Long-Term Effects of COVID-19 on Women’s Reproductive Health and Its Association with Autoimmune Diseases, Including Multiple Sclerosis
Abstract
:1. Introduction
2. Methodology
Search Strategy
3. Overview of COVID-19 and Its Long-Term Effects
4. Impact of COVID-19 on Women’s Reproductive Health
5. Mechanisms Behind Post-Viral Autoimmune Responses
6. Autoimmune Diseases and Their Link to COVID-19 in Women
7. MS and COVID-19: The Connection
8. Clinical Observations and Case Studies
9. Challenges in Diagnosing and Managing Long-Term Effects
10. Future Research Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, R.W.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, J.; Liu, Q.; Xu, S. Neurological risks of COVID-19 in women: The complex immunology underpinning sex differences. Front. Immunol. 2023, 14, 1281310. [Google Scholar] [CrossRef]
- Sundaresan, B.; Shirafkan, F.; Ripperger, K.; Rattay, K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023, 15, 782. [Google Scholar] [CrossRef]
- Chauhan, S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed. J. 2020, 43, 334–340. [Google Scholar] [CrossRef]
- Sadeghi Dousari, A.; Taati Moghadam, M.; Satarzadeh, N. COVID-19 (Coronavirus Disease 2019): A New Coronavirus Disease. Infect. Drug Resist. 2020, 13, 2819–2828. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Maham, S.; Yoon, M.S. Clinical Spectrum of Long COVID: Effects on Female Reproductive Health. Viruses 2024, 16, 1142. [Google Scholar] [CrossRef]
- Al-Bdairi, A.A.; Makki, H.A.; Shawki, O.; Alkhudair, S.H.; Al-Hilli, N.M.; Alkhalidi, B.A.; Alkadim, H.K.; Shweliyya, A.A. The Multi-faceted Effects of COVID-19 on Female Reproductive Health: An Updated Narrative Review. Cureus 2024, 16, e57944. [Google Scholar] [CrossRef]
- Gullo, G.; Scaglione, M.; Cucinella, G.; Riva, A.; Coldebella, D.; Cavaliere, A.F.; Signore, F.; Buzzacarini, G.; Spagnol, G.; Laganà, A.S.; et al. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. J. Clin. Med. 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Pasta, V.; Gullo, G.; Giuliani, A.; Harrath, A.H.; Alwasel, S.H.; Tartaglia, F.; Cucina, A.; Bizzarri, M. An association of boswellia, betaine and myo-inositol (Eumastós) in the treatment of mammographic breast density: A randomized, double-blind study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4419–4426. [Google Scholar]
- Kumari, N.; Kumari, N.; Mishra, S. Potential Impact of COVID-19 on Female Reproductive Health. JBRA Assist. Reprod. 2023, 27, 92–96. [Google Scholar] [CrossRef]
- Koc, H.C.; Xiao, J.; Liu, W.; Li, Y.; Chen, G. Long COVID and its Management. Int. J. Biol. Sci. 2022, 18, 4768–4780. [Google Scholar] [CrossRef]
- Harb, J.; Debs, N.; Rima, M.; Wu, Y.; Cao, Z.; Kovacic, H.; Fajloun, Z.; Sabatier, J.M. SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life. Biomedicines 2022, 10, 1775. [Google Scholar] [CrossRef]
- Fallatah, N.I.; Alrehaili, B.O.; Alsulami, S.S.; Al-Zalabani, A.H. Menstrual Changes Following COVID-19 Vaccination: A Cross-Sectional Study. Med. Kaunas Lith. 2024, 60, 206. [Google Scholar] [CrossRef]
- Smaardijk, V.R.; Jajou, R.; Kant, A.; Van Hunsel, F.P.A.M. Menstrual disorders following COVID-19 vaccination: A review using a systematic search. Front. Drug Saf. Regul. 2024, 4, 1338466. [Google Scholar] [CrossRef]
