Rethinking Pulmonary Embolism Management with an Interventional Perspective
Abstract
:1. Introduction
2. Risk Stratification and Current Treatment Paradigm
3. Systemic Thrombolysis: A Double-Edge Sword
4. Interventional Approaches for PE Management
4.1. Catheter-Directed Therapy (CDT)
4.2. Percutaneous Mechanical Embolectomy (PME)
5. Timing of Intervention: Fighting Against Time
6. Challenges and Practical Considerations in Interventional PE Management
7. The Role of Pulmonary Embolism Response Teams (PERTs)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudzinski, D.M.; Giri, J.; Rosenfield, K. Interventional Treatment of Pulmonary Embolism. Circ. Cardiovasc. Interv. 2017, 10, e004345. [Google Scholar] [CrossRef] [PubMed]
- Becattini, C.; Agnelli, G.; Lankeit, M.; Masotti, L.; Pruszczyk, P.; Casazza, F.; Vanni, S.; Nitti, C.; Kamphuisen, P.; Vedovati, M.C.; et al. Acute pulmonary embolism: Mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur. Respir. J. 2016, 48, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Piazza, G.; Sharp, A.S.P.; Ni Ainle, F.; Jaff, M.R.; Chauhan, N.; Patel, B.; Barco, S.; Goldhaber, S.Z.; Kucher, N.; et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study. Am. Heart J. 2022, 251, 43–53. [Google Scholar] [CrossRef]
- Arya, R. Venous Thromboembolism Prevention; Department of Health: London, UK, 2009. [Google Scholar]
- Horlander, K.T.; Mannino, D.M.; Leeper, K.V. Pulmonary embolism mortality in the United States, 1979–1998: An analysis using multiple-cause mortality data. Arch. Intern. Med. 2003, 163, 1711–1717. [Google Scholar] [CrossRef]
- Zghouzi, M.; Mwansa, H.; Shore, S.; Hyder, S.N.; Kamdar, N.; Moles, V.M.; Barnes, G.D.; Froehlich, J.; McLaughlin, V.V.; Paul, T.K.; et al. Sex, Racial, and Geographic Disparities in Pulmonary Embolism-related Mortality Nationwide. Ann. Am. Thorac. Soc. 2023, 20, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, I.T.; Barco, S.; Mavromanoli, A.C.; Agnelli, G.; Cohen, A.T.; Giannakoulas, G.; Mahan, C.E.; Konstantinides, S.V.; Valerio, L. Cost-of-Illness Analysis of Long-Term Health Care Resource Use and Disease Burden in Patients With Pulmonary Embolism: Insights From the PREFER in VTE Registry. J. Am. Heart Assoc. 2022, 11, e027514. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jimenez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Marti, C.; John, G.; Konstantinides, S.; Combescure, C.; Sanchez, O.; Lankeit, M.; Meyer, G.; Perrier, A. Systemic thrombolytic therapy for acute pulmonary embolism: A systematic review and meta-analysis. Eur. Heart J. 2015, 36, 605–614. [Google Scholar] [CrossRef]
- Milioglou, I.; Farmakis, I.; Wazirali, M.; Ajluni, S.; Khawaja, T.; Chatuverdi, A.; Giannakoulas, G.; Shishehbor, M.; Li, J. Percutaneous thrombectomy in patients with intermediate- and high-risk pulmonary embolism and contraindications to thrombolytics: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2023, 55, 228–242. [Google Scholar] [CrossRef]
- Kuebel, D.; Winter, J.; Martin, L.; Bernardoni, B.; Federle, L.; Harger Dykes, N.; Van Fleet, S.; Weaver, M.; Bennett, S. Systemic thrombolytic and ultrasound-assisted catheter-directed thrombolysis for treatment of acute pulmonary embolism: A 7-year, multicenter experience. J. Thromb. Thrombolysis 2023, 55, 545–552. [Google Scholar] [CrossRef]
