Key Resting Echocardiographic Parameters for the Estimation of Exercise Parameters of Peak VO2, Heart Rate Recovery, and Ventilatory Efficiency
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VO2 | Volume of oxygen consumption |
CPET | Cardiopulmonary exercise test |
HRR | Heart rate recovery |
VE/VCO2 | Minute ventilation/volume carbon of dioxide expired |
VIF | Variance inflation factor |
CABG | Coronary artery bypass grafting |
BMI | Body Mass Index |
BSA | Body Surface Area |
LV | Left ventricle |
PWD | Pulsed wave Doppler |
MOD | Simpson’s Method of Discs |
CWD | Continuous wave Doppler |
MV | Mitral valve |
TV | Tricuspid valve |
LA | Left atrial |
RA | Right atrial |
References
- Clausen, J.S.R.; Marott, J.L.; Holtermann, A.; Gyntelberg, F.; Jensen, M.T. Midlife Cardiorespiratory Fitness and the Long-Term Risk of Mortality. J. Am. Coll. Cardiol. 2018, 72, 987–995. [Google Scholar] [CrossRef]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Kurl, S.; Khan, H.; Zaccardi, F.; Rauramaa, R.; Laukkanen, J.A. Oxygen uptake at aerobic threshold is inversely associated with fatal cardiovascular and all-cause mortality events. Ann. Med. 2017, 49, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, J.S.; Choi, H.J.; Choi, H.M.; Hwang, I.C.; Yoon, Y.E.; Cho, G.Y. Peak VO2 and VE/VCO2 exhibit differential prognostic capacity for predicting cardiac events. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655.931. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Saltin, B.; Calbet, J.A.L. Point: In health and in a normoxic environment, VO2 max is limited primarily by cardiac output and locomotor muscle blood flow. J. Appl. Physiol. 2006, 100, 744–748. [Google Scholar] [CrossRef]
- Pearlman, A.S.; Ryan, T.; Picard, M.H.; Douglas, P.S. Evolving trends in the use of echocardiography: A study of Medicare beneficiaries. J. Am. Coll. Cardiol. 2007, 49, 2283–2291. [Google Scholar] [CrossRef]
- Sljivic, A.; Kleut, M.P.; Bukumiric, Z.; Celic, V. Association between right ventricle two- and three-dimensional echocardiography and exercise capacity in patients with reduced left ventricular ejection fraction. PLoS ONE 2018, 13, e0199439. [Google Scholar] [CrossRef]
- Guazzi, M.; Myers, J.; Peberdy, M.A.; Bensimhon, D.; Chase, P.; Arena, R. Cardiopulmonary exercise testing variables reflect the degree of diastolic dysfunction in patients with heart failure-normal ejection fraction. J. Cardiopulm. Rehabil. Prev. 2010, 30, 165–172. [Google Scholar] [CrossRef]
- Tucker, W.J.; Lijauco, C.C.; Hearon, C.M.; Angadi, S.S.; Nelson, M.D.; Sarma, S.; Nanayakkara, S.; La Gerche, A.; Haykowsky, M.J. Mechanisms of the Improvement in Peak VO2 With Exercise Training in Heart Failure with Reduced or Preserved Ejection Fraction. Heart Lung Circ. 2018, 27, 9–21. [Google Scholar] [CrossRef]
- Pucci, G.; Alessio, S.; Russo, A.; Cerasari, A.; Dominioni, I.; Sanesi, L.; Filippucci, L.; Vaudo, G. Relationship between echocardiographic and functional parameters in patients with heart failure undergoing cardiopulmonary exercise test. Minerva Cardioangiol. 2020, 68, 72–80. [Google Scholar] [CrossRef]
- Ojima, S.; Kubozono, T.; Kawasoe, S.; Kawabata, T.; Salim, A.A.; Ikeda, Y.; Ohishi, M. Peak oxygen uptake in cardiopulmonary exercise testing was associated with left ventricular diastolic dysfunction in patients with preserved ejection fraction. Eur. Heart J. 2022, 43 (Suppl. S2), ehac544.2458. [Google Scholar] [CrossRef]
