Uncomplicated SARS-CoV-2 Infections with Preserved Lung Function in Pediatric Patients with Cystic Fibrosis: A Three-Year Single-Centre Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Study Definitions
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Incidence of SARS-CoV-2 Infections
3.3. Clinical Presentation of SARS-CoV-2 Infections
3.4. Pre- and Post-SARS-CoV-2 Infection Lung Function
3.5. Risk of Acquiring a SARS-CoV-2 Infection
3.6. Time to First SARS-CoV-2 Infection
3.7. Associations with Disease Severity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABPA | Allergic bronchopulmonary aspergillosis |
ACE | Angiotensin-converting enzyme |
BMI | Body mass index |
CF | Cystic fibrosis |
CFTR | Cystic fibrosis transmembrane conductance regulator |
CFRD | CF-related diabetes |
IL-6 | Interleukin 6 |
pwCF | People with cystic fibrosis |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus type 2 |
COVID-19 | Coronavirus Disease 2019 |
qPCR | Quantitative real-time polymerase chain reaction |
H1N1 | Hemagglutinin type1 and neuraminidase type1 |
FEV1 | Forced expiratory volume in one second |
FVC | Forced vital capacity |
FEF50 | Forced expiratory flow at 50% of vital capacity |
LCI | Lung clearance index |
ECFSPR | European Cystic Fibrosis Society Patient Registry |
% pred. | Percent predicted |
Appendix A
Variable | Total | Not Vaccinated | Vaccinated | p-Value |
---|---|---|---|---|
Overall | 84 | 16 | 68 | |
Age at infection (years), median (IQR) | 11.6 (6–15.2) | 7.4 (3.8–11.9) | 14 (9.9–16.8) | <0.001 *** |
Female, n (%) | 36 (42.9) | 19 (50) | 17 (37) | 0.327 |
Male, n (%) | 48 (57.1) | 19 (50) | 29 (63) | |
COVID-19 like symptoms | ||||
Duration (days), median (IQR) | 4 (1.8–7) | 3.5 (2–6.5) | 4 (1–7) | 0.758 |
Fever, n (%) | 34 (40.5) | 19 (50) | 15 (32.6) | 0.164 |
Fatigue, n (%) | 43 (51.2) | 19 (50) | 24 (52.2) | 1 |
Increased cough, n (%) | 33 (39.3) | 18 (47.4) | 15 (32.6) | 0.248 |
Pharyngitis, n (%) | 23 (27.7) | 5 (13.5) | 18 (39.1) | 0.019 |
Dyspnea, n (%) | 5 (6) | 3 (7.9) | 2 (4.3) | 0.825 |
Chest tightness, n (%) | 3 (3.6) | 2 (5.3) | 1 (2.2) | 0.866 |
Wheezing, n (%) | 4 (4.8) | 4 (10.5) | 0 (0) | 0.082 |
Increased sputum, n (%) | 6 (7.1) | 3 (7.9) | 3 (6.5) | 1 |
Hemoptysis, n (%) | 1 * (1.2) | 0 (0) | 1 * (1.5) | 1 |
Rhinitis, n (%) | 44 (53) | 8 (53.3) | 36 (52.9) | 1 |
Conjunctivitis, n (%) | 4 (4.8) | 2 (12.5) | 2 (2.9) | 0.336 |
Anosmia, n (%) | 6 (7.1) | 4 (10.5) | 2 (4.3) | 0.504 |
Ageusia, n (%) | 7 (8.3) | 3 (7.9) | 4 (8.7) | 1 |
Diarrhea, n (%) | 3 (3.6) | 2 (5.4) | 1 (2.2) | 0.847 |
Myalgia/arthralgia, n (%) | 13 (15.7) | 6 (16.2) | 7 (15.2) | 1 |
Cephalea, n (%) | 35 (42.2) | 11 (29.7) | 24 (52.2) | 0.067 |
Vomiting, n (%) | 7 (8.3) | 4 (10.5) | 3 (6.5) | 0.791 |
Abdominalgia, n (%) | 7 (8.3) | 5 (13.2) | 2 (4.3) | 0.290 |
Disease severity | ||||
Asymptomatic, n (%) | 13 (15.5) | 4 (10.5) | 9 (19.6) | 0.143 |
Minimal, n (%) | 23 (27.4) | 15 (39.5) | 8 (17.4) | |
Mild, n (%) | 43 (51.2) | 17 (44.7) | 26 (56.5) | |
Moderate, n (%) | 5 (6) | 2 (5.3) | 3 (6.5) | |
SARS-CoV-2 Variant | ||||
Others, n (%) | 16 (19) | 15 (39.5) | 1 (2.2) | <0.001 ** |
Omicron, n (%) | 68 (81) | 23 (60.5) | 45 (97.8) |
Univariable | Multivariable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Comparison | HR | Lower CL | Upper CL | p-Value | HR | Lower CL | Upper CL | p-Value |
Age at pandemic start (years) | 1.008 | 0.964 | 1.055 | 0.721 | 1.019 | 0.972 | 1.068 | 0.432 | |
BMI Z score | 1.326 | 1.059 | 1.661 | 0.014 | 1.379 | 1.09 | 1.745 | 0.007 | |