- Bajaj, N.S.; Kalra, R.; Arora, P.; Ather, S.; Guichard, J.L.; Lancaster, W.J.; Patel, N.; Raman, F.; Arora, G.; Al Solaiman, F.; et al. Catheter-directed treatment for acute pulmonary embolism: Systematic review and single-arm meta-analyses. Int. J. Cardiol. 2016, 225, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Sista, A.K.; Weinberg, I.; Kearon, C.; Kumbhani, D.J.; Desai, N.D.; Piazza, G.; Gladwin, M.T.; Chatterjee, S.; Kobayashi, T.; et al. Interventional Therapies for Acute Pulmonary Embolism: Current Status and Principles for the Development of Novel Evidence: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e774–e801. [Google Scholar] [CrossRef] [PubMed]
- Aujesky, D.; Obrosky, D.S.; Stone, R.A.; Auble, T.E.; Perrier, A.; Cornuz, J.; Roy, P.M.; Fine, M.J. Derivation and validation of a prognostic model for pulmonary embolism. Am. J. Respir. Crit. Care Med. 2005, 172, 1041–1046. [Google Scholar] [CrossRef]
- Jimenez, D.; Aujesky, D.; Moores, L.; Gomez, V.; Lobo, J.L.; Uresandi, F.; Otero, R.; Monreal, M.; Muriel, A.; Yusen, R.D.; et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch. Intern. Med. 2010, 170, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Piazza, G.; Barco, S.; Bikdeli, B.; Hobohm, L.; Giannakoulas, G.; Konstantinides, S. Time-based reperfusion in hemodynamically unstable pulmonary embolism patients: Does early reperfusion therapy improve survival? Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 714–720. [Google Scholar] [CrossRef]
- Ebner, M.; Pagel, C.F.; Sentler, C.; Harjola, V.P.; Bueno, H.; Lerchbaumer, M.H.; Stangl, K.; Pieske, B.; Hasenfuss, G.; Konstantinides, S.V.; et al. Venous lactate improves the prediction of in-hospital adverse outcomes in normotensive pulmonary embolism. Eur. J. Intern. Med. 2021, 86, 25–31. [Google Scholar] [CrossRef]
- Becattini, C.; Vedovati, M.C.; Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: A meta-analysis. Circulation 2007, 116, 427–433. [Google Scholar] [CrossRef]
- Weekes, A.J.; Fraga, D.N.; Belyshev, V.; Bost, W.; Gardner, C.A.; O’Connell, N.S. Intermediate-risk pulmonary embolism: Echocardiography predictors of clinical deterioration. Crit. Care 2022, 26, 160. [Google Scholar] [CrossRef]
- Piazza, G. Advanced Management of Intermediate- and High-Risk Pulmonary Embolism: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 76, 2117–2127. [Google Scholar] [CrossRef]
- Prucnal, C.K.; Jansson, P.S.; Deadmon, E.; Rosovsky, R.P.; Zheng, H.; Kabrhel, C. Analysis of Partial Thromboplastin Times in Patients With Pulmonary Embolism During the First 48 Hours of Anticoagulation with Unfractionated Heparin. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2020, 27, 117–127. [Google Scholar] [CrossRef]
- Wan, S.; Quinlan, D.J.; Agnelli, G.; Eikelboom, J.W. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: A meta-analysis of the randomized controlled trials. Circulation 2004, 110, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef]
