Impacts and New Challenges with Highly Effective Modulator Therapies in Younger Children with Cystic Fibrosis
Abstract
1. Introduction
2. Evidence for Highly Effective Modulator Therapy in Patients over 12 Years of Age with CF
3. Effectiveness of HEMT in Younger Children
4. Extrapulmonary Effects of HEMT in Younger Children
5. Once-Daily Modulator Therapy in Children
6. Adverse Effects of HEMT in Children
7. Real-World Approaches to Complications of HEMT
8. Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CF | Cystic Fibrosis |
HEMT | Highly Effective Modulator Therapy |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
ETI | Elecacaftor-Tezacaftor- Ivacaftor |
PERT | Pancreatic Enzyme Replacement Therapy |
ULN | Upper limit of Normal |
ALT | Alanine amino Transferase |
AST | Aspartate Amino Transferase |
BMI | Body Mass Index |
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.-R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Bardin, E.; Pastor, A.; Semeraro, M.; Golec, A.; Hayes, K.; Chevalier, B.; Berhal, F.; Prestat, G.; Hinzpeter, A.; Gravier-Pelletier, C.; et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021, 213, 113195. [Google Scholar] [CrossRef]
- Jia, S.; Taylor-Cousar, J.L. Cystic Fibrosis Modulator Therapies. Annu. Rev. Med. 2023, 74, 413–426. [Google Scholar] [CrossRef]
- Fanen, P.; Wohlhuter-Haddad, A.; Hinzpeter, A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int. J. Biochem. Cell Biol. 2014, 52, 94–102. [Google Scholar] [CrossRef]
- Bareil, C.; Bergougnoux, A. CFTR gene variants, epidemiology and molecular pathology. Arch. Pediatr. 2020, 27 (Suppl. S1), eS8–eS12. [Google Scholar] [CrossRef]
- Davies, J.C.; Wainwright, C.E.; Canny, G.J.; Chilvers, M.A.; Howenstine, M.S.; Munck, A.; Mainz, J.G.; Rodriguez, S.; Li, H.; Yen, K.; et al. Efficacy and Safety of Ivacaftor in Patients Aged 6 to 11 Years with Cystic Fibrosis with aG551DMutation. Am. J. Respir. Crit. Care Med. 2013, 187, 1219–1225. [Google Scholar] [CrossRef]
- Flume, P.A.; Liou, T.G.; Borowitz, D.S.; Li, H.; Yen, K.; Ordoñez, C.L.; Geller, D.E.; VX 08-770-104 Study Group. Ivacaftor in Subjects With Cystic Fibrosis Who Are Homozygous for the F508del-CFTR Mutation. Chest 2012, 142, 718–724. [Google Scholar] [CrossRef]
- Davies, J.C.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Robertson, S.; Green, Y.; Cooke, J.; et al. Safety, pharmacokinetics, and pharma-codynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): An open-label, single-arm study. Lancet Respir. Med. 2016, 4, 107–115. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Elborn, J.S.; Ramsey, B.W.; Marigowda, G.; Huang, X.; Cipolli, M.; Colombo, C.; Davies, J.C.; De Boeck, K.; Flume, P.A.; et al. Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 2015, 373, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.P.; Bell, S.C.; Konstan, M.W.; McColley, S.A.; Rowe, S.M.; Rietschel, E.; Huang, X.; Waltz, D.; Patel, N.R.; Rodman, D.; et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: A phase 2 randomised controlled trial. Lancet Respir. Med. 2014, 2, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Flume, P.A.; Biner, R.F.; Downey, D.G.; Brown, C.; Jain, M.; Fischer, R.; De Boeck, K.; Sawicki, G.S.; Chang, P.; Paz-Diaz, H.; et al. Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): An open-label extension study. Lancet Respir. Med. 2021, 9, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.J.; Mall, M.A.; Alvarez, A.; Colombo, C.; de Winter-de Groot, K.M.; Fajac, I.; McBennett, K.A.; McKone, E.F.; Ramsey, B.W.; Sutharsan, S.; et al. Triple Therapy for Cystic Fibrosis Phe508del-Gating and -Residual Function Genotypes. N. Engl. J. Med. 2021, 385, 15–25. [Google Scholar] [CrossRef]
- Cromwell, E.A.; Ostrenga, J.S.; Sanders, D.B.; Morgan, W.; Castellani, C.; Szczesniak, R.; Burgel, P.-R. Impact of the expanded label for elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis with no F508del variant in the USA. Eur. Respir. J. 2024, 64, 2401146. [Google Scholar] [CrossRef]
- Burgel, P.-R.; Sermet-Gaudelus, I.; Girodon, E.; Durieu, I.; Houdouin, V.; Audousset, C.; Macey, J.; Grenet, D.; Porzio, M.; Murris-Espin, M.; et al. The expanded French compassionate programme for elexacaftor–tezacaftor–ivacaftor use in people with cystic fibrosis without a F508del CFTR variant: A real-world study. Lancet Respir. Med. 2024, 12, 888–900. [Google Scholar] [CrossRef]
