oocytes. Reprod. Biomed. Online 2024, 48, 103842. [Google Scholar] [CrossRef]
- Zou, H.; Wang, R.; Morbeck, D.E. Diagnostic or Prognostic? Decoding the Role of Embryo Selection on in Vitro Fertilization Treatment Outcomes. Fertil. Steril. 2024, 121, 730–736. [Google Scholar] [CrossRef]
- Khan, I.; Khare, B.K. Exploring the Potential of Machine Learning in Gynecological Care: A Review. Arch. Gynecol. Obstet. 2024, 309, 2347–2365. [Google Scholar] [CrossRef]
- GhoshRoy, D.; Alvi, P.A.; Santosh, K.C. AI Tools for Assessing Human Fertility Using Risk Factors: A State-of-the-Art Review. J. Med. Syst. 2023, 47, 91. [Google Scholar] [CrossRef]
- de Santiago, I.; Polanski, L. Data-Driven Medicine in the Diagnosis and Treatment of Infertility. J. Clin. Med. 2022, 11, 6426. [Google Scholar] [CrossRef]
- Swain, J.; VerMilyea, M.T.; Meseguer, M.; Ezcurra, D. Fertility AI Forum Group AI in the Treatment of Fertility: Key Considerations. J. Assist. Reprod. Genet. 2020, 37, 2817–2824. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Spooner, B.; Isherwood, J.; Lane, M.; Orrock, E.; Dennison, A. A Systematic Review of the Barriers to the Implementation of Artificial Intelligence in Healthcare. Cureus 2023, 15, e46454. [Google Scholar] [CrossRef] [PubMed]
- Gbagbo, F.Y.; Ameyaw, E.K.; Yaya, S. Artificial Intelligence and Sexual Reproductive Health and Rights: A Technological Leap towards Achieving Sustainable Development Goal Target 3.7. Reprod. Health 2024, 21, 196. [Google Scholar] [CrossRef] [PubMed]
- Curchoe, C.L. Unlock the Algorithms: Regulation of Adaptive Algorithms in Reproduction. Fertil. Steril. 2023, 120, 38–43. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key Challenges for Delivering Clinical Impact with Artificial Intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Mendizabal-Ruiz, G.; Paredes, O.; Álvarez, Á.; Acosta-Gómez, F.; Hernández-Morales, E.; González-Sandoval, J.; Mendez-Zavala, C.; Borrayo, E.; Chavez-Badiola, A. Artificial Intelligence in Human Reproduction. Arch. Med. Res. 2024, 55, 103131. [Google Scholar] [CrossRef]
- Kharb, S.; Joshi, A. Multi-Omics and Machine Learning for the Prevention and Management of Female Reproductive Health. Front. Endocrinol. 2023, 14, 1081667. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, L.; Shi, J.; Cheng, C.Y.; Sun, F. Multiomics Analysis of Male Infertility. Biol. Reprod. 2022, 107, 118–134. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Rao, S.; He, J.-R. Perinatal Health Predictors Using Artificial Intelligence: A Review. Womens Health Lond. Engl. 2021, 17, 17455065211046132. [Google Scholar] [CrossRef]
- Mohsin Khan, M.; Shah, N.; Shaikh, N.; Thabet, A.; Alrabayah, T.; Belkhair, S. Towards Secure and Trusted AI in Healthcare: A Systematic Review of Emerging Innovations and Ethical Challenges. Int. J. Med. Inf. 2024, 195, 105780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Findikli, N.; Houba, C.; Pening, D.; Delbaere, A. The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update. J. Clin. Med. 2025, 14, 3127. https://doi.org/10.3390/jcm14093127
Findikli N, Houba C, Pening D, Delbaere A. The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update. Journal of Clinical Medicine. 2025; 14(9):3127. https://doi.org/10.3390/jcm14093127
Chicago/Turabian StyleFindikli, Necati, Catherine Houba, David Pening, and Anne Delbaere. 2025. "The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update" Journal of Clinical Medicine 14, no. 9: 3127. https://doi.org/10.3390/jcm14093127
APA StyleFindikli, N., Houba, C., Pening, D., & Delbaere, A. (2025). The Role of Artificial Intelligence in Female Infertility Diagnosis: An Update. Journal of Clinical Medicine, 14(9), 3127. https://doi.org/10.3390/jcm14093127