- Stein, P.D.; Matta, F.; Hughes, P.G.; Hughes, M.J. Nineteen-Year Trends in Mortality of Patients Hospitalized in the United States with High-Risk Pulmonary Embolism. Am. J. Med. 2021, 134, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Hobohm, L.; Ebner, M.; Kresoja, K.P.; Munzel, T.; Konstantinides, S.V.; Lankeit, M. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur. Heart J. 2020, 41, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Takano, H.; Kubota, Y.; Asai, K.; Shimizu, W. Impact of the efficacy of thrombolytic therapy on the mortality of patients with acute submassive pulmonary embolism: A meta-analysis. J. Thromb. Haemost. JTH 2014, 12, 1086–1095. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chakraborty, A.; Weinberg, I.; Kadakia, M.; Wilensky, R.L.; Sardar, P.; Kumbhani, D.J.; Mukherjee, D.; Jaff, M.R.; Giri, J. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: A meta-analysis. JAMA 2014, 311, 2414–2421. [Google Scholar] [CrossRef]
- Sedhom, R.; Megaly, M.; Elbadawi, A.; Elgendy, I.Y.; Witzke, C.F.; Kalra, S.; George, J.C.; Omer, M.; Banerjee, S.; Jaber, W.A.; et al. Contemporary National Trends and Outcomes of Pulmonary Embolism in the United States. Am. J. Cardiol. 2022, 176, 132–138. [Google Scholar] [CrossRef]
- Sharifi, M.; Bay, C.; Skrocki, L.; Rahimi, F.; Mehdipour, M.; Investigators, M. Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am. J. Cardiol. 2013, 111, 273–277. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Vicaut, E.; Danays, T.; Becattini, C.; Bertoletti, L.; Beyer-Westendorf, J.; Bouvaist, H.; Couturaud, F.; Dellas, C.; Duerschmied, D.; et al. Impact of Thrombolytic Therapy on the Long-Term Outcome of Intermediate-Risk Pulmonary Embolism. J. Am. Coll. Cardiol. 2017, 69, 1536–1544. [Google Scholar] [CrossRef]
- Mathew, D.; Seelam, S.; Bumrah, K.; Sherif, A.; Shrestha, U. Systemic thrombolysis with newer thrombolytics vs anticoagulation in acute intermediate risk pulmonary embolism: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 482. [Google Scholar] [CrossRef]
- Ochsner, A. History of thoracic surgery. Surg. Clin. N. Am. 1966, 46, 1355–1376. [Google Scholar] [CrossRef]
- Schultz, J.; Andersen, A.; Kabrhel, C.; Nielsen-Kudsk, J.E. Catheter-based therapies in acute pulmonary embolism. EuroIntervention 2018, 13, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, E.D.; Saadeddin, Z.; Abou Ali, A.N.; Fish, L.; Toma, C.; Chaer, M.; Rivera-Lebron, B.N.; Chaer, R.A. A meta-analysis of outcomes of catheter-directed thrombolysis for high- and intermediate-risk pulmonary embolism. J. Vasc. Surg. Venous Lymphat. Disord. 2018, 6, 530–540. [Google Scholar] [CrossRef]
- Soltani, A.; Volz, K.R.; Hansmann, D.R. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Phys. Med. Biol. 2008, 53, 6837–6847. [Google Scholar] [CrossRef] [PubMed]
- Tapson, V.F.; Sterling, K.; Jones, N.; Elder, M.; Tripathy, U.; Brower, J.; Maholic, R.L.; Ross, C.B.; Natarajan, K.; Fong, P.; et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial. JACC Cardiovasc. Interv. 2018, 11, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, S.; Mauro, M.S.; Rochira, C.; Spagnolo, M.; Laudani, C.; Landolina, D.; Mazzone, P.M.; Agnello, F.; Ammirabile, N.; Faro, D.C.; et al. Percutaneous interventions for pulmonary embolism. EuroIntervention 2024, 20, e408–e424. [Google Scholar] [CrossRef]
