Point-of-Care Virtual Planning and 3D Printing in Facial Trauma: A 10-Year Experience at a Single Institution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection
2.2.1. Three-Dimensional (3D) Segmentation Workflow
2.2.2. Comparative Analysis of VSP and Non-VSP Groups
2.3. Statistical Analysis
3. Results
3.1. Demographics and Patients’ Characteristics
3.2. Injury Mechanisms and Fracture Patterns
3.3. VSP vs. Non-VSP Groups’ Characteristics
3.4. VSP vs. Non-VSP Groups’ Characteristics
3.5. Fracture Reduction Accuracy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
VSP | Virtual surgical planning |
3DP | Three-dimensional printing |
RMSE | Root mean square error |
EPPOCRATIS | Expedited Preoperative Point of Care for Fracture Reduction to Normalized Anatomy and Three-Dimensional Printing to Improve Surgical Outcomes |
References
- Catapano, J.; Fialkov, J.A.; Binhammer, P.A.; McMillan, C.; Antonyshyn, O.M. A New System for Severity Scoring of Facial Fractures: Development and Validation. J. Craniofac. Surg. 2010, 21, 1098–1103. [Google Scholar] [CrossRef]
- Moore, E.J.; Price, D.L.; Van Abel, K.M.; Janus, J.R.; Moore, E.T.; Martin, E.; Morris, J.M.; Alexander, A.E. Association of Virtual Surgical Planning with External Incisions in Complex Maxillectomy Reconstruction. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Hassfeld, S.; Mühling, J. Computer assisted oral and maxillofacial surgery--a review and an assessment of technology. Int. J. Oral Maxillofac. Surg. 2001, 30, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Hanasono, M.M.; Jacob, R.F.; Bidaut, L.; Robb, G.L.; Skoracki, R.J. Midfacial reconstruction using virtual planning, rapid prototype modeling, and stereotactic navigation. Plast. Reconstr. Surg. 2010, 126, 2002–2006. [Google Scholar] [CrossRef]
- Tucker, S.; Cevidanes, L.H.; Styner, M.; Kim, H.; Reyes, M.; Proffit, W.; Turvey, T. Comparison of actual surgical outcomes and 3-dimensional surgical simulations. J. Oral Maxillofac. Surg. 2010, 68, 2412–2421. [Google Scholar] [CrossRef] [PubMed]
- Sears, V.A.; Morris, J.M. Establishing a Point-of-Care Virtual Planning and 3D Printing Program. Semin. Plast. Surg. 2022, 36, 133–148. [Google Scholar] [CrossRef]
- Vranckx, J.J.; Desmet, O.; Bila, M.; Wittesaele, W.; Wilssens, N.; Poorten, V.V. Maxillomandibular Reconstruction Using Insourced Virtual Surgical Planning and Homemade CAD/CAM: A Single-Center Evolution in 75 Patients. Plast. Reconstr. Surg. 2023, 152, 143e–154e. [Google Scholar] [CrossRef]
- Cho, K.-H.; Papay, F.A.; Yanof, J.; West, K.; Bassiri Gharb, B.; Rampazzo, A.; Gastman, B.; Schwarz, G.S. Mixed Reality and 3D Printed Models for Planning and Execution of Face Transplantation. Ann. Surg. 2021, 274, e1238–e1246. [Google Scholar] [CrossRef]
- Sharaf, B.A.; Morris, J.M.; Kuruoglu, D. EPPOCRATIS: A Point-of-Care Utilization of Virtual Surgical Planning and Three-Dimensional Printing for the Management of Acute Craniomaxillofacial Trauma. J. Clin. Med. 2021, 10, 5640. [Google Scholar] [CrossRef]