CFTR mutation type | F508del heterozygous vs. F508del homozygous | 0.843 | 0.512 | 1.389 | 0.502 | ||||
F508del homozygous vs. other | 1.044 | 0.576 | 1.892 | 0.886 | |||||
Sex | Male vs. female | 1.429 | 0.91 | 2.243 | 0.121 | ||||
Pancreatic insufficiency | Yes vs. no | 0.764 | 0.427 | 1.368 | 0.365 | ||||
CFRD | Yes vs. no | 0.9 | 0.363 | 2.231 | 0.82 | ||||
CFTR modulator | Yes vs. no | 0.972 | 0.565 | 1.671 | 0.918 | ||||
CFTR modulator type | HEMT vs. no | 1.135 | 0.356 | 3.621 | 0.831 | ||||
No HEMT vs. no | 0.942 | 0.524 | 1.694 | 0.842 | |||||
FEV1% * | 1.012 | 0.994 | 1.03 | 0.18 | |||||
FEV1 Z score * | 1.16 | 0.939 | 1.433 | 0.169 | |||||
Lowest HbA1c * | 0.732 | 0.383 | 1.397 | 0.344 | |||||
Lowest LCI * | 0.952 | 0.839 | 1.08 | 0.443 | |||||
Pseudomonas aeruginosa | Yes vs. no | 0.889 | 0.511 | 1.545 | 0.676 | ||||
Achromobacter xylosoxidans | Yes vs. no | 0.805 | 0.325 | 1.997 | 0.64 | ||||
Serratia marcescens | Yes vs. no | 0.328 | 0.046 | 2.358 | 0.268 | ||||
Burkholderia cepacia | Yes vs. no | 0.64 | 0.088 | 4.661 | 0.66 | ||||
Aspergillus fumigatus | Yes vs. no | 0.581 | 0.267 | 1.267 | 0.172 | ||||
Staphylococcus aureus | Yes vs. no | 0.585 | 0.29 | 1.18 | 0.134 | ||||
Haemophilus influenzae | Yes vs. no | 1.862 | 1.18 | 2.94 | 0.008 | 2.061 | 1.291 | 3.292 | 0.002 |
References
- WHO. Situation Update Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/ (accessed on 12 December 2024).
- Wat, D.; Gelder, C.; Hibbitts, S.; Cafferty, F.; Bowler, I.; Pierrepoint, M.; Evans, R.; Doull, I. The role of respiratory viruses in cystic fibrosis. J. Cyst. Fibros. 2008, 7, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Wark, P.A.; Tooze, M.; Cheese, L.; Whitehead, B.; Gibson, P.G.; Wark, K.F.; McDonald, V.M. Viral infections trigger exacerbations of cystic fibrosis in adults and children. Eur. Respir. J. 2012, 40, 510–512. [Google Scholar] [CrossRef]
- Flight, W.G.; Bright-Thomas, R.J.; Tilston, P.; Mutton, K.J.; Guiver, M.; Morris, J.; Webb, A.K.; Jones, A.M. Incidence and clinical impact of respiratory viruses in adults with cystic fibrosis. Thorax 2014, 69, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, R.; Goss, C.H.; Khan, U.; Neradilek, M.; Neuzil, K.M.; Ortiz, J.R. Cystic Fibrosis Pulmonary Exacerbations Attributable to Respiratory Syncytial Virus and Influenza: A Population-Based Study. Clin. Infect. Dis. 2017, 64, 1760–1767. [Google Scholar] [CrossRef]
- Viviani, L.; Assael, B.M.; Kerem, E. Impact of the A (H1N1) pandemic influenza (season 2009–2010) on patients with cystic fibrosis. J. Cyst. Fibros. 2011, 10, 370–376. [Google Scholar] [CrossRef]
- Renk, H.; Regamey, N.; Hartl, D. Influenza A(H1N1)pdm09 and cystic fibrosis lung disease: A systematic meta-analysis. PLoS ONE 2014, 9, e78583. [Google Scholar] [CrossRef]
- Mondejar-Lopez, P.; Quintana-Gallego, E.; Giron-Moreno, R.M.; Cortell-Aznar, I.; Ruiz de Valbuena-Maiz, M.; Diab-Caceres, L.; Prados-Sanchez, C.; Alvarez-Fernandez, A.; Garcia-Marcos, P.W.; Peñalver-Mellado, C.; et al. Impact of SARS-CoV-2 infection in patients with cystic fibrosis in Spain: Incidence and results of the national CF-COVID19-Spain survey. Respir. Med. 2020, 170, 106062. [Google Scholar] [CrossRef] [PubMed]
- Cosgriff, R.; Ahern, S.; Bell, S.C.; Brownlee, K.; Burgel, P.R.; Byrnes, C.; Corvol, H.; Cheng, S.Y.; Elbert, A.; Faro, A.; et al. A multinational report to characterise SARS-CoV-2 infection in people with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 355–358. [Google Scholar] [CrossRef]