- Callese, T.E.; Moriarty, J.M.; Maehara, C.; Cusumano, L.; Mathevosian, S.; Enzmann, D.; Padia, S.A.; Srinivasa, R.N. Cost drivers in endovascular pulmonary embolism interventions. Clin. Radiol. 2023, 78, e143–e149. [Google Scholar] [CrossRef]
- Kucher, N.; Boekstegers, P.; Muller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Muller, R.; Blessing, E.; et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef]
- Sadeghipour, P.; Jenab, Y.; Moosavi, J.; Hosseini, K.; Mohebbi, B.; Hosseinsabet, A.; Chatterjee, S.; Pouraliakbar, H.; Shirani, S.; Shishehbor, M.H.; et al. Catheter-Directed Thrombolysis vs Anticoagulation in Patients with Acute Intermediate-High-risk Pulmonary Embolism: The CANARY Randomized Clinical Trial. JAMA Cardiol. 2022, 7, 1189–1197. [Google Scholar] [CrossRef]
- Bashir, R.; Foster, M.; Iskander, A.; Darki, A.; Jaber, W.; Rali, P.M.; Lakhter, V.; Gandhi, R.; Klein, A.; Bhatheja, R.; et al. Pharmacomechanical Catheter-Directed Thrombolysis With the Bashir Endovascular Catheter for Acute Pulmonary Embolism: The RESCUE Study. JACC Cardiovasc. Interv. 2022, 15, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Ismayl, M.; Machanahalli Balakrishna, A.; Aboeata, A.; Gupta, T.; Young, M.N.; Altin, S.E.; Aronow, H.D.; Goldsweig, A.M. Meta-Analysis Comparing Catheter-Directed Thrombolysis Versus Systemic Anticoagulation Alone for Submassive Pulmonary Embolism. Am. J. Cardiol. 2022, 178, 154–162. [Google Scholar] [CrossRef]
- Planer, D.; Yanko, S.; Matok, I.; Paltiel, O.; Zmiro, R.; Rotshild, V.; Amir, O.; Elbaz-Greener, G.; Raccah, B.H. Catheter-directed thrombolysis compared with systemic thrombolysis and anticoagulation in patients with intermediate- or high-risk pulmonary embolism: Systematic review and network meta-analysis. CMAJ Can. Med. Assoc. J. 2023, 195, E833–E843. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.T.; Gould, M.K.; Louie, J.D.; Rosenberg, J.K.; Sze, D.Y.; Hofmann, L.V. Catheter-directed therapy for the treatment of massive pulmonary embolism: Systematic review and meta-analysis of modern techniques. J. Vasc. Interv. Radiol. JVIR 2009, 20, 1431–1440. [Google Scholar] [CrossRef]
- Schmitz-Rode, T.; Janssens, U.; Duda, S.H.; Erley, C.M.; Gunther, R.W. Massive pulmonary embolism: Percutaneous emergency treatment by pigtail rotation catheter. J. Am. Coll. Cardiol. 2000, 36, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Barjaktarevic, I.; Friedman, O.; Ishak, C.; Sista, A.K. Catheter-directed clot fragmentation using the Cleaner device in a patient presenting with massive pulmonary embolism. J. Radiol. Case Rep. 2014, 8, 30–36. [Google Scholar] [CrossRef]
- Dumantepe, M.; Teymen, B.; Akturk, U.; Seren, M. Efficacy of rotational thrombectomy on the mortality of patients with massive and submassive pulmonary embolism. J. Card. Surg. 2015, 30, 324–332. [Google Scholar] [CrossRef]
