A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies
Abstract
:1. Introduction
2. Mechanisms of Microbiome Influence on Treatment Response
2.1. Drug Metabolism
2.2. Inflammation and Immune Modulation
2.3. Toxicity and Side Effects
3. Specific Impact on Hematological Treatments
3.1. Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
3.2. Chemotherapy
3.3. Immunotherapy
3.4. CAR-T Cell Therapy
4. Superimposed Effects of Antibiotic Therapy on Gut Microbiota in Patients with Hematological Malignancies
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; De Castro, C.; Silipo, A.; Molinaro, A. Lipopolysaccharide Structures of Gram-Negative Populations in the Gut Microbiota and Effects on Host Interactions. FEMS Microbiol. Rev. 2019, 43, 257–272. [Google Scholar] [CrossRef]
- Fellows, R.; Denizot, J.; Stellato, C.; Cuomo, A.; Jain, P.; Stoyanova, E.; Balázsi, S.; Hajnády, Z.; Liebert, A.; Kazakevych, J.; et al. Microbiota Derived Short Chain Fatty Acids Promote Histone Crotonylation in the Colon through Histone Deacetylases. Nat. Commun. 2018, 9, 105. [Google Scholar] [CrossRef]
- D’Angelo, C.R.; Sudakaran, S.; Callander, N.S. Clinical Effects and Applications of the Gut Microbiome in Hematologic Malignancies. Cancer 2021, 127, 679–687. [Google Scholar] [CrossRef]
- Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Khani Ali Akbari, S.; Yousefimashouf, R.; Karampoor, S. Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomed. Pharmacother. 2021, 139, 111619. [Google Scholar] [CrossRef]
- D’Angelo, G. Microbiota and Hematological Diseases. Int. J. Hematol.-Oncol. Stem Cell Res. 2022, 16, 10139. [Google Scholar] [CrossRef]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef]
- Nastasi, C.; Candela, M.; Bonefeld, C.M.; Geisler, C.; Hansen, M.; Krejsgaard, T.; Biagi, E.; Andersen, M.H.; Brigidi, P.; Ødum, N.; et al. The Effect of Short-Chain Fatty Acids on Human Monocyte-Derived Dendritic Cells. Sci. Rep. 2015, 5, 16148. [Google Scholar] [CrossRef]
- Manzo, V.E.; Bhatt, A.S. The Human Microbiome in Hematopoiesis and Hematologic Disorders. Blood 2015, 126, 311–318. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Nakov, R.; Velikova, T. Chemical Metabolism of Xenobiotics by Gut Microbiota. Curr. Drug Metab. 2020, 21, 260–269. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut Microbiome Interactions with Drug Metabolism, Efficacy, and Toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef]
- Enright, E.F.; Gahan, C.G.M.; Joyce, S.A.; Griffin, B.T. The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome. Yale J. Biol. Med. 2016, 89, 375–382. [Google Scholar]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and Cancer: Golden Anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef]
- Gori, S.; Inno, A.; Belluomini, L.; Bocus, P.; Bisoffi, Z.; Russo, A.; Arcaro, G. Gut Microbiota and Cancer: How Gut Microbiota Modulates Activity, Efficacy and Toxicity of Antitumoral Therapy. Crit. Rev. Oncol./Hematol. 2019, 143, 139–147. [Google Scholar] [CrossRef]
- Aghamajidi, A.; Maleki Vareki, S. The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers 2022, 14, 3563. [Google Scholar] [CrossRef]
- Calcinotto, A.; Brevi, A.; Chesi, M.; Ferrarese, R.; Garcia Perez, L.; Grioni, M.; Kumar, S.; Garbitt, V.M.; Sharik, M.E.; Henderson, K.J.; et al. Microbiota-Driven Interleukin-17-Producing Cells and Eosinophils Synergize to Accelerate Multiple Myeloma Progression. Nat. Commun. 2018, 9, 4832. [Google Scholar] [CrossRef]
- Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C.P.M.; Flament, C.; Lepage, P.; Roberti, M.P.; et al. Enterococcus Hirae and Barnesiella Intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity 2016, 45, 931–943. [Google Scholar] [CrossRef]
- Yan, H.; Su, R.; Xue, H.; Gao, C.; Li, X.; Wang, C. Pharmacomicrobiology of Methotrexate in Rheumatoid Arthritis: Gut Microbiome as Predictor of Therapeutic Response. Front. Immunol. 2021, 12, 789334. [Google Scholar] [CrossRef]
- Mai, Z.; Han, Y.; Liang, D.; Mai, F.; Zheng, H.; Li, P.; Li, Y.; Ma, C.; Chen, Y.; Li, W.; et al. Gut-Derived Metabolite 3-Methylxanthine Enhances Cisplatin-Induced Apoptosis via Dopamine Receptor D1 in a Mouse Model of Ovarian Cancer. mSystems 2024, 9, e01301-23. [Google Scholar] [CrossRef] [PubMed]
- Rezasoltani, S.; Yadegar, A.; Asadzadeh Aghdaei, H.; Reza Zali, M. Modulatory Effects of Gut Microbiome in Cancer Immunotherapy: A Novel Paradigm for Blockade of Immune Checkpoint Inhibitors. Cancer Med. 2021, 10, 1141–1154. [Google Scholar] [CrossRef]
- Lu, H.; Xu, X.; Fu, D.; Gu, Y.; Fan, R.; Yi, H.; He, X.; Wang, C.; Ouyang, B.; Zhao, P.; et al. Butyrate-Producing Eubacterium Rectale Suppresses Lymphomagenesis by Alleviating the TNF-Induced TLR4/MyD88/NF-κB Axis. Cell Host Microbe 2022, 30, 1139–1150.e7. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut Microbes from the Phylogenetically Diverse Genus Eubacterium and Their Various Contributions to Gut Health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Li, B.; Han, Y.; Fu, Z.; Chai, Y.; Guo, X.; Du, S.; Li, C.; Wang, D. The Causal Relationship between Gut Microbiota and Lymphoma: A Two-Sample Mendelian Randomization Study. Front. Immunol. 2024, 15, 1397485. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate Producers, “The Sentinel of Gut”: Their Intestinal Significance with and beyond Butyrate, and Prospective Use as Microbial Therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, Y.; Zhu, Y.; Guo, J.; Zhang, J.; He, Y.; Li, X.; Liu, J.; Zhou, W. The Interaction between Gut Microbiota and Host Amino Acids Metabolism in Multiple Myeloma. Cancers 2023, 15, 1942. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, Y.; Li, Y.; Zhang, J. Gut Microbiome in Multiple Myeloma: Mechanisms of Progression and Clinical Applications. Front. Immunol. 2022, 13, 1058272. [Google Scholar] [CrossRef]
- Lin, Z.; Mao, D.; Jin, C.; Wang, J.; Lai, Y.; Zhang, Y.; Zhou, M.; Ge, Q.; Zhang, P.; Sun, Y.; et al. The Gut Microbiota Correlate with the Disease Characteristics and Immune Status of Patients with Untreated Diffuse Large B-Cell Lymphoma. Front. Immunol. 2023, 14, 1105293. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef]
- Xu, Z.-F.; Yuan, L.; Zhang, Y.; Zhang, W.; Wei, C.; Wang, W.; Zhao, D.; Zhou, D.; Li, J. The Gut Microbiome Correlated to Chemotherapy Efficacy in Diffuse Large B-Cell Lymphoma Patients. Hematol. Rep. 2024, 16, 63–75. [Google Scholar] [CrossRef]
- Kawari, M.; Akhtar, M.; Sager, M.; Basbous, Z.; Baydoun, I.; Kabanja, J.; Darweesh, M.; Mokhtar, N.; Kanfar, S.; Mutahar, E.; et al. Alterations of Gut Microbiome in Untreated Chronic Lymphocytic Leukemia (CLL); Future Therapeutic Potentials. Blood 2019, 134, 5455. [Google Scholar] [CrossRef]
- Faitova, T.; Coelho, M.; Da Cunha-Bang, C.; Ozturk, S.; Kartal, E.; Bork, P.; Seiffert, M.; Niemann, C.U. The Diversity of the Microbiome Impacts Chronic Lymphocytic Leukemia Development in Mice and Humans. Haematol 2024, 109, 3237–3250. [Google Scholar] [CrossRef]