- McClenaghan, E.; Cosgriff, R.; Brownlee, K.; Ahern, S.; Burgel, P.R.; Byrnes, C.A.; Colombo, C.; Corvol, H.; Cheng, S.Y.; Daneau, G.; et al. The global impact of SARS-CoV-2 in 181 people with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 868–871. [Google Scholar] [CrossRef]
- Corvol, H.; de Miranda, S.; Lemonnier, L.; Kemgang, A.; Reynaud Gaubert, M.; Chiron, R.; Dalphin, M.L.; Durieu, I.; Dubus, J.C.; Houdouin, V.; et al. First Wave of COVID-19 in French Patients with Cystic Fibrosis. J. Clin. Med. 2020, 9, 3624. [Google Scholar] [CrossRef]
- Mondejar-Lopez, P.; Moreno-Galarraga, L.; de Manuel-Gomez, C.; Blitz-Castro, E.; Bravo-Lopez, M.; Gartner, S.; Perez-Ruiz, E.; Caro-Aguilera, P.; Sanz-Santiago, V.; Lopez-Neyra, A.; et al. SARS-CoV-2 infection in children with cystic fibrosis: A cross-sectional multicenter study in Spain. New waves, new knowledge. Pediatr. Pulmonol. 2023, 58, 3195–3205. [Google Scholar] [CrossRef] [PubMed]
- Thouvenin, G.; Prevost, B.; Corvol, H. Omicron wave modifies the COVID-19 paradigm in children with cystic fibrosis. J. Infect. Dis. 2023, 227, 831–832. [Google Scholar] [CrossRef]
- Ciciriello, F.; Panariello, F.; Medino, P.; Biffi, A.; Alghisi, F.; Rosazza, C.; Annunziata, P.; Bouchè, V.; Grimaldi, A.; Guidone, D.; et al. COVID-19 in cystic fibrosis patients compared to the general population: Severity and virus-host cell interactions. J. Cyst. Fibros. 2024, 23, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Hergenroeder, G.E.; Faino, A.V.; Cogen, J.D.; Genatossio, A.; McNamara, S.; Pascual, M.; Hernandez, R.E. Seroprevalence and clinical characteristics of SARS-CoV-2 infection in children with cystic fibrosis. Pediatr. Pulmonol. 2023, 58, 2478–2486. [Google Scholar] [CrossRef]
- Simmonds, N.J. Ageing in cystic fibrosis and long-term survival. Paediatr. Respir. Rev. 2013, 14 (Suppl. S1), 6–9. [Google Scholar] [CrossRef]
- Saiman, L. Infection prevention and control in cystic fibrosis. Curr. Opin. Infect. Dis. 2011, 24, 390–395. [Google Scholar] [CrossRef]
- Chapman, K.D.; Moffett, K.S. Cystic Fibrosis and COVID-19. South. Med. J. 2020, 113, 422. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Mazurek, H.; Majka, G.; Chain, B. Are patients with lung cystic fibrosis at increased risk of severe and fatal COVID-19? Interleukin 6 as a predictor of COVID-19 outcomes. Pol. Arch. Intern. Med. 2020, 130, 919–920. [Google Scholar] [CrossRef] [PubMed]
- Bezzerri, V.; Gentili, V.; Api, M.; Finotti, A.; Papi, C.; Tamanini, A.; Boni, C.; Baldisseri, E.; Olioso, D.; Duca, M.; et al. SARS-CoV-2 viral entry and replication is impaired in Cystic Fibrosis airways due to ACE2 downregulation. Nat. Commun. 2023, 14, 132. [Google Scholar] [CrossRef]
- Earhart, A.P.; Holliday, Z.M.; Hofmann, H.V.; Schrum, A.G. Consideration of dornase alfa for the treatment of severe COVID-19 acute respiratory distress syndrome. New Microbes New Infect. 2020, 35, 100689. [Google Scholar] [CrossRef]
- Touret, F.; Gilles, M.; Barral, K.; Nougairède, A.; van Helden, J.; Decroly, E.; de Lamballerie, X.; Coutard, B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci. Rep. 2020, 10, 13093. [Google Scholar] [CrossRef]
- Semenchuk, J.; Naito, Y.; Charman, S.C.; Carr, S.B.; Cheng, S.Y.; Marshall, B.C.; Faro, A.; Elbert, A.; Gutierrez, H.H.; Goss, C.H.; et al. Impact of COVID-19 infection on lung function and nutritional status amongst individuals with cystic fibrosis: A global cohort study. J. Cyst. Fibros. 2024, 23, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.P.; Espina Rey, A.; Cherian, C.G.; Livingston, F.R. Clinical Outcomes Following SARS-CoV-2 Infection in Pediatric Cystic Fibrosis Patients. Cureus 2024, 16, e62821. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.G.; Kammouh, H.; Alamri, M.; Zahraldin, K. The clinical features and impact of SARS-CoV-2/COVID-19 infection in children with Cystic Fibrosis (CF): A Qatari experience. Qatar Med. J. 2023, 2023, 19. [Google Scholar] [CrossRef] [PubMed]