- Bonvini, R.F.; Roffi, M.; Bounameaux, H.; Noble, S.; Muller, H.; Keller, P.F.; Jolliet, P.; Sarasin, F.P.; Rutschmann, O.T.; Bendjelid, K.; et al. AngioJet rheolytic thrombectomy in patients presenting with high-risk pulmonary embolism and cardiogenic shock: A feasibility pilot study. EuroIntervention 2013, 8, 1419–1427. [Google Scholar] [CrossRef]
- Li, K.; Cui, M.; Zhang, K.; Liang, K.; Liu, H.; Zhai, S. Treatment of acute pulmonary embolism using rheolytic thrombectomy. EuroIntervention 2021, 17, e158–e166. [Google Scholar] [CrossRef]
- Tu, T.; Toma, C.; Tapson, V.F.; Adams, C.; Jaber, W.A.; Silver, M.; Khandhar, S.; Amin, R.; Weinberg, M.; Engelhardt, T.; et al. A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism: The FLARE Study. JACC Cardiovasc. Interv. 2019, 12, 859–869. [Google Scholar] [CrossRef]
- Sista, A.K.; Horowitz, J.M.; Tapson, V.F.; Rosenberg, M.; Elder, M.D.; Schiro, B.J.; Dohad, S.; Amoroso, N.E.; Dexter, D.J.; Loh, C.T.; et al. Indigo Aspiration System for Treatment of Pulmonary Embolism: Results of the EXTRACT-PE Trial. JACC Cardiovasc. Interv. 2021, 14, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Khandhar, S.; Jaber, W.; Bunte, M.C.; Cho, K.; Weinberg, M.D.; Mina, B.; Stegman, B.; Pollak, J.; Khosla, A.; Elmasri, F.; et al. Longer-Term Outcomes Following Mechanical Thrombectomy for Intermediate- and High-Risk Pulmonary Embolism: 6-Month FLASH Registry Results. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101000. [Google Scholar] [CrossRef]
- Giri, J.; Mahfoud, F.; Gebauer, B.; Andersen, A.; Friedman, O.; Gandhi, R.T.; Jaber, W.A.; Pereira, K.; West, F.M. PEERLESS II: A Randomized Controlled Trial of Large-Bore Thrombectomy Versus Anticoagulation in Intermediate-Risk Pulmonary Embolism. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101982. [Google Scholar] [CrossRef]
- Keskin, M.; Dogan, S.; Kaya, A.; Tenekecioglu, E.; Ocal, L.; Cersit, S.; Seker, M.; Yavuz, S.; Orhan, A.L. The prognostic value of time from symptom onset to thrombolysis in patients with pulmonary embolism. Int. J. Cardiol. 2022, 352, 131–136. [Google Scholar] [CrossRef]
- Zuin, M.; Rigatelli, G.; Carraro, M.; Pastore, G.; Lanza, D.; Zonzin, P.; Zuliani, G.; Roncon, L. Systemic thrombolysis in haemodynamically unstable pulmonary embolism: The earlier the better? Thromb. Res. 2019, 173, 117–123. [Google Scholar] [CrossRef]
- Minhas, J.; Nardelli, P.; Hassan, S.M.; Al-Naamani, N.; Harder, E.; Ash, S.; Sanchez-Ferrero, G.V.; Mason, S.; Hunsaker, A.R.; Piazza, G.; et al. Loss of Pulmonary Vascular Volume as a Predictor of Right Ventricular Dysfunction and Mortality in Acute Pulmonary Embolism. Circ. Cardiovasc. Imaging 2021, 14, e012347. [Google Scholar] [CrossRef] [PubMed]
- Rawal, A.; Ardeshna, D.; Hesterberg, K.; Cave, B.; Ibebuogu, U.N.; Khouzam, R.N. Is there an optimal “door to cath time” in the treatment of acute pulmonary embolism with catheter-directed thrombolysis? Ann. Transl. Med. 2019, 7, 419. [Google Scholar] [CrossRef] [PubMed]
- Pruszczyk, P.; Klok, F.A.; Kucher, N.; Roik, M.; Meneveau, N.; Sharp, A.S.P.; Nielsen-Kudsk, J.E.; Obradovic, S.; Barco, S.; Giannini, F.; et al. Percutaneous treatment options for acute pulmonary embolism: A clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 2022, 18, e623–e638. [Google Scholar] [CrossRef]