- Paziewska, M.; Szelest, M.; Kiełbus, M.; Masternak, M.; Zaleska, J.; Wawrzyniak, E.; Kotkowska, A.; Siemieniuk-Ryś, M.; Morawska, M.; Kalicińska, E.; et al. Increased Abundance of Firmicutes and Depletion of Bacteroidota Predicts Poor Outcome in Chronic Lymphocytic Leukemia. Oncol. Lett. 2024, 28, 552. [Google Scholar] [CrossRef]
- Yamamoto, M.L.; Maier, I.; Dang, A.T.; Berry, D.; Liu, J.; Ruegger, P.M.; Yang, J.; Soto, P.A.; Presley, L.L.; Reliene, R.; et al. Intestinal Bacteria Modify Lymphoma Incidence and Latency by Affecting Systemic Inflammatory State, Oxidative Stress, and Leukocyte Genotoxicity. Cancer Res. 2013, 73, 4222–4232. [Google Scholar] [CrossRef]
- Huang, E.Y.; Inoue, T.; Leone, V.A.; Dalal, S.; Touw, K.; Wang, Y.; Musch, M.W.; Theriault, B.; Higuchi, K.; Donovan, S.; et al. Using Corticosteroids to Reshape the Gut Microbiome: Implications for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2015, 21, 963–972. [Google Scholar] [CrossRef]
- Perales-Puchalt, A.; Perez-Sanz, J.; Payne, K.K.; Svoronos, N.; Allegrezza, M.J.; Chaurio, R.A.; Anadon, C.; Calmette, J.; Biswas, S.; Mine, J.A.; et al. Frontline Science: Microbiota Reconstitution Restores Intestinal Integrity after Cisplatin Therapy. J. Leukoc. Biol. 2018, 103, 799–805. [Google Scholar] [CrossRef]
- Zhan, Z.; Liu, W.; Pan, L.; Bao, Y.; Yan, Z.; Hong, L. Overabundance of Veillonella Parvula Promotes Intestinal Inflammation by Activating Macrophages via LPS-TLR4 Pathway. Cell Death Discov. 2022, 8, 251. [Google Scholar] [CrossRef]
- Maddern, A.S.; Coller, J.K.; Bowen, J.M.; Gibson, R.J. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers 2023, 15, 4301. [Google Scholar] [CrossRef]
- Prisciandaro, L.D.; Geier, M.S.; Butler, R.N.; Cummins, A.G.; Howarth, G.S. Evidence Supporting the Use of Probiotics for the Prevention and Treatment of Chemotherapy-Induced Intestinal Mucositis. Crit. Rev. Food Sci. Nutr. 2011, 51, 239–247. [Google Scholar] [CrossRef]
- Reyna-Figueroa, J.; Bejarano-Juvera, A.A.; García-Parra, C.; Barrón-Calvillo, E.E.; Queipo-Garcia, G.E.; Galindo-Delgado, P. Decrease of Postchemotherapy Complications With the Use of Probiotics in Children With Acute Lymphoblastic Leukemia. J. Pediatr. Hematol./Oncol. 2021, 43, e457–e461. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, Å.; Nord, C.E. Probiotics and Gastrointestinal Diseases. J. Intern. Med. 2005, 257, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Capurso, L. Thirty Years of Lactobacillus Rhamnosus GG: A Review. J. Clin. Gastroenterol. 2019, 53, S1–S41. [Google Scholar] [CrossRef] [PubMed]
- Sørum, M.E.; Boulund, U.; De Pietri, S.; Weischendorff, S.; Enevold, C.; Rathe, M.; Als-Nielsen, B.; Hasle, H.; Pamp, S.J.; Stokholm, J.; et al. Changes in Gut Microbiota Predict Neutropenia after Induction Treatment in Childhood Acute Lymphoblastic Leukemia. Blood Adv. 2025, 9, 1508–1521. [Google Scholar] [CrossRef]
- Hakim, H.; Dallas, R.; Wolf, J.; Tang, L.; Schultz-Cherry, S.; Darling, V.; Johnson, C.; Karlsson, E.A.; Chang, T.-C.; Jeha, S.; et al. Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clin. Infect. Dis. 2018, 67, 541–548. [Google Scholar] [CrossRef]
- Fava, C.; Grano, S.; Bonuomo, V.; Visconti, A.; Berchialla, P.; Di Pierro, F.; Geuna, M.; Colitti, B.; De Luca Ai, S.; Giuseppe, R.; et al. CML-180 Role of Gut Microbiota in Defining the Clinical Outcomes of Patients With Chronic Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2024, 24, S364–S365. [Google Scholar] [CrossRef]