- Sieber, J.; Schmidthaler, K.; Kopanja, S.; Weseslindtner, L.; Stiasny, K.; Götzinger, F.; Graf, A.; Krotka, P.; Hoz, J.; Schoof, A.; et al. Limited role of children in transmission of SARS-CoV-2 virus in households—Immunological analysis of 26 familial clusters. Pediatr. Allergy Immunol. 2023, 34, e13913. [Google Scholar] [CrossRef]
- Proesmans, M.; Balinska-Miskiewicz, W.; Dupont, L.; Bossuyt, X.; Verhaegen, J.; Høiby, N.; Boeck, K.D. Evaluating the “Leeds criteria” for Pseudomonas aeruginosa infection in a cystic fibrosis centre. Eur. Respir. J. 2006, 27, 937–943. [Google Scholar] [CrossRef]
- Cooper, B.G.; Stocks, J.; Hall, G.L.; Culver, B.; Steenbruggen, I.; Carter, K.W.; Thompson, B.R.; Graham, B.L.; Miller, M.R.; Ruppel, G.; et al. The Global Lung Function Initiative (GLI) Network: Bringing the world’s respiratory reference values together. Breathe 2017, 13, e56–e64. [Google Scholar] [CrossRef]
- Colombo, C.; Cipolli, M.; Daccò, V.; Medino, P.; Alghisi, F.; Ambroni, M.; Badolato, R.; Battistini, F.; Bignamini, E.; Casciaro, R.; et al. Clinical course and risk factors for severe COVID-19 among Italian patients with cystic fibrosis: A study within the Italian Cystic Fibrosis Society. Infection 2022, 50, 671–679. [Google Scholar] [CrossRef]
- Naehrlich, L.; Orenti, A.; Dunlevy, F.; Kasmi, I.; Harutyunyan, S.; Pfleger, A.; Keegan, S.; Daneau, G.; Petrova, G.; Tješić-Drinković, D.; et al. Incidence of SARS-CoV-2 in people with cystic fibrosis in Europe between February and June 2020. J. Cyst. Fibros. 2021, 20, 566–577. [Google Scholar] [CrossRef]
- Jung, A.; Orenti, A.; Dunlevy, F.; Aleksejeva, E.; Bakkeheim, E.; Bobrovnichy, V.; Carr, S.B.; Colombo, C.; Corvol, H.; Cosgriff, R.; et al. Factors for severe outcomes following SARS-CoV-2 infection in people with cystic fibrosis in Europe. ERJ Open Res. 2021, 7, 00411-2021. [Google Scholar] [CrossRef]
- Corvol, H.; de Miranda, S.; Dehillotte, C.; Lemonnier, L.; Chiron, R.; Danner-Boucher, I.; Hamidfar, R.; Houdouin, V.; Macey, J.; Marguet, C.; et al. Cumulative Incidence and Risk Factors for Severe Coronavirus Disease 2019 in French People with Cystic Fibrosis. Clin. Infect. Dis. 2022, 75, 2135–2144. [Google Scholar] [CrossRef]
- Carr, S.B.; McClenaghan, E.; Elbert, A.; Faro, A.; Cosgriff, R.; Abdrakhmanov, O.; Brownlee, K.; Burgel, P.R.; Byrnes, C.A.; Cheng, S.Y.; et al. Factors associated with clinical progression to severe COVID-19 in people with cystic fibrosis: A global observational study. J. Cyst. Fibros. 2022, 21, e221–e231. [Google Scholar] [CrossRef]
- Bain, R.; Cosgriff, R.; Zampoli, M.; Elbert, A.; Burgel, P.R.; Carr, S.B.; Castaños, C.; Colombo, C.; Corvol, H.; Faro, A.; et al. Clinical characteristics of SARS-CoV-2 infection in children with cystic fibrosis: An international observational study. J. Cyst. Fibros. 2021, 20, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Forrest, C.B.; Burrows, E.K.; Mejias, A.; Razzaghi, H.; Christakis, D.; Jhaveri, R.; Lee, G.M.; Pajor, N.M.; Rao, S.; Thacker, D.; et al. Severity of Acute COVID-19 in Children <18 Years Old March 2020 to December 2021. Pediatrics 2022, 149, e2021055765. [Google Scholar] [CrossRef]