- Szijarto, A.; Tokodi, M.; Fabian, A.; Lakatos, B.K.; Shiida, K.; Tolvaj, M.; Eles, Z.; Magyar, B.; Soos, A.; Sydo, N.; et al. Deep-learning based prediction of peak oxygen uptake in athletes using 2D echocardiographic videos. Eur. Heart J. Cardiovasc. Imaging 2023, 24 (Suppl. S1), jead119.244. [Google Scholar] [CrossRef]
- Erevik, C.; Kleiven, Ø.; Froysa, V.; Bjorkavoll-Bergseth, M.; Hansen, M.; Chivulescu, M.; Klaebo, L.; Dejgaard, L.; Skadberg, Ø.; Melberg, T.; et al. Novel echocardiographic measures of myocardial work predicts physical performance during prolonged strenuous exercise. Eur. J. Prev. Cardiol. 2022, 29 (Suppl. S1), zwac056.259. [Google Scholar] [CrossRef]
- Kandels, J.; Stöbe, S.; Kogel, A.; Hepp, P.; Riepenhof, H.; Droste, J.N.; Stoeggl, T.; Marshall, R.P.; Rudolph, U.; Laufs, U.; et al. Effect of maximum exercise on left ventricular deformation and its correlation with cardiopulmonary exercise capacity in competitive athletes. Echo Res. Pract. 2023, 10, 17. [Google Scholar] [CrossRef]
- Kneffel, Z.; Horváth, P.; Petrekanits, M.; Németh, H.; Sidó, Z.; Pavlik, G. Relationship between Relative Aerobic Power and Echocardiographic Characteristics in Male Athletes. Echocardiography 2007, 24, 901–910. [Google Scholar] [CrossRef]
- Arena, R.; Guazzi, M.; Myers, J.; Peberdy, M.A. Prognostic value of heart rate recovery in patients with heart failure. Am. Heart J. 2006, 151, 851.e7–851.e13. [Google Scholar] [CrossRef]
- Nissinen, S.I.; Mäkikallio, T.H.; Seppänen, T.; Tapanainen, J.M.; Salo, M.; Tulppo, M.P.; Huikuri, H.V. Heart rate recovery after exercise as a predictor of mortality among survivors of acute myocardial infarction. Am. J. Cardiol. 2003, 91, 711–714. [Google Scholar] [CrossRef]
- Aijaz, B.; Squires, R.W.; Thomas, R.J.; Johnson, B.D.; Allison, T.G. Predictive value of heart rate recovery and peak oxygen consumption for long-term mortality in patients with coronary heart disease. Am. J. Cardiol. 2009, 103, 1641–1646. [Google Scholar] [CrossRef]
- Gong, J.; Castro, R.R.; Caron, J.P.; Bay, C.P.; Hainer, J.; Opotowsky, A.R.; Mehra, M.R.; Maron, B.A.; Di Carli, M.F.; Groarke, J.D.; et al. Usefulness of ventilatory inefficiency in predicting prognosis across the heart failure spectrum. ESC Heart Fail. 2022, 9, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Nayor, M.; Xanthakis, V.; Tanguay, M.; Blodgett, J.B.; Shah, R.V.; Schoenike, M.; Sbarbaro, J.; Farrell, R.; Malhotra, R.; Houstis, N.E.; et al. Clinical and Hemodynamic Associations and Prognostic Implications of Ventilatory Efficiency in Patients with Preserved Left Ventricular Systolic Function. Circ. Heart Fail. 2020, 13, e006729. [Google Scholar] [CrossRef] [PubMed]
- Tsurugaya, H.; Adachi, H.; Kurabayashi, M.; Ohshima, S.; Taniguchi, K. Prognostic impact of ventilatory efficiency in heart disease patients with preserved exercise tolerance. Circ. J. Off. J. Jpn. Circ. Soc. 2006, 70, 1332–1336. [Google Scholar] [CrossRef]
- Guazzi, M.; Myers, J.; Peberdy, M.A.; Bensimhon, D.; Chase, P.; Pinkstaff, S.; Arena, R. Heart Rate Recovery and Tissue Doppler Echocardiography in Heart Failure. Clin. Cardiol. 2010, 33, E61–E64. [Google Scholar] [CrossRef]
- Mashayekhi, B.; Mohseni-Badalabadi, R.; Hosseinsabet, A.; Ahmadian, T. Correlation between Heart rate recovery and Left Atrial phasic functions evaluated by 2D speckle-tracking Echocardiography after Acute Myocardial infarction. BMC Cardiovasc. Disord. 2023, 23, 164. [Google Scholar] [CrossRef]