- López-Gómez, L.; Alcorta, A.; Abalo, R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J. Pers. Med. 2023, 13, 1487. [Google Scholar] [CrossRef]
- Huang, C.; Li, X.; Li, H.; Chen, R.; Li, Z.; Li, D.; Xu, X.; Zhang, G.; Qin, L.; Li, B.; et al. Role of Gut Microbiota in Doxorubicin-Induced Cardiotoxicity: From Pathogenesis to Related Interventions. J. Transl. Med. 2024, 22, 433. [Google Scholar] [CrossRef]
- Savi, M.; Bocchi, L.; Bresciani, L.; Falco, A.; Quaini, F.; Mena, P.; Brighenti, F.; Crozier, A.; Stilli, D.; Del Rio, D. Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide. Molecules 2018, 23, 549. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Al-Homsi, A.S.; Feng, Y.; Duffner, U.; Al Malki, M.M.; Goodyke, A.; Cole, K.; Muilenburg, M.; Abdel-Mageed, A. Bortezomib for the Prevention and Treatment of Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Exp. Hematol. 2016, 44, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.L.; Canova, M.J.; Radhi, I.J.; Koteva, K.; Kireeva, I.; Waglechner, N.; Wright, G.D. Bacterial Inactivation of the Anticancer Drug Doxorubicin. Chem. Biol. 2012, 19, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Culp, E.; Perry, J.; Lau, J.T.; MacNeil, L.T.; Surette, M.G.; Wright, G.D. Transformation of the Anticancer Drug Doxorubicin in the Human Gut Microbiome. ACS Infect. Dis. 2018, 4, 68–76. [Google Scholar] [CrossRef]
- Tabbara, I.A.; Zimmerman, K.; Morgan, C.; Nahleh, Z. Allogeneic Hematopoietic Stem Cell Transplantation: Complications and Results. Arch. Intern. Med. 2002, 162, 1558. [Google Scholar] [CrossRef]
- Bilinski, J.; Lis, K.; Tomaszewska, A.; Grzesiowski, P.; Dzieciatkowski, T.; Tyszka, M.; Karakulska-Prystupiuk, E.; Boguradzki, P.; Tormanowska, M.; Halaburda, K.; et al. Fecal Microbiota Transplantation in Patients with Acute and Chronic Graft-versus-host Disease—Spectrum of Responses and Safety Profile. Results from a Prospective, Multicenter Study. American J. Hematol. 2021, 96, E88–E91. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.; Peled, J.U.; Lazrak, A.; Slingerland, A.E.; Shono, Y.; Staffas, A.; Gomes, A.; Argyropoulos, K.; Docampo, M.; Xavier, J.; et al. Domination of the Gut Microbiota with Enterococcus Species Early after Allogeneic Bone Marrow Transplantation Is an Important Contributor to the Development of Acute Graft-Versus-Host Disease (GHVD) in Mouse and Man. Biol. Blood Marrow Transplant. 2018, 24, S40–S41. [Google Scholar] [CrossRef]
- Jenq, R.R.; Taur, Y.; Devlin, S.M.; Ponce, D.M.; Goldberg, J.D.; Ahr, K.F.; Littmann, E.R.; Ling, L.; Gobourne, A.C.; Miller, L.C.; et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2015, 21, 1373–1383. [Google Scholar] [CrossRef]
- Docampo, M.D.; Da Silva, M.B.; Lazrak, A.; Nichols, K.B.; Lieberman, S.R.; Slingerland, A.E.; Armijo, G.K.; Shono, Y.; Nguyen, C.; Monette, S.; et al. Alloreactive T Cells Deficient of the Short-Chain Fatty Acid Receptor GPR109A Induce Less Graft-versus-Host Disease. Blood 2022, 139, 2392–2405. [Google Scholar] [CrossRef]