- Demirhan, S.; Goldman, D.L.; Herold, B.C. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. J. Clin. Med. 2023, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Kiedrowski, M.R.; Bomberger, J.M. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front. Immunol. 2018, 9, 3067. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.B.; Jones, A.M.; Davies, E.A.; Welfare, W.; Barry, P.J.; Collier, L.; Turner, A.; Bright-Thomas, R.J. Influenza B outbreak at an adult cystic fibrosis centre—Clinical impact and factors influencing spread. J. Cyst. Fibros. 2020, 19, 808–814. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Stockley, J.A.; Alhuthail, E.A.; Coney, A.M.; Parekh, D.; Geberhiwot, T.; Gautum, N.; Madathil, S.C.; Cooper, B.G. Lung function and breathing patterns in hospitalised COVID-19 survivors: A review of post-COVID-19 Clinics. Respir. Res. 2021, 22, 255. [Google Scholar] [CrossRef]
- Smet, J.; Stylemans, D.; Hanon, S.; Ilsen, B.; Verbanck, S.; Vanderhelst, E. Clinical status and lung function 10 weeks after severe SARS-CoV-2 infection. Respir. Med. 2021, 176, 106276. [Google Scholar] [CrossRef]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: A cross-sectional study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef] [PubMed]
- Mahamat-Saleh, Y.; Fiolet, T.; Rebeaud, M.E.; Mulot, M.; Guihur, A.; El Fatouhi, D.; Laouali, N.; Peiffer-Smadja, N.; Aune, D.; Severi, G. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: A systematic review and meta-analysis of observational studies. BMJ Open 2021, 11, e052777. [Google Scholar] [CrossRef] [PubMed]
- Moezzi, M.; Ghanavati, M.; Heydarnezhad, M.; Farhadi, E.; Rafati Navaei, A.R. Relationship Between BMI and Disease Severity in COVID-19 Patients. Anesth. Pain Med. 2022, 12, e129880. [Google Scholar] [CrossRef] [PubMed]
- Shivshankar, P.; Collum, S.; Bi, W.; Peters, A.; Shidid, A.; Thandavarayan, R.; Huang, H.; Akkanti, B.; Jyothula, S.; Karmouty-Quintana, H. Haemophilus influenzae is associated with fibrotic phenotype of COVID-19 and idiopathic pulmonary fibrosis. ERJ Open Res. 2022, 8, 236. [Google Scholar] [CrossRef]
- Saliu, F.; Rizzo, G.; Bragonzi, A.; Cariani, L.; Cirillo, D.M.; Colombo, C.; Daccò, V.; Girelli, D.; Rizzetto, S.; Sipione, B.; et al. Chronic infection by nontypeable Haemophilus influenzae fuels airway inflammation. ERJ Open Res. 2021, 7, 00614-2020. [Google Scholar] [CrossRef]
- Rumpf, C.; Lange, J.; Schwartbeck, B.; Kahl, B.C. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021, 10, 1177. [Google Scholar] [CrossRef]
- Imperlini, E.; Papa, R. Clinical Advances in Cystic Fibrosis. J. Clin. Med. 2022, 11, 6306. [Google Scholar] [CrossRef]
- Carnovale, V.; Scialò, F.; Gelzo, M.; Iacotucci, P.; Amato, F.; Zarrilli, F.; Celardo, A.; Castaldo, G.; Corso, G. Cystic Fibrosis Patients with F508del/Minimal Function Genotype: Laboratory and Nutritional Evaluations after One Year of Elexacaftor/Tezacaftor/Ivacaftor Treatment. J. Clin. Med. 2022, 11, 6900. [Google Scholar] [CrossRef]
- Dagenais, R.V.E.; Su, V.C.H.; Quon, B.S. Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis: A Systematic Review. J. Clin. Med. 2020, 10, 23. [Google Scholar] [CrossRef]
- Fayad, D.; Frenck, R.W., Jr. COVID-19 Vaccines in Children. J. Clin. Med. 2023, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry of Social Affairs, Health, Care and Consumer Protection. Austria: COVID-19 National Strategy. Available online: https://healthsystemsfacts.org/national-health-systems/the-mixed-beveridge-bismarck-model/austria/austria-covid-19-strategy/ (accessed on 12 December 2022).