- Ojima, S.; Kubozono, T.; Kawasoe, S.; Kawabata, T.; Salim, A.A.; Ikeda, Y.; Ohishi, M. VE/VCO2 slope in cardiopulmonary exercise testing was associated with left ventricular diastolic dysfunction in patients with reduced ejection fraction. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655.2585. [Google Scholar] [CrossRef]
- Lewis, G.D.; Shah, R.V.; Pappagianopolas, P.P.; Systrom, D.M.; Semigran, M.J. Determinants of Ventilatory Efficiency in Heart Failure. Circ. Heart Fail. 2008, 1, 227–233. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd BF3rd Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; Marino, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Vittinghoff, E.; Glidden, D.V.; Shiboski, S.C.; McCulloch, C.E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Vella, C.A.; Robergs, R.A. A review of the stroke volume response to upright exercise in healthy subjects. Br. J. Sports Med. 2005, 39, 190–195. [Google Scholar] [CrossRef]
- Morganroth, J.; Maron, B.J.; Henry, W.L.; Epstein, S.E. Comparative Left Ventricular Dimensions in Trained Athletes. Ann. Intern. Med. 1975, 82, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.L.; Cureton, K.J.; Outz, H.; Wilson, G. Relationship of Cardiac Size to Maximal Oxygen Uptake and Body Size in Men and Women. Int. J. Sports Med. 2008, 12, 369–373. [Google Scholar] [CrossRef]
- Osborne, G.; Wolfe, L.A.; Burggraf, G.W.; Norman, R. Relationships between Cardiac Dimensions, Anthropometric Characteristics and Maximal Aerobic Power (VO2max) in Young Men. Int. J. Sports Med. 2008, 13, 219–224. [Google Scholar] [CrossRef]
- Mahmod, M.; Pal, N.; Rayner, J.; Holloway, C.; Raman, B.; Dass, S.; Levelt, E.; Ariga, R.; Ferreira, V.; Banerjee, R.; et al. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2018, 20, 88. [Google Scholar] [CrossRef] [PubMed]
- Vanoverschelde, J.J.; Essamri, B.; Vanbutsele, R.; D’Hondt, A.; Cosyns, J.R.; Detry, J.R.; Melin, J.A. Contribution of left ventricular diastolic function to exercise capacity in normal subjects. J. Appl. Physiol. 1993, 74, 2225–2233. [Google Scholar] [CrossRef]
- Carrick-Ranson, G.; Hastings, J.L.; Bhella, P.S.; Shibata, S.; Fujimoto, N.; Palmer, M.D.; Boyd, K.; Levine, B.D. Effect of healthy aging on left ventricular relaxation and diastolic suction. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H315–H322. [Google Scholar] [CrossRef]
- Zhao, L.; Zierath, R.; Claggett, B.; Dorbala, P.; Matsushita, K.; Kitzman, D.; Folsom, A.R.; Konety, S.; Mosley, T.; Skali, H.; et al. Longitudinal Changes in Left Ventricular Diastolic Function in Late Life: The ARIC Study. JACC Cardiovasc. Imaging 2023, 16, 1133–1145. [Google Scholar] [CrossRef]
- Gardin, J.M.; Arnold, A.M.; Bild, D.E.; Smith, V.E.; Lima, J.A.; Klopfenstein, H.S.; Kitzman, D.W. Left ventricular diastolic filling in the elderly: The cardiovascular health study. Am. J. Cardiol. 1998, 82, 345–351. [Google Scholar] [CrossRef]
- Dalen, H.; Letnes, J.M.; Hoydal, M.A.; Wisløff, U. Diastolic function and dysfunction in athletes. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1537–1545. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Okamoto, T. Arterial Stiffness and Left Ventricular Diastolic Function in Endurance Athletes. Int. J. Sports Med. 2021, 42, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Dalos, D.; Dachs, T.; Gatterer, C.; Schneider, M.; Binder, T.; Bonderman, D.; Hengstenberg, C.; Panzer, S.; Aschauer, S. Cardiac remodeling in ambitious endurance-trained amateur athletes older than 50 years-an observational study. PLoS ONE 2022, 17, e0266951. [Google Scholar] [CrossRef] [PubMed]