- Sharaf, B.; Kuruoglu, D.; Cantwell, S.R.; Alexander, A.E.; Dickens, H.J.; Morris, J.M. EPPOCRATIS: Expedited Preoperative Point-of-Care Reduction of Fractures to Normalized Anatomy and Three-Dimensional Printing to Improve Surgical Outcomes. Plast. Reconstr. Surg. 2022, 149, 695–699. [Google Scholar] [CrossRef]
- King, B.J.; Park, E.P.; Christensen, B.J.; Danrad, R. On-Site 3-Dimensional Printing and Preoperative Adaptation Decrease Operative Time for Mandibular Fracture Repair. J. Oral Maxillofac. Surg. 2018, 76, 1950.e1–1950.e8. [Google Scholar] [CrossRef]
- Materialise. Point-of-Care 3D Printing; Materialise Healthcare; Materialise: Leuven, Belgium, 2024. [Google Scholar]
- Aissa, J.; Boos, J.; Sawicki, L.M.; Heinzler, N.; Krzymyk, K.; Sedlmair, M.; Kröpil, P.; Antoch, G.; Thomas, C. Iterative metal artefact reduction (MAR) in postsurgical chest CT: Comparison of three iMAR-algorithms. Br. J. Radiol. 2017, 90, 20160778. [Google Scholar] [CrossRef] [PubMed]
- Bittner-Frank, M.; Strassl, A.; Unger, E.; Hirtler, L.; Eckhart, B.; Koenigshofer, M.; Stoegner, A.; Nia, A.; Popp, D.; Kainberger, F.; et al. Accuracy Analysis of 3D Bone Fracture Models: Effects of Computed Tomography (CT) Imaging and Image Segmentation. J. Imaging Inform. Med. 2024, 37, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Abbate, V.; Committeri, U.; Troise, S.; Bonavolontà, P.; Vaira, L.A.; Gabriele, G.; Biglioli, F.; Tarabbia, F.; Califano, L.; Dell’Aversana Orabona, G. Virtual Surgical Reduction in Atrophic Edentulous Mandible Fractures: A Novel Approach Based on “in House” Digital Work-Flow. Appl. Sci. 2023, 13, 1474. [Google Scholar] [CrossRef]
- Ho, C.T.; Lin, H.H.; Liou, E.J.; Lo, L.J. Three-dimensional surgical simulation improves the planning for correction of facial prognathism and asymmetry: A qualitative and quantitative study. Sci. Rep. 2017, 7, 40423. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.T.; Denadai, R.; Lo, L.-J.; Lin, H.-H. Average 3D Skeletofacial Model as a Template for Maxillomandibular Repositioning During Virtual Orthognathic Surgical Planning. Plast. Reconstr. Surg. 2024, 153, 435–444. [Google Scholar] [CrossRef]
- Seruya, M.; Fisher, M.; Rodriguez, E.D. Computer-Assisted versus Conventional Free Fibula Flap Technique for Craniofacial Reconstruction: An Outcomes Comparison. Plast. Reconstr. Surg. 2013, 132, 1219–1228. [Google Scholar] [CrossRef]
- Troise, S.; De Fazio, G.R.; Committeri, U.; Spinelli, R.; Nocera, M.; Carraturo, E.; Salzano, G.; Arena, A.; Abbate, V.; Bonavolontà, P.; et al. Mandibular reconstruction after post-traumatic complex fracture: Comparison analysis between traditional and virtually planned surgery. J. Stomatol. Oral Maxillofac. Surg. 2025, 126, 102029. [Google Scholar] [CrossRef]
- Lin, C.; Wu, J.; Yang, C.; Zhang, C.; Xu, B.; Zhang, Y.; Zhang, S. Classifying and standardizing panfacial trauma according to anatomic categories and Facial Injury Severity Scale: A 10-year retrospective study. BMC Oral Health 2021, 21, 557. [Google Scholar] [CrossRef]