- Wang, Y.; Zhao, J.; Yang, L.; Hu, J.; Yao, Y. Value of the Neutrophil-Lymphocyte Ratio in Predicting COVID-19 Severity: A Meta-analysis. Dis. Markers 2021, 2021, 2571912. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathi, A.; Padukudru, S.; Arunachal, S.; Basavaraj, C.K.; Krishna, M.T.; Ganguly, K.; Upadhyay, S.; Anand, M.P. The Role of Neutrophil-to-Lymphocyte Ratio in Risk Stratification and Prognostication of COVID-19: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1233. [Google Scholar] [CrossRef] [PubMed]
Total | Not Infected * | Infected * | ||
---|---|---|---|---|
Overall | n | 118 | 39 | 79 |
Sex | Female, n (%) | 53 (44.9) | 21 (39.6) | 32 (60.4) |
Male, n (%) | 65 (55.1) | 18 (27.7) | 47 (72.3) | |
Age (years) | Median (IQR) | 9.7 (4.7–12.7) | 9.3 (3.6–12.6) | 9.7 (5.21–13.09) |
Age group | <5, n (%) | 31 (26.3) | 11 (35.5) | 20 (64.5) |
5–10, n (%) | 30 (25.4) | 9 (30) | 21 (70) | |
>10–15, n (%) | 42 (35.6) | 13 (31) | 29 (69.1) | |
>15, n (%) | 15 (12.7) | 6 (40) | 9 (60) | |
BMI Z score ⊥ | Median (IQR) | −0.01 (−0.16–0.68) | −0.34 (−1.14–0.35) | 0.1 (−0.38–0.79) |
BMI group 1 | Underweight, n (%) | 3 (2.6) | 2 (66.7) | 1 (33.3) |
Normal weight, n (%) | 97 (82.2) | 31 (32.6) | 66 (68.7) | |
Overweight, n (%) | 14 (12.1) | 4 (28.6) | 10 (71.4) | |
Obesity, n (%) | 3 (2.6) | 1 (33.3) | 2 (66.7) | |
CFTR mutation type | dF508 homozygous, n (%) | 45 (38.1) | 14 (31.1) | 31 (68.9) |
dF508 heterozygous, n (%) | 48 (40.7) | 17 (35.4) | 31 (64.6) | |
other, n (%) | 25 (21.2) | 8 (32) | 17 (68) | |
Pancreatic insufficiency | No, n (%) | 21 (17.5) | 6 (28.6) | 15 (71.4) |
Yes, n (%) | 97 (82.5) | 33 (34.0) | 64 (66.0) | |
CFRD | No, n (%) | 110 (94.0) | 36 (32.7) | 74 (67.3) |
Yes, n (%) | 7 (6.0) | 2 (28.6) | 5 (71.4) | |
Lowest HbA1c ⊥ | Median (IQR) | 5.5 (5.3–5.7) | 5.6 (5.3–5.7) | 5.4 (5.2–5.7) |
ABPA | No, n (%) | 114 (97.4) | 37 (32.5) | 77 (67.5) |
Yes, n (%) | 3 (2.6) | 1 (33.3) | 2 (66.7) | |
CFTR modulator therapy | ||||
Modulator | No, n (%) | 94 (79.7) | 32 (34.0) | 62 (66) |
Yes, n (%) | 24 (20.3) | 7 (29.2) | 17 (70.8) | |
Modulator type | HEMT, n (%) | 4 (3.4) | 1 (25) | 3 (75) |
No HEMT, n (%) | 20 (17.0) | 6 (30) | 14 (70) | |
Lung function ⊥ | ||||
FEV1% pred. | Median (IQR) | 96.8 (88.7–107.0) | 96.4 (90.0–104.5) | 96.8 (88.5–109.8) |
FEV1 Z score | Median (IQR) | −0.27 (−0.96–0.61) | −0.31 (−0.83–0.37) | −0.27 (−0.96–0.8) |
FEV1 best ‡ | <70, n (%) | 4 (4.7) | 2 (50) | 2 (50) |
≥70, n (%) | 82 (95.4) | 24 (29.3) | 58 (70.7) | |
Lowest LCI | Median (IQR) | 7.7 (7.0–9.1) | 7.79 (7.06–9.11) | 7.74 (6.79–9.04) |
Airway colonization 2 | ||||
Pseudomonas aeruginosa | No, n (%) | 87 (77.7) | 27 (31.0) | 60 (69) |
Yes, n (%) | 25 (22.3) | 9 (36) | 16 (64) | |
Achromobacter xylosoxidans | No, n (%) | 105 (93.8) | 34 (32.4) | 71 (67.6) |
Yes, n (%) | 7 (6.3) | 2 (28.6) | 5 (71.4) | |
Serratia marcescens | No, n (%) | 109 (97.3) | 34 (31.2) | 75 (68.8) |
Yes, n (%) | 3 (2.7) | 2 (66.7) | 1 (33.3) | |
Burkholderia cepacia | No, n (%) | 110 (98.2) | 35 (31.8) | 75 (68.2) |
Yes, n (%) | 2 (1.8) | 1 (50) | 1 (50) | |
Aspergillus fumigatus | No, n (%) | 99 (88.4) | 30 (30.3) | 69 (69.7) |
Yes, n (%) | 13 (11.6) | 6 (46.2) | 7 (53.9) | |
Staphylococcus aureus | No, n (%) | 11 (9.8) | 2 (18.2) | 9 (81.8) |
Yes, n (%) | 101 (90.2) | 34 (33.7) | 67 (66.3) | |
Haemophilus influenzae | No, n (%) | 57 (50.9) | 24 (42.1) | 33 (57.9) |
Yes, n (%) | 55 (49.1) | 12 (21.8) | 43 (78.2) | |
Mycobacterium nontuberc. | No, n (%) | 111 (99.1) | 36 (32.4) | 75 (67.6) |
Yes, n (%) | 1 (0.9) | 0 (0%) | 1 (100) | |