- Zimmerman, M.A.; Singh, N.; Martin, P.M.; Thangaraju, M.; Ganapathy, V.; Waller, J.L.; Shi, H.; Robertson, K.D.; Munn, D.H.; Liu, K. Butyrate Suppresses Colonic Inflammation through HDAC1-Dependent Fas Upregulation and Fas-Mediated Apoptosis of T Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 302, G1405–G1415. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.-R.; Sun, Y.; Rossi, C.; et al. Gut Microbiome–Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-Host Disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Fujiwara, H.; Docampo, M.D.; Riwes, M.; Peltier, D.; Toubai, T.; Henig, I.; Wu, S.J.; Kim, S.; Taylor, A.; Brabbs, S.; et al. Microbial Metabolite Sensor GPR43 Controls Severity of Experimental GVHD. Nat. Commun. 2018, 9, 3674. [Google Scholar] [CrossRef] [PubMed]
- Khalil, Z.; Maher, S. The Impact of Microbiome Dysbiosis on Hematopoietic Stem Cell Transplantation Outcomes: A Review Article. Cureus 2024, 16, e63995. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, J.S.; Young, R.R.; Heston, S.M.; Jenkins, K.; Spees, L.P.; Sung, A.D.; Corbet, K.; Thompson, J.C.; Bohannon, L.; Martin, P.L.; et al. Anaerobic Antibiotics and the Risk of Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. Review Article: The Role of Butyrate on Colonic Function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Sardzikova, S.; Andrijkova, K.; Svec, P.; Beke, G.; Klucar, L.; Minarik, G.; Bielik, V.; Kolenova, A.; Soltys, K. High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Antibiotics 2023, 12, 1667. [Google Scholar] [CrossRef]
- Liu, C.; Frank, D.N.; Horch, M.; Chau, S.; Ir, D.; Horch, E.A.; Tretina, K.; Van Besien, K.; Lozupone, C.A.; Nguyen, V.H. Associations between Acute Gastrointestinal GvHD and the Baseline Gut Microbiota of Allogeneic Hematopoietic Stem Cell Transplant Recipients and Donors. Bone Marrow Transplant. 2017, 52, 1643–1650. [Google Scholar] [CrossRef]
- Vandijck, D.M.; Benoit, D.D.; Depuydt, P.O.; Offner, F.C.; Blot, S.I.; Van Tilborgh, A.K.; Nollet, J.; Steel, E.; Noens, L.A.; Decruyenaere, J.M. Impact of Recent Intravenous Chemotherapy on Outcome in Severe Sepsis and Septic Shock Patients with Hematological Malignancies. Intensive Care Med. 2008, 34, 847–855. [Google Scholar] [CrossRef]
- Chrysostomou, D.; Roberts, L.A.; Marchesi, J.R.; Kinross, J.M. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023, 164, 198–213. [Google Scholar] [CrossRef]
- Montassier, E.; Gastinne, T.; Vangay, P.; Al-Ghalith, G.A.; Bruley Des Varannes, S.; Massart, S.; Moreau, P.; Potel, G.; De La Cochetière, M.F.; Batard, E.; et al. Chemotherapy-driven Dysbiosis in the Intestinal Microbiome. Aliment. Pharmacol. Ther. 2015, 42, 515–528. [Google Scholar] [CrossRef]
- Rashidi, A.; Kaiser, T.; Shields-Cutler, R.; Graiziger, C.; Holtan, S.G.; Rehman, T.U.; Wasko, J.; Weisdorf, D.J.; Dunny, G.; Khoruts, A.; et al. Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Sci. Rep. 2019, 9, 6083. [Google Scholar] [CrossRef]
- D’Amico, F.; Decembrino, N.; Muratore, E.; Turroni, S.; Muggeo, P.; Mura, R.; Perruccio, K.; Vitale, V.; Zecca, M.; Prete, A.; et al. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022, 14, 1705. [Google Scholar] [CrossRef] [PubMed]
- Casadei, B.; Conti, G.; Barone, M.; Turroni, S.; Guadagnuolo, S.; Broccoli, A.; Brigidi, P.; Argnani, L.; Zinzani, P.L. Role of Gut Microbiome in the Outcome of Lymphoma Patients Treated with Checkpoint Inhibitors—The MicroLinf Study. Hematol. Oncol. 2024, 42, e3301. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.E.; Kang, W.; Chalita, M.; Lim, J.; Kim, W.S.; Kim, S.J. Comprehensive Understanding of Gut Microbiota in Treatment Naïve Diffuse Large B Cell Lymphoma Patients. Blood 2021, 138, 2409. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1–Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2019; pp. 433–444. [Google Scholar] [CrossRef]