- Maranto, M.; Zaami, S.; Restivo, V.; Termini, D.; Gangemi, A.; Tumminello, M.; Culmone, S.; Billone, V.; Cucinella, G.; Gullo, G. Symptomatic COVID-19 in Pregnancy: Hospital Cohort Data between May 2020 and April 2021, Risk Factors and Medicolegal Implications. Diagnostics 2023, 13, 1009. [Google Scholar] [CrossRef]
- González-Vanegas, O.; Martinez-Perez, O. SARS-CoV-2 Infection and Preeclampsia-How an Infection Can Help Us to Know More about an Obstetric Condition. Viruses 2023, 15, 1564. [Google Scholar] [CrossRef]
- Suleri, A.; Rommel, A.S.; Neumann, A.; Luo, M.; Hillegers, M.; de Witte, L.; Bergink, V.; Cecil, C.A.M. Exposure to prenatal infection and the development of internalizing and externalizing problems in children: A longitudinal population-based study. J. Child. Psychol. Psychiatry 2024, 65, 874–886. [Google Scholar] [CrossRef]
- Joseph, N.T.; Rasmussen, S.A.; Jamieson, D.J. The effects of COVID-19 on pregnancy and implications for reproductive medicine. Fertil. Steril. 2021, 115, 824–830. [Google Scholar] [CrossRef]
- Săndulescu, M.S.; Văduva, C.C.; Siminel, M.A.; Dijmărescu, A.L.; Vrabie, S.C.; Camen, I.V.; Tache, D.E.; Neamţu, S.D.; Nagy, R.D.; Carp-Velişcu, A.; et al. Impact of COVID-19 on fertility and assisted reproductive technology (ART): A systematic review. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2022, 63, 503–510. [Google Scholar] [CrossRef]
- Sher, E.K.; Ćosović, A.; Džidić-Krivić, A.; Farhat, E.K.; Pinjić, E.; Sher, F. COVID-19 a triggering factor of autoimmune and multi-inflammatory diseases. Life Sci. 2023, 319, 121531. [Google Scholar] [CrossRef]
- Yadav, B.; Prasad, N.; Kushwaha, R.S.; Patel, M.R.; Bhadauria, D.; Kaul, A. Higher pro-inflammatory cytokines IL-6 and IFN-γ are associated with anti-SARS-CoV-2 spike protein-specific seroconversion in renal allograft recipients. Transpl. Infect. Dis. 2023, 25, e14133. [Google Scholar] [CrossRef]
- Geldenhuys, J.; Rossouw, T.M.; Lombaard, H.A.; Ehlers, M.M.; Kock, M.M. Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Front. Immunol. 2018, 9, 1659. [Google Scholar] [CrossRef]
- Maldonado-Catala, P.; Gouripeddi, R.; Schlesinger, N.; Facelli, J.C. Molecular mimicry impact of the COVID-19 pandemic: Sequence homology between SARS-CoV-2 and autoimmune diseases epitopes. ImmunoInformatics 2025, 18, 100050. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.H.; Yin, X.D.; Li, C.C.; Wang, J. COVID-19 illness and autoimmune diseases: Recent insights. Inflamm. Res. 2021, 70, 407–428. [Google Scholar] [CrossRef]
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
- Mobasheri, L.; Nasirpour, M.H.; Masoumi, E.; Azarnaminy, A.F.; Jafari, M.; Esmaeili, S.A. SARS-CoV-2 triggering autoimmune diseases. Cytokine 2022, 154, 155873. [Google Scholar] [CrossRef]
- Suliman, B.A. Potential clinical implications of molecular mimicry-induced autoimmunity. Immun. Inflamm. Dis. 2024, 12, e1178. [Google Scholar] [CrossRef]
- Neamțu, M.; Bild, V.; Vasincu, A.; Arcan, O.D.; Bulea, D.; Ababei, D.C.; Rusu, R.N.; Macadan, I.; Sciucă, A.M.; Neamțu, A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 3502–3532. [Google Scholar] [CrossRef]
- Guo, M.; Shang, S.; Li, M.; Cai, G.; Li, P.; Chen, X.; Li, Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. Med. Rev. 2024, 4, 367–383. [Google Scholar] [CrossRef]
- Low, R.N.; Low, R.J.; Akrami, A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front. Med. 2023, 10, 1011936. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef]