- Hoppe, J.E.; Kasi, A.S.; Pittman, J.E.; Jensen, R.; Thia, L.P.; Robinson, P.; Tirakitsoontorn, P.; Ramsey, B.; Mall, M.A.; Taylor-Cousar, J.L.; et al. Vanzacaftor-tezacaftor-deutivacaftor for children aged 6–11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): An analysis from a single-arm, phase 3 trial. Lancet Respir. Med. 2025, 13, 244–255. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Nichols, D.P.; Paynter, A.C.; Heltshe, S.L.; Donaldson, S.H.; Frederick, C.A.; Freedman, S.D.; Gelfond, D.; Hoffman, L.R.; Kelly, A.; Narkewicz, M.R.; et al. Clinical Effectiveness of Elexa-caftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: A Clinical Trial. Am. J. Respir. Crit. Care Med. 2022, 205, 529–539. [Google Scholar] [CrossRef]
- Sutharsan, S.; Dillenhoefer, S.; Welsner, M.; Stehling, F.; Brinkmann, F.; Burkhart, M.; Ellemunter, H.; Dittrich, A.-M.; Smaczny, C.; Eickmeier, O.; et al. Impact of elexacaftor/tezacaftor/ivacaftor on lung function, nutritional status, pulmonary exacerbation frequency and sweat chloride in people with cystic fibrosis: Real-world evidence from the German CF Registry. Lancet Reg. Health Eur. 2023, 32, 100690. [Google Scholar] [CrossRef]
- Mall, M.A.; Brugha, R.; Gartner, S.; Legg, J.; Moeller, A.; Mondejar-Lopez, P.; Prais, D.; Pressler, T.; Ratjen, F.; Reix, P.; et al. Efficacy and Safety of Elexa-caftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study. Am. J. Respir. Crit. Care Med. 2022, 206, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.; Stanojevic, S.; Raywood, E.; Duncan, J.A.; Stocks, J.; Lum, S.; Bush, A.; Viviani, L.; Wade, A.; Calder, A.; et al. An observational study of the lung clearance index throughout childhood in cystic fibrosis: Early years matter. Eur. Respir. J. 2020, 56, 2000006. [Google Scholar] [CrossRef] [PubMed]
- Zemanick, E.T.; Taylor-Cousar, J.L.; Davies, J.; Gibson, R.L.; Mall, M.A.; McKone, E.F.; McNally, P.; Ramsey, B.W.; Rayment, J.H.; Rowe, S.M.; et al. A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2021, 203, 1522–1532. [Google Scholar] [CrossRef]
- Wainwright, C.; McColley, S.A.; McNally, P.; Powers, M.; Ratjen, F.; Rayment, J.H.; Retsch-Bogart, G.; Roesch, E.; Ahluwalia, N.; Chin, A.; et al. Long-Term Safety and Efficacy of Elexa-caftor/Tezacaftor/Ivacaftor in Children Aged ≥6 Years with Cystic Fibrosis and at Least One F508del Allele: A Phase 3, Open-Label Clinical Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 68–78. [Google Scholar] [CrossRef]
- Olivier, M.; Kavvalou, A.; Welsner, M.; Hirtz, R.; Straßburg, S.; Sutharsan, S.; Stehling, F.; Steindor, M. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front. Pharmacol. 2023, 14, 1176815. [Google Scholar] [CrossRef]
- Goralski, J.L.; Hoppe, J.E.; Mall, M.A.; McColley, S.A.; McKone, E.; Ramsey, B.; Rayment, J.H.; Robinson, P.; Stehling, F.; Taylor-Cousar, J.L.; et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2–5 Years with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2023, 208, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lopez Cardenes, C.M.; Merino Sanchez-Canete, A.; Vicente Santamaria, S.; Gascon Galindo, C.; Merino Sanz, N.; Tabares Gonzalez, A.; Castro, E.B.; Tirado, A.M.; García, M.G.; Rozas, M.L.; et al. Effects on growth, weight and body composition after CFTR modulators in children with cystic fibrosis. Pediatr. Pulmonol. 2024, 59, 3632–3640. [Google Scholar] [CrossRef]
- Hergenroeder, G.E.; Bartlett, L.E.; Cogen, J.D.; Green, N.; McNamara, S.; Nichols, D.P.; Ramos, K.J. The impact of elexacaftor/tezacaftor/ivacaftor on fat-soluble vitamin levels in people with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 1048–1053. [Google Scholar] [CrossRef]
- Schembri, L.; Warraich, S.; Bentley, S.; Carr, S.B.; Balfour-Lynn, I.M. Impact of elexacaftor/tezacaftor/ivacaftor on fat-soluble vitamin levels in children with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 843–846. [Google Scholar] [CrossRef]