Fully COVID-19-vaccinated | No, n (%) | 40 (33.9) | 7 (17.5) | 33 (82.5) |
Yes, n (%) | 78 (66.1) | 32 (41) | 46 (60) |
SARS-CoV-2 Variants | |||||
---|---|---|---|---|---|
Variable | Total | Wild Type | Alpha/Beta | Delta | Omicron |
Overall, n | 93 | 2 | 6 | 9 | 76 |
Age at infection (years), median (IQR) | 11.3 (6.1–15.1) | 16.2 (14.9–17.5) | 6.5 (5.4–11.8) | 7.9 (5.8–10.1) | 11.7 (6.5–15.2) |
Female, n (%) | 39 (41.9) | 1 (50.0) | 3 (50.0) | 5 (55.6) | 30 (39.5) |
Male, n (%) | 54 (58.1) | 1 (50.0) | 3 (50.0) | 4 (44.4) | 46 (60.5) |
Disease severity | |||||
Asymptomatic, n (%) | 17 (18.3) | 1 (50.0) | 1 (16.7) | 1 (11.1) | 14 (18.4) |
Minimal, n (%) | 25 (26.9) | 0 (0) | 1 (16.7) | 4 (44.4) | 20 (26.3) |
Mild, n (%) | 46 (49.5) | 1 (50.0) | 2 (33.3) | 4 (44.4) | 39 (51.3) |
Moderate, n (%) | 5 (5.4) | 0 (0.0) | 2 (33.3) | 0 (0.0) | 3 (3.9) |
Severe, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
COVID-19-like symptoms | |||||
Duration (days), median (IQR) | 3 (1–7) | 2.5 (1.2–3.8) | 7 (5.5–8.5) | 2 (1.8–4.8) | 3 (1–7) |
Fever, n (%) | 35 (38.0) | 1 (50.0) | 2 (33.3) | 2 (22.2) | 30 (40) |
Fatigue, n (%) | 45 (48.9) | 1 (50.0) | 1 (16.7) | 3 (33.3) | 40 (53.3) |
Increased cough, n (%) | 34 (37.0) | 1 (50.0) | 4 (66.7) | 3 (33.3) | 26 (34.7) |
Pharyngitis, n (%) | 24 (26.4) | 1 (50.0) | 1 (16.7) | 2 (25.0) | 20 (26.7) |
Dyspnea, n (%) | 5 (5.4) | 1 (50.0) | 2 (33.3) | 0 (0.0) | 2 (2.7) |
Chest tightness, n (%) | 3 (3.3) | 1 (50.0) | 1 (16.7) | 0 (0.0) | 1 (1.3) |
Wheezing, n (%) | 4 (4.3) | 1 (50.0) | 2 (33.3) | 0 (0.0) | 1 (1.3) |
Increased sputum, n (%) | 6 (6.5) | 0 (0.0) | 1 (16.7) | 1 (11.1) | 4 (5.3) |
Hemoptysis, n (%) | 1 ** (1.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 ** (1.3) |
Rhinitis, n (%) | 48 (52.7) | 1 (50.0) | 3 (50) | 5 (62.5) | 39 (52) |
Conjunctivitis, n (%) | 4 (4.3) | 0 (0.0) | 2 (33.3) | 0 (0.0) | 2 (2.7) |
Anosmia, n (%) | 6 (6.5) | 1 (50.0) | 2 (33.3) | 1 (11.1) | 2 (2.7) |
Ageusia, n (%) | 7 (7.6) | 1 (50.0) | 2 (33.3) | 0 (0.0) | 4 (5.3) |
Diarrhea, n (%) | 3 (3.3) | 1 (50.0) | 0 (0.0) | 0 (0.0) | 2 (2.7) |
Myalgia/Arthralgia, n (%) | 13 (14.3) | 1 (50.0) | 2 (40) | 1 (11.1) | 9 (12.0) |
Cephalea, n (%) | 39 (42.9) | 1 (50.0) | 3 (50) | 2 (25.0) | 33 (44.0) |
Vomiting, n (%) | 7 (7.6) | 0 (0.0) | 1 (16.7) | 0 (0.0) | 6 (8.0) |
Abdominalgia, n (%) | 7 (7.6) | 0 (0.0) | 1 (16.7) | 0 (0.0) | 6 (8.0) |
COVID-19 vaccination status at time of infection | |||||
Fully vaccinated, n (%) | 49 (52.7) | 0 (0.0) * | 0 (0.0) * | 1 (11.1) | 48 (63.2) |
Unvaccinated, n (%) | 44 (47.3) | 2 (100.0) * | 6 (100.0) * | 8 (88.9) | 28 (36.8) |
Univariable | Multivariable | ||||
---|---|---|---|---|---|
Variable | Comparison | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Age (years) | 1.024 (0.940–1.116) | 0.588 | 1.043 (0.949–1.147) | 0.379 | |
BMI Z scores | 1.902 (1.119–3.234) | 0.018 | 2.009 (1.093–3.692) | 0.025 | |
CF mutation type | dF508 heterozygous vs. dF508 homozygous | 0.848 (0.326–2.206) | 0.736 | ||
other vs. dF508 homozygous | 0.924 (0.289–2.951) | 0.894 | |||
Sex | Male vs. female | 1.884 (0.776–4.574) | 0.161 | ||
Pancreatic insufficiency | Yes vs. no | 0.852 (0.267–2.719) | 0.787 | ||
CFRD | Yes vs. no | 1.342 (0.215–8.369) | 0.753 | ||
CFTR modulator | Yes vs. no | 1.293 (0.441–3.784) | 0.640 | ||
CFTR modulator type | HEMT vs. no | 1.472 (0.116–18.613) | 0.765 | ||
No HEMT vs. no | 1.263 (0.401–3.975) | 0.690 | |||
FEV1% * | 1.014 (0.978–1.051) | 0.460 | |||
FEV1 Z score * | 1.193 (0.770–1.848) | 0.430 | |||