- Datta, P.K.; Liu, F.; Fischer, T.; Rappaport, J.; Qin, X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020, 10, 7448–7464. [Google Scholar] [CrossRef]
- Smadja, D.M.; Mentzer, S.J.; Fontenay, M.; Laffan, M.A.; Ackermann, M.; Helms, J.; Jonigk, D.; Chocron, R.; Pier, G.B.; Gendron, N.; et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis 2021, 24, 755–788. [Google Scholar] [CrossRef]
- Santoro, L.; Zaccone, V.; Falsetti, L.; Ruggieri, V.; Danese, M.; Miro, C.; Giorgio, A.D.; Nesci, A.; D’Alessandro, A.; Moroncini, G.; et al. Role of Endothelium in Cardiovascular Sequelae of Long COVID. Biomedicines 2023, 11, 2239. [Google Scholar] [CrossRef]
- Kronzer, V.L.; Bridges, S.L.; Davis, J.M. Why women have more autoimmune diseases than men: An evolutionary perspective. Evol. Appl. 2021, 14, 629–633. [Google Scholar] [CrossRef]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; et al. COVID-19 and autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef]
- Hileman, C.O.; Malakooti, S.K.; Patil, N.; Singer, N.G.; McComsey, G.A. New-onset autoimmune disease after COVID-19. Front. Immunol. 2024, 15, 1337406. [Google Scholar] [CrossRef]
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK499849/ (accessed on 27 March 2025).
- Fernandes de Souza, W.D.; Fonseca, D.M.d.; Sartori, A. COVID-19 and Multiple Sclerosis: A Complex Relationship Possibly Aggravated by Low Vitamin D Levels. Cells 2023, 12, 684. [Google Scholar] [CrossRef]
- Bellucci, G.; Rinaldi, V.; Buscarinu, M.C.; Reniè, R.; Bigi, R.; Pellicciari, G.; Morena, E.; Romano, C.; Marrone, A.; Mechelli, R.; et al. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Front. Immunol. 2021, 12, 755333. [Google Scholar] [CrossRef]
- Silva, M.J.A.; Ribeiro, L.R.; Gouveia, M.I.M.; Marcelino, B.D.R.; Santos, C.S.D.; Lima, K.V.B.; Lima, L.N.G.C. Hyperinflammatory Response in COVID-19: A Systematic Review. Viruses 2023, 15, 553. [Google Scholar] [CrossRef]
- Michelena, G.; Casas, M.; Eizaguirre, M.B.; Pita, M.C.; Cohen, L.; Alonso, R.; Garcea, O.; Silva, B.A. Can COVID-19 exacerbate multiple sclerosis symptoms? A case series analysis. Mult. Scler. Relat. Disord. 2022, 57, 103368. [Google Scholar] [CrossRef]
- Kryńska, K.; Kuliś, K.; Mazurek, W.; Gudowska-Sawczuk, M.; Zajkowska, M.; Mroczko, B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int. J. Mol. Sci. 2024, 25, 8715. [Google Scholar] [CrossRef]
- MacDougall, M.; El-Hajj Sleiman, J.; Beauchemin, P.; Rangachari, M. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Front. Immunol. 2022, 13, 871276. [Google Scholar] [CrossRef]
- Shabani, Z. Demyelination as a result of an immune response in patients with COVID-19. Acta Neurol. Belg. 2021, 121, 859–866. [Google Scholar] [CrossRef]
- Bhise, V.; Dhib-Jalbut, S. Potential Risks and Benefits of Multiple Sclerosis Immune Therapies in the COVID-19 Era: Clinical and Immunological Perspectives. Neurother. J. Am. Soc. Exp. Neurother. 2021, 18, 244–251. [Google Scholar] [CrossRef]
- Krett, J.D.; Salter, A.; Newsome, S.D. Era of COVID-19 in Multiple Sclerosis Care. Neurol. Clin. 2024, 42, 319–340. [Google Scholar] [CrossRef]
