The Potential Role of GLP1-RAs Against Anticancer-Drug Cardiotoxicity: A Scoping Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of Anticancer Treatments: Epidemiology, Detection, and Management. CA Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef]
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer Treatment and Survivorship Statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Bodai, B.I.; Tuso, P. Breast Cancer Survivorship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations. Perm. J. 2015, 19, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sendon, J.; Alvarez-Ortega, C.; Zamora Auñon, P.; Buño Soto, A.; Lyon, A.R.; Farmakis, D.; Cardinale, D.; Canales Albendea, M.; Feliu Batlle, J.; Rodríguez Rodríguez, I.; et al. Classification, Prevalence, and Outcomes of Anticancer Therapy-Induced Cardiotoxicity: The CARDIOTOX Registry. Eur. Heart J. 2020, 41, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Fulbright, J.M. Review of Cardiotoxicity in Pediatric Cancer Patients: During and after Therapy. Cardiol. Res. Pract. 2011, 2011, 942090. [Google Scholar] [CrossRef]
- Neudorf, U.; Schönecker, A.; Reinhardt, D. Cardio-Toxicity in Childhood Cancer Survivors “Cure Is Not Enough”. J. Thorac. Dis. 2018, 10, S4344–S4350. [Google Scholar] [CrossRef]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining Cardiovascular Toxicities of Cancer Therapies: An International Cardio-Oncology Society (IC-OS) Consensus Statement. Eur. Heart J. 2022, 43, 280–299. [Google Scholar] [CrossRef]
- Herrmann, J. Adverse Cardiac Effects of Cancer Therapies: Cardiotoxicity and Arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernánde, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klei, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.; Badi, Y.; Bugazia, S.; Nourelden, A.Z.; Fathallah, A.H.; Ragab, K.M.; Alsillak, M.; Elsayed, S.M.; Hagrass, A.I.; Bawek, S.; et al. Efficacy and Safety of Cardioprotective Drugs in Chemotherapy-Induced Cardiotoxicity: An Updated Systematic Review & Network Meta-Analysis. Cardio-Oncol. 2023, 9, 10. [Google Scholar] [CrossRef]
- de Baat, E.C.; Mulder, R.L.; Armenian, S.; Feijen, E.A.M.; Grotenhuis, H.; Hudson, M.M.; Mavinkurve-Groothuis, A.M.C.; Kremer, L.C.M.; van Dalen, E.C. Dexrazoxane for Preventing or Reducing Cardiotoxicity in Adults and Children with Cancer Receiving Anthracyclines. Cochrane Database Syst. Rev. 2022, 9, CD014638. [Google Scholar] [CrossRef] [PubMed]
- Obasi, M.; Abovich, A.; Vo, J.B.; Gao, Y.; Papatheodorou, S.I.; Nohria, A.; Asnani, A.; Partridge, A.H. Statins to Mitigate Cardiotoxicity in Cancer Patients Treated with Anthracyclines and/or Trastuzumab: A Systematic Review and Meta-Analysis. Cancer Causes Control 2021, 32, 1395–1405. [Google Scholar] [CrossRef]
- Lewinter, C.; Nielsen, T.H.; Edfors, L.R.; Linde, C.; Bland, J.M.; Lewinter, M.; Cleland, J.G.F.; Køber, L.; Braunschweig, F.; Mansson-Broberg, A. A Systematic Review and Meta-Analysis of Beta-Blockers and Renin–Angiotensin System Inhibitors for Preventing Left Ventricular Dysfunction Due to Anthracyclines or Trastuzumab in Patients with Breast Cancer. Eur. Heart J. 2022, 43, 2562–2569. [Google Scholar] [CrossRef]
- Daniele, A.J.; Gregorietti, V.; Costa, D.; López-Fernández, T. Use of EMPAgliflozin in the Prevention of CARDiotoxicity: The EMPACARD—PILOT Trial. Cardiooncology 2024, 10, 58. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.H.; Kuo, H.H.; Lin, P.L. Effects of SGLT2 Inhibitors on the Cardiovascular Outcomes in Patients with Cancer: A Systematic Review and Meta-Analysis. Eur. Heart J. 2024, 45, ehae666-3164. [Google Scholar] [CrossRef]
- Madonna, R.; Barachini, S.; Moscato, S.; Ippolito, C.; Mattii, L.; Lenzi, C.; Balistreri, C.R.; Zucchi, R.; De Caterina, R. Sodium-Glucose Cotransporter Type 2 Inhibitors Prevent Ponatinib-Induced Endothelial Senescence and Disfunction: A Potential Rescue Strategy. Vascul. Pharmacol. 2022, 142, 106949. [Google Scholar] [CrossRef] [PubMed]
- Biondi, F.; Ghelardoni, S.; Moscato, S.; Mattii, L.; Barachini, S.; Novo, G.; Zucchi, R.; De Caterina, R.; Madonna, R. Empagliflozin Restores Autophagy and Attenuates Ponatinib-Induced Cardiomyocyte Senescence and Death. Vascul. Pharmacol. 2024, 155, 107300. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Sharma, A.; Butler, J.; Packer, M.; Zannad, F.; Vasques-Nóvoa, F.; Leite-Moreira, A.; Neves, J.S. Glucagon-Like Peptide-1 Receptor Agonists Across the Spectrum of Heart Failure. J. Clin. Endocrinol. Metab. 2024, 109, 4–9. [Google Scholar] [CrossRef]