- Teske, A.J.; Prakken, N.H.; De Boeck, B.W.; Velthuis, B.K.; Doevendans, P.A.; Cramer, M.J. Effect of long term and intensive endurance training in athletes on the age related decline in left and right ventricular diastolic function as assessed by Doppler echocardiography. Am. J. Cardiol. 2009, 104, 1145–1151. [Google Scholar] [CrossRef]
- Churchill, T.W.; Groezinger, E.; Kim, J.H.; Loomer, G.; Guseh, J.S.; Wasfy, M.M.; Isselbacher, E.M.; Lewis, G.D.; Weiner, R.B.; Schmied, C.; et al. Association of Ascending Aortic Dilatation and Long-term Endurance Exercise Among Older Masters-Level Athletes. JAMA Cardiol. 2020, 5, 522–531. [Google Scholar] [CrossRef]
- Gharacholou, S.M.; Scott, C.G.; Borlaug, B.A.; Kane, G.C.; McCully, R.B.; Oh, J.K.; Pellikka, P.A. Relationship Between Diastolic Function and Heart Rate Recovery After Symptom-Limited Exercise. J. Card. Fail. 2012, 18, 34–40. [Google Scholar] [CrossRef]
- Gardin, J.M.; Leifer, E.S.; Fleg, J.L.; Whellan, D.; Kokkinos, P.; LeBlanc, M.-H.; Wolfel, E.; Kitzman, D.W. Relationship of Doppler-Echocardiographic left ventricular diastolic function to exercise performance in systolic heart failure: The HF-ACTION study. Am. Heart J. 2009, 158 (Suppl. S4), S45–S52. [Google Scholar] [CrossRef]
- Fábián, A.; Lakatos, B.K.; Tokodi, M.; Kiss, A.R.; Sydó, N.; Csulak, E.; Kispál, E.; Babity, M.; Szűcs, A.; Kiss, O.; et al. Geometrical remodeling of the mitral and tricuspid annuli in response to exercise training: A 3-D echocardiographic study in elite athletes. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1774–H1785. [Google Scholar] [CrossRef]
- Studer Bruengger, A.A.; Kaufmann, B.A.; Buser, M.; Hoffmann, M.; Bader, F.; Bernheim, A.M. Diastolic stress echocardiography in the young: A study in nonathletic and endurance-trained healthy subjects. J. Am. Soc. Echocardiogr. 2014, 27, 1053–1059. [Google Scholar] [CrossRef]
- Hasegawa, H.; Little, W.C.; Ohno, M.; Brucks, S.; Morimoto, A.; Cheng, H.J.; Cheng, C.P. Diastolic mitral annular velocity during the development of heart failure. J. Am. Coll. Cardiol. 2003, 41, 1590–1597. [Google Scholar] [CrossRef]
- Zens, T.J.; Casar Berazaluce, A.M.; Jenkins, T.M.; Hardie, W.; Alsaied, T.; Tretter, J.T.; Moore, R.; Foster, K.; Fleck, R.J.; Hanke, R.E.; et al. The Severity of Pectus Excavatum Defect Is Associated with Impaired Cardiopulmonary Function. Ann. Thorac. Surg. 2022, 114, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria |
---|
|
|
|
Exclusion Criteria |
|
|
|
|
|
|
|
|
Total | (n = 1909) |
Gender, n (%) | |
Female | 830 (43.5%) |
Male | 1079 (56.5%) |
Age, n (%) | |
18–35 | 394 (21.7%) |
36–50 | 400 (22.0%) |
51–65 | 582 (32.1%) |
66–80 | 404 (22.3%) |
80+ | 35 (1.9%) |
BMI Mean (SD) | 28.7 (6.27) |
BSA Mean (SD) | 2.0 (0.27) |
Echo Parameter | Correlation Coefficient 1 | p-Value |
---|---|---|
Significant 2 | ||
LV Stroke Volume Index (Doppler) | 0.284 | <0.0001 |
LV Volume Indexed End-Diastolic 2D by MOD Biplane | 0.149 | <0.0001 |
Tissue Doppler-Derived MV Medial Annular a’ Velocity | 0.142 | <0.0001 |
MV Medial Annular E-to-e’ ratio | −0.117 | <0.0001 |