- Ferini-Strambi, L.; Salsone, M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J. Neurol. 2021, 268, 409–419. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Mprah, R.; Wang, M. COVID-19 and persistent symptoms: Implications for polycystic ovary syndrome and its management. Front. Endocrinol. 2024, 15, 1434331. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, L.; Luo, J.; Qi, W.; Zuo, X.; Yang, Z. The effect of long-term COVID-19 infection on maternal and fetal complications: A retrospective cohort study conducted at a single center in China. Sci. Rep. 2024, 14, 17273. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S. COVID-19 disease and autoimmune disorders: A mutual pathway. World J. Methodol. 2022, 12, 200–223. [Google Scholar] [CrossRef]
- Mateu-Salat, M.; Urgell, E.; Chico, A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest. 2020, 43, 1527–1528. [Google Scholar] [CrossRef]
- Duntas, L.H.; Jonklaas, J. COVID-19 and Thyroid Diseases: A Bidirectional Impact. J. Endocr. Soc. 2021, 5, bvab076. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, R.; Paredes, J.L.; Niewold, T.B. COVID-19 in patients with systemic lupus erythematosus: Lessons learned from the inflammatory disease. Transl. Res. 2021, 232, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, X.; Chen, X.; Li, Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun. Rev. 2023, 22, 103340. [Google Scholar] [CrossRef]
- Chang, R.; Yen-Ting Chen, T.; Wang, S.I.; Hung, Y.M.; Chen, H.Y.; Wei, C.C.J. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. eClinicalMedicine 2023, 56, 101783. [Google Scholar] [CrossRef]
- Azab, M.A.; Hasaneen, S.F.; Hanifa, H.; Azzam, A.Y. Optic neuritis post-COVID-19 infection. A case report with meta-analysis. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2021, 26, 101320. [Google Scholar] [CrossRef]
- Garjani, A.; Middleton, R.M.; Hunter, R.; Tuite-Dalton, K.A.; Coles, A.; Dobson, R.; Dubby, M.; Hughes, S.; Pearson, O.R.; Rog, D.; et al. COVID-19 is associated with new symptoms of multiple sclerosis that are prevented by disease modifying therapies. Mult. Scler. Relat. Disord. 2021, 52, 102939. [Google Scholar] [CrossRef]
- Babtain, F.; Bajafar, A.; Nazmi, O.; Badawi, M.; Basndwah, A.; Bushnag, A.; Cupler, E.; Hassan, A. The disease course of multiple sclerosis before and during COVID-19 pandemic: A retrospective five-year study. Mult. Scler. Relat. Disord. 2022, 65, 103985. [Google Scholar] [CrossRef]
- Levitz, D.; Chao Foong, Y.; Sanfilippo, P.; Spelman, T.; Rath, L.; Roldan, A.; Lal, A.; Monif, A.; Jokubaitis, V.; Ozakbas, S.; et al. The impact of COVID-19 infection on multiple sclerosis disease course across 12 countries: A propensity-score-matched cohort study. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241278496. [Google Scholar] [CrossRef]
- Prosperini, L.; Haggiag, S. Late-onset multiple sclerosis from a different angle. Mult. Scler. J. 2024, 30, 765–766. [Google Scholar] [CrossRef] [PubMed]
- Salter, A.; Lancia, S.; Cutter, G.R.; Fox, R.J.; Marrie, R.A. Post-acute sequela of COVID-19 infection in individuals with multiple sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2025, 31, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Lipkin, W.I. ME/CFS and Long COVID share similar symptoms and biological abnormalities: Road map to the literature. Front. Med. 2023, 10, 1187163. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Christodoulatos, G.S.; Papavasileiou, G.; Petropoulou, D.; Magkos, F.; Dalamaga, M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int. J. Mol. Sci. 2023, 24, 10458. [Google Scholar] [CrossRef]
- Patrascu, R.; Dumitru, C.S. Advances in Understanding Inflammation and Tissue Damage: Markers of Persistent Sequelae in COVID-19 Patients. J. Clin. Med. 2025, 14, 1475. [Google Scholar] [CrossRef]