- Zielonka, K.; Jasiński, M.; Jamroziak, K. Influence of Gut Microbiota on Efficacy and Adverse Effects of Treatment of Lymphoproliferative Disorders. Acta Haematol. Pol. 2022, 53, 363–375. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Ni, F.; Yang, Z.; Gui, X.; Bao, Z.; Zhao, H.; Wei, G.; Wang, Y.; Zhang, M.; et al. CAR-T Cell Therapy-Related Cytokine Release Syndrome and Therapeutic Response Is Modulated by the Gut Microbiome in Hematologic Malignancies. Nat. Commun. 2022, 13, 5313. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; Von Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef]
- Stein-Thoeringer, C.K.; Saini, N.Y.; Zamir, E.; Blumenberg, V.; Schubert, M.-L.; Mor, U.; Fante, M.A.; Schmidt, S.; Hayase, E.; Hayase, T.; et al. A Non-Antibiotic-Disrupted Gut Microbiome Is Associated with Clinical Responses to CD19-CAR-T Cell Cancer Immunotherapy. Nat. Med. 2023, 29, 906–916. [Google Scholar] [CrossRef]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of Resistance to Immune Checkpoint Inhibitors. Br. J. Cancer 2018, 118, 9–16. [Google Scholar] [CrossRef]
- Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The Microbiome, Cancer, and Cancer Therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef]
- Zhang, L.; Gajewski, T.F.; Kline, J. PD-1/PD-L1 Interactions Inhibit Antitumor Immune Responses in a Murine Acute Myeloid Leukemia Model. Blood 2009, 114, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Cho, S.-Y.; Yoon, Y.; Park, C.; Sohn, J.; Jeong, J.-J.; Jeon, B.-N.; Jang, M.; An, C.; Lee, S.; et al. Bifidobacterium Bifidum Strains Synergize with Immune Checkpoint Inhibitors to Reduce Tumour Burden in Mice. Nat. Microbiol. 2021, 6, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Luo, L.; Liang, W.; Yin, Q.; Guo, J.; Rush, A.M.; Lv, Z.; Liang, Q.; Fischbach, M.A.; Sonnenburg, J.L.; et al. Bifidobacterium Alters the Gut Microbiota and Modulates the Functional Metabolism of T Regulatory Cells in the Context of Immune Checkpoint Blockade. Proc. Natl. Acad. Sci. USA 2020, 117, 27509–27515. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Gamage, H.K.A.H.; Venturini, C.; Tetu, S.G.; Kabir, M.; Nayyar, V.; Ginn, A.N.; Roychoudhry, B.; Thomas, L.; Brown, M.; Holmes, A.; et al. Third Generation Cephalosporins and Piperacillin/Tazobactam Have Distinct Impacts on the Microbiota of Critically Ill Patients. Sci. Rep. 2021, 11, 7252. [Google Scholar] [CrossRef]
- Elvers, K.T.; Wilson, V.J.; Hammond, A.; Duncan, L.; Huntley, A.L.; Hay, A.D.; Van Der Werf, E.T. Antibiotic-Induced Changes in the Human Gut Microbiota for the Most Commonly Prescribed Antibiotics in Primary Care in the UK: A Systematic Review. BMJ Open 2020, 10, e035677. [Google Scholar] [CrossRef]
- Bassis, C.M.; Theriot, C.M.; Young, V.B. Alteration of the Murine Gastrointestinal Microbiota by Tigecycline Leads to Increased Susceptibility to Clostridium Difficile Infection. Antimicrob. Agents Chemother. 2014, 58, 2767–2774. [Google Scholar] [CrossRef]
- Ziegler, M.; Han, J.H.; Landsburg, D.; Pegues, D.; Reesey, E.; Gilmar, C.; Gorman, T.; Bink, K.; Moore, A.; Kelly, B.J.; et al. Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients with Hematologic Malignancy. Open Forum Infect. Dis. 2019, 6, ofz252. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Gao, Y.; Liu, L.; Duan, Y.; Mao, D.; Luo, Y. Colistin and Amoxicillin Combinatorial Exposure Alters the Human Intestinal Microbiota and Antibiotic Resistome in the Simulated Human Intestinal Microbiota. Sci. Total Environ. 2021, 750, 141415. [Google Scholar] [CrossRef]