- Harjola, V.P.; Mebazaa, A.; Celutkiene, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary management of acute right ventricular failure: A statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef]
- Moorjani, N.; Price, S. Massive pulmonary embolism. Cardiol. Clin. 2013, 31, 503–518, vii. [Google Scholar] [CrossRef]
- Akbal, O.Y.; Keskin, B.; Tokgoz, H.C.; Hakgor, A.; Karagoz, A.; Tanyeri, S.; Kultursay, B.; Kulahcioglu, S.; Bayram, Z.; Efe, S.; et al. A seven-year single-center experience on AngioJet rheolytic thrombectomy in patients with pulmonary embolism at high risk and intermediate-high risk. Anatol. J. Cardiol. 2021, 25, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, E.D.; Jaber, W.; Lacomis, J.; Markel, K.; McDaniel, M.; Rivera-Lebron, B.N.; Ross, C.B.; Sechrist, J.; Toma, C.; Chaer, R.; et al. Randomized Trial Comparing Standard Versus Ultrasound-Assisted Thrombolysis for Submassive Pulmonary Embolism: The SUNSET sPE Trial. JACC Cardiovasc. Interv. 2021, 14, 1364–1373. [Google Scholar] [CrossRef]
- Kroupa, J.; Buk, M.; Weichet, J.; Malikova, H.; Bartova, L.; Linkova, H.; Ionita, O.; Kozel, M.; Motovska, Z.; Kocka, V. A pilot randomised trial of catheter-directed thrombolysis or standard anticoagulation for patients with intermediate-high risk acute pulmonary embolism. EuroIntervention 2022, 18, e639–e646. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.J.; Gibson, C.M.; Giri, J.; Khandhar, S.; Jaber, W.; Toma, C.; Mina, B.; Bowers, T.; Greenspon, L.; Kado, H.; et al. Outcomes in High-Risk Pulmonary Embolism Patients Undergoing FlowTriever Mechanical Thrombectomy or Other Contemporary Therapies: Results From the FLAME Study. Circ. Cardiovasc. Interv. 2023, 16, e013406. [Google Scholar] [CrossRef]
- Fleitas Sosa, D.; Lehr, A.L.; Zhao, H.; Roth, S.; Lakhther, V.; Bashir, R.; Cohen, G.; Panaro, J.; Maldonado, T.S.; Horowitz, J.; et al. Impact of pulmonary embolism response teams on acute pulmonary embolism: A systematic review and meta-analysis. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2022, 31, 220023. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, P.; Gadre, S.K.; Schneider, E.; Renapurkar, R.D.; Gomes, M.; Haddadin, I.; Heresi, G.A.; Tong, M.Z.; Bartholomew, J.R. Impact of Multidisciplinary Pulmonary Embolism Response Team Availability on Management and Outcomes. Am. J. Cardiol. 2019, 124, 1465–1469. [Google Scholar] [CrossRef]
- Ardeshna, N.S.; Song, M.; Hyder, S.N.; Grace, K.A.; O’Hare, C.; Schaeffer, W.J.; Stover, M.; Greineder, C.F.; Barnes, G.D. Effect of pulmonary embolism response team on advanced therapies administered: The University of Michigan experience. Thromb. Res. 2023, 221, 73–78. [Google Scholar] [CrossRef]
- Carroll, B.J.; Beyer, S.E.; Mehegan, T.; Dicks, A.; Pribish, A.; Locke, A.; Godishala, A.; Soriano, K.; Kanduri, J.; Sack, K.; et al. Changes in Care for Acute Pulmonary Embolism Through A Multidisciplinary Pulmonary Embolism Response Team. Am. J. Med. 2020, 133, 1313–1321.e6. [Google Scholar] [CrossRef]
- Elbadawi, A.; Wright, C.; Patel, D.; Chen, Y.L.; Mazzillo, J.; Cameron, P.; Barnes, G.D.; Cameron, S.J. The impact of a multi-specialty team for high risk pulmonary embolism on resident and fellow education. Vasc. Med. 2018, 23, 372–376. [Google Scholar] [CrossRef]