- Zavattero, E.; Ramieri, G.; Roccia, F.; Gerbino, G. Comparison of the Outcomes of Complex Orbital Fracture Repair with and without a Surgical Navigation System: A Prospective Cohort Study with Historical Controls. Plast. Reconstr. Surg. 2017, 139, 957–965. [Google Scholar] [CrossRef]
- Bergeron, L.; Bouchard, S.; Bonapace-Potvin, M.; Bergeron, F. Intraoperative Surgical Navigation Reduces the Surgical Time Required to Treat Acute Major Facial Fractures. Plast. Reconstr. Surg. 2019, 144, 923–931. [Google Scholar] [CrossRef] [PubMed]
Demographics and Comorbidities | Overall (n = 44) | VSP Group (n = 23) | Non-VSP Group (n = 21) | p Value | |
---|---|---|---|---|---|
Age | Age, mean (SD) in years | 35.6 (17) | 34 (15.7) | 37.4 (18) | 0.43 |
Gender | Male (cisgender) (%) | 36 (82%) | 20 (87%) | 16 (76.2%) | 0.37 |
BMI | BMI, mean (SD), kg/m2 | 26.14 (6.5) | 24.5 (6.4) | 27.9 (6) | 0.08 |
Race and ethnicity | White (non-Hispanic, non-Latino) | 36 (81.2%) | 18 | 18 | 0.14 |
Black | 2 (4.5%) | _ | 2 | ||
Hispanic/Latino | 2 (4.5%) | 2 | _ | ||
Asian | 2 (4.5%) | 2 | _ | ||
Other | 2 (4.5%) | _ | 1 | ||
Social Hx ^ | Alcohol use (%) | 14 (31.8%) | 7 (30.4%) | 7 (33.3%) | 0.84 |
Alcoholic drinks/week (SD) | 6 (3.6) | 4.5 (1.5) | _ | ||
Smoker (%) | 15 (34%) | 7 (30.4%) | 8 (38.1%) | 0.6 | |
Smoking index (pack/year) (SD) | 7 | 382.3 (277.1) | 247.5 (123.1) | _ | |
Drug use | 7 (15.9%) | 3 (13%) | 4 (19%) | 0.6 | |
Comorbidities | Hypertension | _ | 2 | 1 | 0.6 |
Diabetes mellitus | _ | 2 | 2 | 0.57 | |
Others: Hyperlipidemia Coronary artery disease | _ | 4 | 5 |
Demographics and Comorbidities | Overall (n = 44) | VSP Group (n = 23) | Non-VSP Group (n = 21) | p Value | |
---|---|---|---|---|---|
Mechanism of injury (%) | Motor Vehicle Accident (MVA) | 14 (31.8%) | 10 | 4 | 0.09 |
Assault | 13 (29.5%) | 7 | 6 | 0.9 | |
Falls | 4 (9.1%) | 3 | 1 | 0.4 | |
Sports | 6 (13.6%) | 2 | 4 | 0.3 | |
Animal Attack | 3 (6.8%) | 1 | 2 | 0.51 | |
Not mentioned | 4 (9.1%) | ||||
Surgical service | Plastic and Reconstructive Surgery | 44 (100.0%) | 23 | 21 | _ |
Oculoplastic Surgery | 10 (22.7%) | 8 | 2 | 0.05 * | |
Otolaryngology | 7 (15.9%) | 7 | 0 | 0.01 * | |
Neurosurgery | 6 (13.6%) | 4 | 2 | 0.46 | |
Orthopedic Surgery | 5 (11.4%) | 4 | 1 | 0.19 | |
Reconstruction presentation | Primary (1ry) | 40 (91%) | 20 | 20 | _ |
Secondary (2ry) | 4 (9.9%) | 3 | 1 | _ | |
Fracture pattern (%) | Naso-orbito-ethmoid (NOE) Complex Fracture | 9 (20.5%) | 6 (26.1%) | 3 (14.3%) | 0.34 |
Nasal Fracture | 4 (9.1%) | 1 (0.04%) | 3 (14.3%) | 0.26 | |
Zygomaticomaxillary Complex (ZMC) Fracture | 20 (45.5%) | 10 (43.5%) | 10 (47.6%) | 0.79 | |
Orbital Fracture | 5 (11.4%) | 4 (17.4%) | 1 (0.05%) | 0.2 | |
Mandibular Fracture | 20 (45.5%) | 11 (47.8%) | 9 (42.9%) | 0.75 | |
Panfacial + | 7 (15.9%) | 4 | 3 | 0.6 | |