Lowest HbA1c * | 1.011 (0.365–2.803) | 0.983 | |||
Lowest LCI * | 0.931 (0.703–1.234) | 0.619 | |||
Pseudomonas aeruginosa | Yes vs. no | 0.796 (0.284–2.230) | 0.664 | ||
Achromobacter xylosoxidans | Yes vs. no | 1.328 (0.215–8.187) | 0.760 | ||
Serratia marcescens | Yes vs. no | 0.169 (0.010–2.883) | 0.219 | ||
Burkholderia cepacia | Yes vs. no | 0.385 (0.016–9.191) | 0.555 | ||
Aspergillus fumigatus | Yes vs. no | 0.423 (0.110–1.626) | 0.210 | ||
Staphylococcus aureus | Yes vs. no | 0.403 (0.072–2.249) | 0.300 | ||
Haemophilus influenzae | Yes vs. no | 2.987 (1.069–8.347) | 0.037 | 3.363 (1.091949–10.367) | 0.035 |
Variable | Comparison | OR (95% CI) | p-Value |
---|---|---|---|
Age at infection | 1.097 (1.004–1.199) | 0.040 | |
BMI Z scores | 1.132 (0.975–1.313) | 0.104 | |
CFTR mutation type | F508del heterozygous vs. F508del homozygous | 0.937 (0.366–2.399) | 0.892 |
F508del homozygous vs. other | 0.753 (0.234–2.424) | 0.635 | |
Sex | Male vs. female | 1.071 (0.458–2.503) | 0.874 |
COVID-19-vaccinated | Yes vs. no | 2.103 (0.871–5.081) | 0.099 |
Pancreatic insufficiency | Yes vs. no | 0.846 (0.264–2.705) | 0.778 |
CFRD | Yes vs. no | 1.789 (0.278–11.535) | 0.540 |
CFTR modulator | Yes vs. no | 0.858 (0.366–2.012) | 0.725 |
CFTR modulator type | HEMT vs. no | 1.065 (0.401–2.831) | 0.900 |
No HEMT vs. no | 0.960 (0.222–4.154) | 0.956 | |
FEV1% * | 1.023 (0.989–1.058) | 0.195 | |
FEV1 Z score * | 1.303 (0.868–1.955) | 0.202 | |
HbA1c * | 1.283 (0.677–2.430) | 0.445 | |
LCI * | 1.507 (0.826–2.750) | 0.181 | |
Pseudomonas aeruginosa | Yes vs. no | 1.153 (0.376–3.534) | 0.804 |
Achromobacter xylosoxidans | Yes vs. no | 0.556 (0.104–2.975) | 0.493 |
Serratia marcescens | Yes vs. no | 0.217 (0.016–2.870) | 0.246 |
Burkholderia cepacia | Yes vs. no | 0.790 (0.038–16.218) | 0.879 |
Aspergillus fumigatus | Yes vs. no | 0.363 (0.026–5.077) | 0.451 |
Staphylococcus aureus | Yes vs. no | 1.806 (0.330–9.900) | 0.496 |
Haemophilus influenzae | Yes vs. no | 1.099 (0.423–2.860) | 0.846 |
SARS-CoV-2 type | Omicron vs. other | 1.095 (0.372–3.223) | 0.870 |
Days after last COVID-19 vaccination | 1.001 (0.993–1.009) | 0.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieber, J.; Martin, N.; Schmidthaler, K.; Gaupmann, R.; Dehlink, E.; Graf, A.; Szépfalusi, Z.; Gruber, S. Uncomplicated SARS-CoV-2 Infections with Preserved Lung Function in Pediatric Patients with Cystic Fibrosis: A Three-Year Single-Centre Experience. J. Clin. Med. 2025, 14, 2979. https://doi.org/10.3390/jcm14092979
Sieber J, Martin N, Schmidthaler K, Gaupmann R, Dehlink E, Graf A, Szépfalusi Z, Gruber S. Uncomplicated SARS-CoV-2 Infections with Preserved Lung Function in Pediatric Patients with Cystic Fibrosis: A Three-Year Single-Centre Experience. Journal of Clinical Medicine. 2025; 14(9):2979. https://doi.org/10.3390/jcm14092979
Chicago/Turabian StyleSieber, Justyna, Nicole Martin, Klara Schmidthaler, René Gaupmann, Eleonora Dehlink, Alexandra Graf, Zsolt Szépfalusi, and Saskia Gruber. 2025. "Uncomplicated SARS-CoV-2 Infections with Preserved Lung Function in Pediatric Patients with Cystic Fibrosis: A Three-Year Single-Centre Experience" Journal of Clinical Medicine 14, no. 9: 2979. https://doi.org/10.3390/jcm14092979
APA StyleSieber, J., Martin, N., Schmidthaler, K., Gaupmann, R., Dehlink, E., Graf, A., Szépfalusi, Z., & Gruber, S. (2025). Uncomplicated SARS-CoV-2 Infections with Preserved Lung Function in Pediatric Patients with Cystic Fibrosis: A Three-Year Single-Centre Experience. Journal of Clinical Medicine, 14(9), 2979. https://doi.org/10.3390/jcm14092979