Risk Category | European Society of Cardiology | American Heart Association | Clinical Criteria |
---|---|---|---|
Low-Risk | Hemodynamically stable, without signs of RV strain or myocardial injury | Hemodynamically stable, with normal cardiac biomarkers and no RV dysfunction | No imaging or biomarker evidence of strain; ESC recommends using PESI I–II or sPESI = 0 to support classification |
Intermediate-Low | Stable, with either RV dysfunction or elevated biomarkers (not both) | Hemodynamically stable with either RV dysfunction, or elevated cardiac biomarkers, or both. (The AHA does not subcategorize this group into low- or high-risk) | ESC supports classification using PESI class III–IV or sPESI ≥ 1; clinical monitoring is advised |
Intermediate-High | Stable, but with both RV dysfunction and elevated cardiac biomarkers | Hemodynamically stable with either RV dysfunction, or elevated cardiac biomarkers, or both. (The AHA does not subcategorize this group into low- or high-risk.) | Includes evidence of myocardial stress (e.g., ↑ troponin, ↑ BNP) and RV strain (e.g., RV/LV ratio ≥ 1.0 or TAPSE < 16 mm); ESC supports classification using PESI class III–IV or sPESI ≥ 1 |
High | Hemodynamic compromise: sustained hypotension, cardiac arrest, or bradycardia | Same as ESC | Immediate risk of mortality; urgent reperfusion strategies usually indicated |
Trial | Device | Population and Sample Size | Intervention | Follow-Up | Safety |
---|---|---|---|---|---|
ULTIMA (2013) [39] | EkoSonic | Intermediate-high-risk PE (n = 59) | Anticoagulation + USAT (tPA 10mg | 90 days | No deaths or major bleeds; 3 minor bleeds |
SEATTLE II (2015) [40] | EkoSonic | Intermediate-high-risk PE (n = 150) | Anticoagulation + USAT (tPA 12–24 mg) | 30 days | 7 deaths, 15 major bleeds |
OPTALYSE PE (2018) [36] | EkoSonic | Intermediate-risk PE (n = 101) | Anticoagulation + USAT (tPA 4–12 mg across 4 regimens) | 365 days | 5 major bleeds within 72 h |
SUNSET sPE (2021) [63] | EkoSonic vs. Cragg-McNamara | Intermediate-risk PE (n = 81) | Anticoagulation + USAT (tPA 4–8 mg) vs. standard CDT | 90 days | 2 major bleeds, 3 minor bleeds, 1 in-hospital death |
CANARY (2022) [41] | Cragg-McNamara | Intermediate-high-risk PE (n = 94) | Anticoagulation + CDT (tPA 12–24 mg) | 90 days | 1 BARC Type 3a major bleed |
RESCUE (2022) [42] | BASHIR | Intermediate-risk PE (n = 109) | Anticoagulation + CDT (tPA 7–14 mg) | 30 days | 1 death, 3 major bleeds |
Kroupa et al. (2022) [64] | Cragg-McNamara | Intermediate-high-risk PE (n = 23) | Anticoagulation + CDT (tPA 20 mg) | 30 days | No BARC Type 3c or 5 major bleeds |
FLARE (2019) [51] | FlowTriever | Intermediate-risk PE (n = 106) | Anticoagulation + FlowTriever | 30 days | 0 deaths; major bleeding 0.9% at 48 h |
EXTRACT-PE (2021) [52] | Indigo | Intermediate-risk PE (n = 119) | Anticoagulation + Indigo | 30 days | 1.1% mortality; 1.6% major bleeding at 48 h |
FLAME (2023) [65] | FlowTriever | High-risk PE (n = 104) | Anticoagulation + FlowTriever vs. other therapies | In hospital | Death: 1.9% vs. 29.5%; Major bleeding: 11.3% vs. 24.6% |