- Danieli, M.G.; Antonelli, E.; Gammeri, L.; Longhi, E.; Cozzi, M.F.; Palmeri, D.; Gangemi, S.; Shoenfeld, Y. Intravenous immunoglobulin as a therapy for autoimmune conditions. Autoimmun. Rev. 2025, 24, 103710. [Google Scholar] [CrossRef]
- Pawlitzki, M.; Zettl, U.K.; Ruck, T.; Rolfes, L.; Hartung, H.P.; Meuth, S.G. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 2020, 56, 102822. [Google Scholar] [CrossRef]
- Pasta, V.; Dinicola, S.; Giuliani, A.; Harrath, A.H.; Alwasel, S.H.; Tartaglia, F.; Cucina, A.; Bizzarri, M. A Randomized Pilot Study of Inositol in Association with Betaine and Boswellia in the Management of Mastalgia and Benign Breast Lump in Premenopausal Women. Breast Cancer Basic Clin. Res. 2016, 10, 37–43. [Google Scholar] [CrossRef]
- Bailey, J.; Lavelle, B.; Miller, J.; Jimenez, M.; Lim, P.H.; Orban, Z.S.; Clark, J.R.; Tomar, R.; Ludwig, A.; Ali, S.T.; et al. Multidisciplinary Center Care for Long COVID Syndrome-A Retrospective Cohort Study. Am. J. Med. 2025, 138, 108–120. [Google Scholar] [CrossRef]
- Maranto, M.; Gullo, G.; Bruno, A.; Minutolo, G.; Cucinella, G.; Maiorana, A.; Casuccio, A.; Restivo, V. Factors Associated with Anti-SARS-CoV-2 Vaccine Acceptance among Pregnant Women: Data from Outpatient Women Experiencing High-Risk Pregnancy. Vaccines 2023, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, N.C.; Poirier, S.; Kanas, A.; McCorkell, L.; McGinn, C.A.; Re’em, Y.; Kuehnel, K.; Muirhead, N.; Ruschioni, T.; Taylor-Brown, S.; et al. A new clinical challenge: Supporting patients coping with the long-term effects of COVID-19. Fatigue Biomed. Health Behav. 2022, 10, 212–230. [Google Scholar] [CrossRef]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef]
- Pollack, B.; Von Saltza, E.; McCorkell, L.; Santos, L.; Hultman, A.; Cohen, A.K.; Soares, L. Female reproductive health impacts of Long COVID and associated illnesses including ME/CFS, POTS, and connective tissue disorders: A literature review. Front. Rehabil. Sci. 2023, 4, 1122673. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Iyer, V.A.; Kumar, D.; Batra, L.; Dahiya, P. Navigating the Post-COVID-19 Immunological Era: Understanding Long COVID-19 and Immune Response. Life 2023, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Maher, M.; Owens, L. SARS-CoV-2 infection and female reproductive health: A narrative review. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101760. [Google Scholar] [CrossRef]
- Zaher, K.; Basingab, F.; Alrahimi, J.; Basahel, K.; Aldahlawi, A. Gender Differences in Response to COVID-19 Infection and Vaccination. Biomedicines 2023, 11, 1677. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Kim, S.E.; Kim, Y.; Kim, E.J.; Kim, T.; Kim, T.; Lee, S.H.; Lee, E.; Lee, J.; Seo, Y.B.; et al. Updated Clinical Practice Guidelines for the Diagnosis and Management of Long COVID. Infect. Chemother. 2024, 56, 122–157. [Google Scholar] [CrossRef]
- Ewing, A.G.; Joffe, D.; Blitshteyn, S.; Brooks, A.E.S.; Wist, J.; Bar-Yam, Y.; Bilodeau, S.; Curtin, J.; Duncan, R.; Faghy, M.; et al. Long COVID clinical evaluation, research and impact on society: A global expert consensus. Ann. Clin. Microbiol. Antimicrob. 2025, 24, 27. [Google Scholar] [CrossRef]
- Nomali, M.; Mehrdad, N.; Heidari, M.E.; Ayati, A.; Yadegar, A.; Payab, M.; Olyaeemanesh, A.; Larijani, B. Challenges and solutions in clinical research during the COVID-19 pandemic: A narrative review. Health Sci. Rep. 2023, 6, e1482. [Google Scholar] [CrossRef]