- Kuang, H.; Yang, Y.; Luo, H.; Lv, X. The Impact of Three Carbapenems at a Single-Day Dose on Intestinal Colonization Resistance against Carbapenem-Resistant Klebsiella Pneumoniae. mSphere 2023, 8, e00479-23. [Google Scholar] [CrossRef]
Hematological Malignancy | Microbiota Alteration | Implications | Reference |
---|---|---|---|
Primary Intestinal Lymphoma | ↓ Gut microbiota diversity, ↓ Eubacterium rectale | Reduced microbial diversity may contribute to disease progression | [23,24] |
Gastrointestinal Lymphomas | Gut microbiota composition shifts | Altered microbiota diversity | [23] |
Lymphoma | Protective effect: ↑ Coprobacter, Alistipes, Ruminococcaceae, Lachnospiraceae | Reduced risk of lymphoma subtypes through anti-inflammatory pathways | [25,26] |
Hodgkin Lymphoma | ↑ Coprobacter (protective effect) | Coprobacter maintain gut health and inhibit inflammatory pathways | [25] |
Multiple Myeloma | ↑ Proteobacteria (e.g., Klebsiella, Pseudomonas aeruginosa), ↓ Actinobacteria | MM progression through affecting glutamine metabolism and inflammation | [27,28] |
Diffuse Large B-Cell Lymphoma | ↓ Bacteroidetes, ↑ Veillonella | Reduced SCFA production linked to inflammation. Veillonella abundance may impact response to treatment | [29,30,31] |
Chronic Lymphocytic Leukemia | ↑ Bacteroides/Firmicutes ratio, ↑ Proteobacteria | Dysbiosis correlates with disease progression and inflammatory conditions | [32,33] |
CLL and Microbiome Signature | ↑ Firmicutes/Bacteroidota ratio in high-risk patients | Proposed as a novel biomarker for disease progression and treatment initiation | [34] |
Hematological Treatment | Microbiota Alteration | Implications | Reference |
---|---|---|---|
Cyclophosphamide Treatment | ↑ Lactobacillus johnsonii, L. murinus, Enterococcus hirae translocation | Enhances TH1 and TH17 responses, improving antitumor immunity | [35] |
Dexamethasone Therapy in MM | ↑ Bifidobacterium, Lactobacillus, ↓ Mucispirillum | Modulating DXM’s effects on IL-17 production and immune response | [36] |
Cisplatin-Induced Dysbiosis | ↑ Ruminococcus gnavus supplementation lowers IL-6 | Mitigate inflammation and bacterial translocation in treated patients | [37] |
Microbiota Alteration | Hematological Treatment | Impact | Reference |
---|---|---|---|
Increased Enterococcus | Allogeneic HSCT | Associated with higher GVHD and mortality | [56] |
Higher Blautia abundance | Allogeneic HSCT | Reduced GVHD-related mortality, improved survival | [57] |
Reduced microbiota diversity | Allogeneic HSCT | Higher mortality risk, worsened outcomes | [62] |
Increased Enterococcus expansion | Chemotherapy | Gut dysbiosis, worsened ecosystem stability, increased microbial overgrowth risk | [70] |
Decreased beneficial bacteria (Ruminococcus, Oscillospira, Clostridium, Bifidobacterium) | Chemotherapy | Reduced gut diversity, impaired microbiome stability | [69] |
Increased Citrobacter, Klebsiella, Enterococcus, Megasphaera, Parabacteroides | Chemotherapy | Post-chemotherapy dysbiosis, higher infection risk | [69] |
Lactoferrin supplementation | Chemotherapy | Prevents Enterococcus overgrowth, maintains gut microbiome homeostasis | [71] |