Trial | Design | Intervention | Primary Outcome | Sample Size | Estimated Completion Date |
---|---|---|---|---|---|
PRAGUE-26 (NCT05493163) | Open-label, Phase 4 | CDT vs. anticoagulation in intermediate-high-risk pts | All-cause death, hemodynamic instability, recurrent PE | 558 | 01-2028 |
HI-PEITHO (NCT04790370) | Single-blind, Phase 4 | USAT vs. anticoagulation in intermediate-high-risk pts | All-cause death, hemodynamic instability, recurrent PE | 544 | 08-2026 |
PE-TRACT (NCT05591118) | Open-label, Phase 3 | CDT vs. anticoagulation in Intermediate-high-risk pts | PVO2, NYHA classification, incidence of major bleeding | 500 | 01-2028 |
PEERLESS II (NCT06055920) | Open-label | PME vs. anticoagulation in intermediate-high-risk pts | Clinical deterioration, all-cause hospital readmission, bailout therapy, dyspnea | 1200 | 07-2026 |
TORPEDO-NL (NCT06833827) | Open-label | CDT vs. ST in high-risk pts | Composite incidence of all-cause mortality, treatment failure, major bleeding, and all-cause stroke | 111 | 01-2029 |
ESCADlys-PE (NCT06487052) | Open-label | CDT vs. anticoagulation in intermediate-high-risk pts | A decrease in the ratio of RV/LV diameters | 100 | 12-2027 |
STORM-PE (NCT05684796) | Open-label | PME vs. anticoagulation in intermediate-high-risk pts | Change in RV/LV ratio | 100 | 10-2026 |
PERSEVERE (NCT06588634) | Open-label | CDT vs. standard of care in high-risk pts | Composite clinical endpoint of all-cause mortality, cardiac arrest, bailout therapy, major bleeding, ECMO life support | 200 | 08-2027 |
CATCH-PE II (NCT06672081) | Open-label | CIT vs. standard of care in high-risk pts | Composite endpoint of mortality (all-cause) and recurrent cardiac arrest or persistent/recurrent shock | 315 | 06-2027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachakis, P.K.; Soulaidopoulos, S.; Mantzouranis, E.; Theofilis, P.; Karakasis, P.; Apostolos, A.; Kachrimanidis, I.; Drakopoulou, M.; Tsioufis, C.; Toutouzas, K. Rethinking Pulmonary Embolism Management with an Interventional Perspective. J. Clin. Med. 2025, 14, 3085. https://doi.org/10.3390/jcm14093085
Vlachakis PK, Soulaidopoulos S, Mantzouranis E, Theofilis P, Karakasis P, Apostolos A, Kachrimanidis I, Drakopoulou M, Tsioufis C, Toutouzas K. Rethinking Pulmonary Embolism Management with an Interventional Perspective. Journal of Clinical Medicine. 2025; 14(9):3085. https://doi.org/10.3390/jcm14093085
Chicago/Turabian StyleVlachakis, Panayotis K., Stergios Soulaidopoulos, Emmanouil Mantzouranis, Panagiotis Theofilis, Paschalis Karakasis, Anastasios Apostolos, Ioannis Kachrimanidis, Maria Drakopoulou, Costas Tsioufis, and Konstantinos Toutouzas. 2025. "Rethinking Pulmonary Embolism Management with an Interventional Perspective" Journal of Clinical Medicine 14, no. 9: 3085. https://doi.org/10.3390/jcm14093085
APA StyleVlachakis, P. K., Soulaidopoulos, S., Mantzouranis, E., Theofilis, P., Karakasis, P., Apostolos, A., Kachrimanidis, I., Drakopoulou, M., Tsioufis, C., & Toutouzas, K. (2025). Rethinking Pulmonary Embolism Management with an Interventional Perspective. Journal of Clinical Medicine, 14(9), 3085. https://doi.org/10.3390/jcm14093085