- Fabricius, D.; Knieling, T.; Zurmuehl, N.; Makedon, L.; Freihorst, J.; Schmidt, H.; Bode, S. Changes in vitamins and trace elements after initiation of highly effective CFTR modulator therapy in children and adults with cystic fibrosis—A real-life insight. Mol. Cell. Pediatr. 2024, 11, 4. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Wainwright, C.E.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.; Rayment, J.H. Sustained recovery of exocrine pancreatic function in a teenager with cystic fibrosis treated with ivacaftor. Pediatr. Pulmonol. 2020, 55, 2493–2494. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.G.; Short, C.; Davies, J.C.; McNally, P. Chronic rhinosinusitis in the era of CFTR modulator therapy. J. Cyst. Fibros. 2024, 23, 208–213. [Google Scholar] [CrossRef]
- Bech, M.; Skov, M.; Andersen, I.S.B.; von Buchwald, C.; Aanæs, K. The criteria for chronic rhinosinusitis in children with cystic fibrosis are rarely fulfilled after initiation of CFTR modulator treatment. APMIS 2024, 132, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Bode, S.F.N.; Rapp, H.; Lienert, N.; Appel, H.; Fabricius, D. Effects of CFTR-modulator triple therapy on sinunasal symptoms in children and adults with cystic fibrosis. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 3271–3277. [Google Scholar] [CrossRef]
- Keating, C.; Yonker, L.M.; Vermeulen, F.; Prais, D.; Linnemann, R.W.; Trimble, A.; Kotsimbos, T.; Mermis, J.; Braun, A.T.; O’Carroll, M.; et al. Vanzacaftor-tezacaftor-deutivacaftor versus elexacaftor-tezacaftor-ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): Results from two randomised, active-controlled, phase 3 trials. Lancet Respir. Med. 2025, 13, 256–271. [Google Scholar] [CrossRef]
- McNally, P.; Singh, A.; McColley, S.A.; Davies, J.C.; Higgins, M.; Liu, M.; Lu, J.; Rodriguez-Romero, V.; Shih, J.L.; Rosenfeld, M. Safety and efficacy of ivacaftor in infants aged 1 to less than 4 months with cystic fibrosis. J. Cyst. Fibros. 2024, 23, 429–435. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Chilvers, M.; Higgins, M.; Tian, S.; et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2–5 years (KLIMB). J. Cyst. Fibros. 2019, 18, 838–843. [Google Scholar] [CrossRef]
- Jain, R.; Wolf, A.; Molad, M.; Taylor-Cousar, J.; Esther, C.R., Jr.; Shteinberg, M. Congenital bilateral cataracts in newborns exposed to elexacaftor-tezacaftor-ivacaftor in utero and while breast feeding. J. Cyst. Fibros. 2022, 21, 1074–1076. [Google Scholar] [CrossRef]
- Pettit, R.S.; Ravikumar, B. Real World Adverse Effects of Elexacaftor/Tezacaftor/Ivacaftor in People With Cystic Fibrosis Ages 6–11 Years. Pediatr. Pulmonol. 2025, 60, e71067. [Google Scholar] [CrossRef]
- Sermet-Gaudelusa, I.; Benaboude, S.; Buig, S.; Bihouéeh, T.; Gautieri, S. on behalf of the MODUL-CF study group. Behavioural and sleep issues after initiation of elexacaftor–tezacaftor–ivacaftor in preschool-age children with cystic fibrosis. Lancet 2024, 404, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, V.; Fevola, C.; Presti, S.; Castaldo, A.; Daccò, V.; Claut, L.; Sepe, A.; Majo, F.; Casciaro, R.; Esposito, I.; et al. Reported Adverse Events in a Multicenter Cohort of Patients Ages 6–18 Years with Cystic Fibrosis and at Least One F508del Allele Receiving Elexacaftor/Tezacaftor/Ivacaftor. J. Pediatr. 2024, 274, 114176. [Google Scholar] [CrossRef] [PubMed]
- Bonnel, A.-S.; Bihouée, T.; Ribault, M.; Driessen, M.; Grèvent, D.; Foissac, F.; Truong, N.H.; Benhamida, M.; Arnouat, B.; Borghese, R.; et al. First real-world study of fetal therapy with CFTR modulators in cystic fibrosis: Report from the MODUL-CF study. J. Cyst. Fibros. 2025, 24, 457–465. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyangoda, K.; Dawson, C.; Gudka, N.; Brugha, R. Impacts and New Challenges with Highly Effective Modulator Therapies in Younger Children with Cystic Fibrosis. J. Clin. Med. 2025, 14, 4625. https://doi.org/10.3390/jcm14134625
Uyangoda K, Dawson C, Gudka N, Brugha R. Impacts and New Challenges with Highly Effective Modulator Therapies in Younger Children with Cystic Fibrosis. Journal of Clinical Medicine. 2025; 14(13):4625. https://doi.org/10.3390/jcm14134625
Chicago/Turabian StyleUyangoda, Kanchana, Charlotte Dawson, Nikesh Gudka, and Rossa Brugha. 2025. "Impacts and New Challenges with Highly Effective Modulator Therapies in Younger Children with Cystic Fibrosis" Journal of Clinical Medicine 14, no. 13: 4625. https://doi.org/10.3390/jcm14134625
APA StyleUyangoda, K., Dawson, C., Gudka, N., & Brugha, R. (2025). Impacts and New Challenges with Highly Effective Modulator Therapies in Younger Children with Cystic Fibrosis. Journal of Clinical Medicine, 14(13), 4625. https://doi.org/10.3390/jcm14134625