Mechanism | Description | Clinical Outcomes |
---|---|---|
Immune Hyperactivation | SARS-CoV-2 can cause immune system dysregulation, leading to chronic inflammation and potential autoimmune disease onset [21,28]. | Increased disease flare-ups, progression of symptoms in MS and other autoimmune conditions. |
Molecular mimicry | Viral proteins may resemble human proteins, triggering an immune response that mistakenly attacks the body’s own tissues [29,30]. | New-onset or exacerbated autoimmune conditions, such as MS, due to immune system misfiring. |
Chronic Inflammation | Persistent inflammation and cytokine dysregulation post-COVID-19 may contribute to autoimmune disease development or exacerbation [31,32]. | Chronic inflammation can exacerbate MS symptoms and contribute to the development of other autoimmune disorders. |
ACE2 Receptor-Mediated Entry | SARS-CoV-2 enters host cells via ACE2 receptors, which are found in multiple tissues, including the nervous system. This entry can lead to immune activation and autoimmunity, especially in individuals with genetic susceptibility [33,34]. | Increased risk of neuroinflammation in MS and potentially other neurological autoimmune disorders. |
Endothelial Dysfunction and Coagulopathy | COVID-19-induced damage to blood vessel linings (endothelial cells) and clot formation can worsen vascular health, leading to increased autoimmune flare-ups [35,36]. | Exacerbation of symptoms in MS and other conditions involving vascular inflammation. |
Study (Authors) | Sample Size | Key Findings | Limitations |
---|---|---|---|
Garjani et al. (2021) [60] |
|
|
|
Babtain et al. (2022) [61] |
|
|
|
Levitz et al. (2024) [62] |
|
|
|
Prosperini et al. (2024) [63] |
|
|
|
Salter et al. (2025) [64] |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustakli, E.; Stavros, S.; Michaelidis, T.M.; Potiris, A.; Christodoulaki, C.; Zachariou, A.; Drakakis, P.; Zikopoulos, K.; Domali, E.; Zikopoulos, A. Long-Term Effects of COVID-19 on Women’s Reproductive Health and Its Association with Autoimmune Diseases, Including Multiple Sclerosis. J. Clin. Med. 2025, 14, 3057. https://doi.org/10.3390/jcm14093057
Moustakli E, Stavros S, Michaelidis TM, Potiris A, Christodoulaki C, Zachariou A, Drakakis P, Zikopoulos K, Domali E, Zikopoulos A. Long-Term Effects of COVID-19 on Women’s Reproductive Health and Its Association with Autoimmune Diseases, Including Multiple Sclerosis. Journal of Clinical Medicine. 2025; 14(9):3057. https://doi.org/10.3390/jcm14093057
Chicago/Turabian StyleMoustakli, Efthalia, Sofoklis Stavros, Theologos M. Michaelidis, Anastasios Potiris, Chrysi Christodoulaki, Athanasios Zachariou, Peter Drakakis, Konstantinos Zikopoulos, Ekaterini Domali, and Athanasios Zikopoulos. 2025. "Long-Term Effects of COVID-19 on Women’s Reproductive Health and Its Association with Autoimmune Diseases, Including Multiple Sclerosis" Journal of Clinical Medicine 14, no. 9: 3057. https://doi.org/10.3390/jcm14093057
APA StyleMoustakli, E., Stavros, S., Michaelidis, T. M., Potiris, A., Christodoulaki, C., Zachariou, A., Drakakis, P., Zikopoulos, K., Domali, E., & Zikopoulos, A. (2025). Long-Term Effects of COVID-19 on Women’s Reproductive Health and Its Association with Autoimmune Diseases, Including Multiple Sclerosis. Journal of Clinical Medicine, 14(9), 3057. https://doi.org/10.3390/jcm14093057