Frontal Sinus Involvement ++ | 6 (13.6%) | 4 | 2 | 0.5 | |
Laterality | Unilateral (Rt/Lt) | 18 (44%) | 8 | 10 | 0.48 |
Bilateral | 23 (56.1%) | 13 | 10 | ||
Le Fort type (if mentioned) | Type I | 7 (63.6%) | 3 | 4 | 0.6 |
Type II | 7 (63.6%) | 4 | 3 | 0.8 | |
Type III | 4 (36.4%) | 2 | 2 | 0.9 | |
Glasgow Coma Scale (GCS) | 13 to 15: Mild Traumatic Brain Injury (mTBI) | 39 (88.6%) | 19 | 20 | 0.8 |
9 to 12: Moderate TBI | 4 (9.1%) | 3 | 1 | 0.2 | |
3 to 8: Severe TBI | 1 (2.3%) | 1 | _ | _ | |
Abbreviated Injury Scale (AIS) grades | Minor | 18 (50.0%) | |||
Moderate | 10 (27.8%) | ||||
Severe (Not Life-Threatening) | 8 (22.2%) | ||||
Severe (Life-Threatening, Survival Probable) | _ | ||||
Surgery: patient class | Outpatient | 27 (61.4%) | 12 | 15 | 0.3 |
Inpatient | 17 (38.6%) | 11 | 6 | ||
ASA status | ASA 1 | 19 (43.2%) | 8 (34.8%) | 11 (52.4%) | 0.17 |
ASA 2 | 16 (36.4%) | 8 (34.8%) | 8 (38.1%) | ||
ASA 3 | 7 (15.9%) | 5 (21.7%) | 2 (9.5%) | ||
ASA 4 | 2 (4.5%) | 2 (8.7%) | _ |
Median (IQR) | SD | p-Value | |
---|---|---|---|
Anesthesia Time (hours): VSP Non-VSP | 5.8 (4.1–8.3) 4.6 (3.7–5.6) | 3.4 2.7 | 0.03 * |
Procedure Time (hours): VSP Non-VSP | 3.8 (2.5–5.6) 2.7 (2.1–3.6) | 2.8 2.2 | 0.03 * |
Length of Stay (days): VSP Non-VSP | 1.0 (1.0–3.0) 1.0 (0–1.0) | 6 4.1 | 0.3 |
Blood Loss (cc): VSP Non-VSP | 50 (20–200) 50 (20–150) | 122.3 78.3 | 0.7 |
Follow-Up Duration (days): VSP Non-VSP | 65 (34–169) 43 (30–74) | 238 356 | 0.2 |
Anesthesia Time (minutes)/Implant: VSP Non-VSP | 15.4 (11.3–33.8) 19.3 (15.7–31.4) | 18.1 16.5 | 0.4 |
Procedure Time (minutes)/Implant: VSP Non-VSP | 10.5 (6.7–22.5) 10.9 (9–17.7) | 11.6 11 | 0.5 |
Blood Loss (cc)/Implant: VSP Non-VSP | 3.4 (1.7–5.4) 4.1 (2.1–6.4) | 3.9 5.1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, S.M.; Kuruoglu, D.; Morris, J.M.; Sears, V.A.; Shehab, A.A.; Gibreel, W.; Sharaf, B.A. Point-of-Care Virtual Planning and 3D Printing in Facial Trauma: A 10-Year Experience at a Single Institution. J. Clin. Med. 2025, 14, 2788. https://doi.org/10.3390/jcm14082788
Hussein SM, Kuruoglu D, Morris JM, Sears VA, Shehab AA, Gibreel W, Sharaf BA. Point-of-Care Virtual Planning and 3D Printing in Facial Trauma: A 10-Year Experience at a Single Institution. Journal of Clinical Medicine. 2025; 14(8):2788. https://doi.org/10.3390/jcm14082788
Chicago/Turabian StyleHussein, Sara M., Doga Kuruoglu, Jonathan M. Morris, Victoria A. Sears, Abdallah A. Shehab, Waleed Gibreel, and Basel A. Sharaf. 2025. "Point-of-Care Virtual Planning and 3D Printing in Facial Trauma: A 10-Year Experience at a Single Institution" Journal of Clinical Medicine 14, no. 8: 2788. https://doi.org/10.3390/jcm14082788
APA StyleHussein, S. M., Kuruoglu, D., Morris, J. M., Sears, V. A., Shehab, A. A., Gibreel, W., & Sharaf, B. A. (2025). Point-of-Care Virtual Planning and 3D Printing in Facial Trauma: A 10-Year Experience at a Single Institution. Journal of Clinical Medicine, 14(8), 2788. https://doi.org/10.3390/jcm14082788