Increased Barnesiella intestinihominis | Chemotherapy (CTX) | Enhances anticancer immunity, improves therapy response | [19] |
Increased Enterococcus hirae | Chemotherapy (CTX) | Boosts immunomodulatory effects of therapy | [19] |
Increased Actinobacteria | Immunotherapy (ICIs) | Observed in lymphoma patients, potential link to therapy response | [72] |
Higher Lachnospiraceae | Immunotherapy (ICIs) | Enhanced anti-tumor activity, better response | [73] |
Increased Lactobacillus | Immunotherapy (ICIs) | Linked to higher chemotherapy-related side effects | [73] |
Akkermansia muciniphila supplementation | Immunotherapy (ICIs) | Improved response to immune checkpoint inhibitors (ICIs) via IL-12-dependent pathway | [74] |
Increased Clostridia species | CAR-T Cell Therapy | Associated with better treatment response | [75] |
Dysbiosis in multiple myeloma patients | CAR-T Cell Therapy | Linked to renal insufficiency, worsened therapy response | [76] |
Reduced bacterial diversity post-CAR-T | CAR-T Cell Therapy | Higher Firmicutes, lower Bacteroidetes, increased Enterococcus and Lactobacillus | [77] |
Lower Bifidobacterium | CAR-T Cell Therapy | Correlated with severe cytokine release syndrome (CRS) | [78] |
Increased Prevotella, Veillonella, Enterococcus (with high-risk antibiotics) | CAR-T Cell Therapy | Poorer treatment response | [79] |
Higher Roseburia, Bifidobacterium, Lactobacillus (without high-risk antibiotics) | CAR-T Cell Therapy | Better treatment response | [79] |
Antibiotic | Alpha Diversity | Beta Diversity | Reference |
---|---|---|---|
3GC (Third-Generation Cephalosporins)/TZP (Piperacillin/Tazobactam) | No significant change | Significant compositional shifts, ↑ Enterobacteriaceae and Enterococcaceae | [87] |
Doxycycline | ↓ Bifidobacterium diversity (short-term) | Not specified | [88] |
Clarithromycin | ↓ Diversity and numbers of Enterobacteria, Bifidobacterium sp., Lactobacillus sp. | Changes could persist up to 5 weeks | [88] |
Tigecycline | ↓ Overall diversity, ↓ Bacteroidetes, ↑ Proteobacteria | Persistent shifts, ↑ CDI susceptibility | [89] |
BSBL (Broad-Spectrum Beta-Lactams) | ↓ Shannon index | Not specified | [90] |
Levofloxacin | ↑ Alpha diversity | ↓ Dominance of non-Bacteroidetes genera | [90] |
Colistin + Amoxicillin | ↓ Diversity, incomplete recovery after FMT | Significant shifts, partially restored with FMT | [91] |
Meropenem/Imipenem/Ertapenem | ↓ Alpha diversity (Shannon index correlated with prolonged CRKP colonization) | Distinct compositional changes; Ertapenem had milder microbiome disruption | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitru, I.G.; Todor, S.B.; Ichim, C.; Helgiu, C.; Helgiu, A. A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies. J. Clin. Med. 2025, 14, 2982. https://doi.org/10.3390/jcm14092982
Dumitru IG, Todor SB, Ichim C, Helgiu C, Helgiu A. A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies. Journal of Clinical Medicine. 2025; 14(9):2982. https://doi.org/10.3390/jcm14092982
Chicago/Turabian StyleDumitru, Ioana Gabriela, Samuel Bogdan Todor, Cristian Ichim, Claudiu Helgiu, and Alina Helgiu. 2025. "A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies" Journal of Clinical Medicine 14, no. 9: 2982. https://doi.org/10.3390/jcm14092982
APA StyleDumitru, I. G., Todor, S. B., Ichim, C., Helgiu, C., & Helgiu, A. (2025). A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies. Journal of Clinical Medicine, 14(9), 2982. https://doi.org/10.3390/jcm14092982