MV E Wave Peak Velocity | −0.109 | <0.0001 |
Tissue Doppler-derived TV Lateral Annular Systolic Velocity (S’) | 0.106 | <0.0001 |
LA Volume Indexed 2D by MOD Biplane | 0.105 | <0.0001 |
TV Regurgitation Peak Velocity | −0.098 | 0.0003 |
MV Lateral Annular E-to-e’ ratio | −0.094 | 0.0001 |
RV Systolic Pressure | −0.089 | 0.001 |
LV Mass Indexed 2D | −0.087 | 0.0003 |
Non-Significant 2 | ||
Tissue Doppler-Derived MV Lateral Annular a’ Velocity | 0.078 | 0.0028 |
Aortic Mid-Ascending Diameter 2D | 0.072 | 0.0055 |
MV E-to-A Ratio Diastolic | −0.054 | 0.0227 |
LV Ejection Fraction by 2D MOD Biplane | 0.05 | 0.1273 |
MV Medial Annular e’ Peak Velocity | 0.039 | 0.0962 |
MV Lateral Annular e’ Peak velocity | 0.031 | 0.2031 |
Reported/Calculated Ejection Fraction | −0.023 | 0.3113 |
MV A Wave Peak Velocity | −0.017 | 0.4614 |
Variable | Coefficient | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Significant 1 | ||||
LV Mass Index | −0.25669 | 0.05315 | −4.83 | <0.0001 |
LV Stroke Volume Indexed by Q Doppler | 0.77772 | 0.12697 | 6.13 | <0.0001 |
MV E wave Peak Velocity | −24.66488 | 6.59626 | −3.74 | 0.0002 |
TV Regurgitation Peak Systolic Velocity | −12.38568 | 4.32824 | −2.86 | 0.0044 |
Tissue Doppler-Derived TV Lateral Annular Systolic Velocity (S’) | 119.46908 | 43.9882 | 2.72 | 0.0069 |
LA Volume Indexed 2D by MOD Biplane | 0.30432 | 0.12732 | 2.39 | 0.0173 |
Nonsignificant 1 | ||||
LV Volume Indexed End-Diastolic 2D by MOD Biplane | 0.13793 | 0.08419 | 1.64 | 0.1021 |
MV Medial Annular E-to-e’ ratio | 0.38933 | 0.35125 | 1.11 | 0.2683 |
MV Medial Annular A Wave Peak Velocity | 9.6412 | 42.3963 | 0.23 | 0.8202 |
Mitral Valve Echo Parameter | HRR Coefficient | p-Value | VE/VCO2 Slope Coefficient | p-Value |
---|---|---|---|---|
A Wave Peak Velocity | −0.275 | <0.0001 | 0.172 | <0.0001 |
Lateral Annular e’ Peak Velocity | 0.269 | <0.0001 | −0.27 | <0.0001 |
Lateral Annular E-to-e’ Ratio | −0.252 | <0.0001 | 0.227 | <0.0001 |
E-to-A Ratio Diastolic | 0.25 | <0.0001 | −0.174 | <0.0001 |
Medial Annular e’ Peak Velocity | 0.245 | <0.0001 | −0.284 | <0.0001 |
Medial Annular E-to-e’ Ratio | −0.236 | <0.0001 | 0.241 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaliki, K.; Sharma, A.; Sharma, A.; Yee, C.; Chaliki, H.; Reddy, S. Key Resting Echocardiographic Parameters for the Estimation of Exercise Parameters of Peak VO2, Heart Rate Recovery, and Ventilatory Efficiency. J. Clin. Med. 2025, 14, 3013. https://doi.org/10.3390/jcm14093013
Chaliki K, Sharma A, Sharma A, Yee C, Chaliki H, Reddy S. Key Resting Echocardiographic Parameters for the Estimation of Exercise Parameters of Peak VO2, Heart Rate Recovery, and Ventilatory Efficiency. Journal of Clinical Medicine. 2025; 14(9):3013. https://doi.org/10.3390/jcm14093013
Chicago/Turabian StyleChaliki, Kalyan, Arundhati Sharma, Anubhuti Sharma, Claire Yee, Hari Chaliki, and Satyajit Reddy. 2025. "Key Resting Echocardiographic Parameters for the Estimation of Exercise Parameters of Peak VO2, Heart Rate Recovery, and Ventilatory Efficiency" Journal of Clinical Medicine 14, no. 9: 3013. https://doi.org/10.3390/jcm14093013
APA StyleChaliki, K., Sharma, A., Sharma, A., Yee, C., Chaliki, H., & Reddy, S. (2025). Key Resting Echocardiographic Parameters for the Estimation of Exercise Parameters of Peak VO2, Heart Rate Recovery, and Ventilatory Efficiency. Journal of Clinical Medicine, 14(9), 3013. https://doi.org/10.3390/jcm14093013