- Packer, M.; Zile, M.R.; Kramer, C.M.; Baum, S.J.; Litwin, S.E.; Menon, V.; Ge, J.; Weerakkody, G.J.; Ou, Y.; Bunck, M.C.; et al. Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2024, 392, 427–464. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Treppendahl, M.B.; Verma, S.; et al. Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes. N. Engl. J. Med. 2024, 390, 1394–1407. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Wu, Q.; Li, D.; Huang, C.; Zhang, G.; Wang, Z.; Liu, J.; Yu, H.; Song, B.; Zhang, N.; Li, B.; et al. Glucose Control Independent Mechanisms Involved in the Cardiovascular Benefits of Glucagon-like Peptide-1 Receptor Agonists. Biomed. Pharmacother. 2022, 153, 113517. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.; Longuet, C.; Baker, C.L.; Qin, B.; Federico, L.M.; Drucker, D.J.; Adeli, K. The Glucagon-like Peptide 1 Receptor Is Essential for Postprandial Lipoprotein Synthesis and Secretion in Hamsters and Mice. Diabetologia 2010, 53, 552–561. [Google Scholar] [CrossRef]
- Siraj, M.A.; Mundil, D.; Beca, S.; Momen, A.; Shikatani, E.A.; Afroze, T.; Sun, X.; Liu, Y.; Ghaffari, S.; Lee, W.; et al. Cardioprotective GLP-1 Metabolite Prevents Ischemic Cardiac Injury by Inhibiting Mitochondrial Trifunctional Protein-α. J. Clin. Investig. 2020, 130, 1392–1404. [Google Scholar] [CrossRef]
- Kim, M.; Platt, M.J.; Shibasaki, T.; Quaggin, S.E.; Backx, P.H.; Seino, S.; Simpson, J.A.; Drucker, D.J. GLP-1 Receptor Activation and Epac2 Link Atrial Natriuretic Peptide Secretion to Control of Blood Pressure. Nat. Med. 2013, 19, 567–575. [Google Scholar] [CrossRef]
- Woo, J.S.; Kim, W.; Ha, S.J.; Kim, J.B.; Kim, S.J.; Kim, W.S.; Seon, H.J.; Kim, K.S. Cardioprotective Effects of Exenatide in Patients with ST-Segment-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: Results of Exenatide Myocardial Protection in Revascularization Study. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2252–2260. [Google Scholar] [CrossRef]
- Lønborg, J.; Kelbæk, H.; Vejlstrup, N.; Bøtker, H.E.; Kim, W.Y.; Holmvang, L.; Jørgensen, E.; Helqvist, S.; Saunamäki, K.; Terkelsen, C.J.; et al. Exenatide Reduces Final Infarct Size in Patients with ST-Segment-Elevation Myocardial Infarction and Short-Duration of Ischemia. Circ. Cardiovasc. Interv. 2012, 5, 288–295. [Google Scholar] [CrossRef]
- Noyan-Ashraf, M.H.; Abdul Momen, M.; Ban, K.; Sadi, A.M.; Zhou, Y.Q.; Riazi, A.M.; Baggio, L.L.; Henkelman, R.M.; Husain, M.; Drucker, D.J. GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes after Experimental Myocardial Infarction in Mice. Diabetes 2009, 58, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, L.A.; Mankad, S.; Sokos, G.G.; Miske, G.; Shah, A.; Elahi, D.; Shannon, R.P. Effects of Glucagon-like Peptide-1 in Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction after Successful Reperfusion. Circulation 2004, 109, 962–965. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.A.; Wong, C.K.; Kabir, M.G.; Drucker, D.J. Glucagon-like Peptide-1 Receptor Tie2+ Cells Are Essential for the Cardioprotective Actions of Liraglutide in Mice with Experimental Myocardial Infarction. Mol. Metab. 2022, 66, 101641. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Margulies, K.B.; Hernandez, A.F.; Redfield, M.M.; Givertz, M.M.; Oliveira, G.H.; Cole, R.; Mann, D.L.; Whellan, D.J.; Kiernan, M.S.; Felker, G.M.; et al. Effects of Liraglutide on Clinical Stability Among Patients with Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 316, 500–508. [Google Scholar] [CrossRef]
- Jorsal, A.; Kistorp, C.; Holmager, P.; Tougaard, R.S.; Nielsen, R.; Hänselmann, A.; Nilsson, B.; Møller, J.E.; Hjort, J.; Rasmussen, J.; et al. Effect of Liraglutide, a Glucagon-like Peptide-1 Analogue, on Left Ventricular Function in Stable Chronic Heart Failure Patients with and without Diabetes (LIVE)-a Multicentre, Double-Blind, Randomised, Placebo-Controlled Trial. Eur. J. Heart Fail. 2017, 19, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, J.; Diao, S.; Zhang, G.; Xiao, M.; Chang, D. GLP-1 Receptor Agonist Liraglutide Protects Cardiomyocytes from IL-1β-Induced Metabolic Disturbance and Mitochondrial Dysfunction. Chem. Biol. Interact. 2020, 332, 109252. [Google Scholar] [CrossRef]
- Huang, J.H.; Chen, Y.C.; Lee, T.I.; Kao, Y.H.; Chazo, T.F.; Chen, S.A.; Chen, Y.J. Glucagon-like Peptide-1 Regulates Calcium Homeostasis and Electrophysiological Activities of HL-1 Cardiomyocytes. Peptides 2016, 78, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Zhu, H.; Liang, Z.; Ma, X.; Li, S. GLP1 Protects Cardiomyocytes from Palmitate-Induced Apoptosis via Akt/GSK3b/b-Catenin Pathway. J. Mol. Endocrinol. 2015, 55, 245. [Google Scholar] [CrossRef] [PubMed]
- de Germano, J.F.; Huang, C.; Sin, J.; Song, Y.; Tucker, K.C.; Taylor, D.J.R.; Saadaeijahromi, H.; Stotland, A.; Piplani, H.; Gottlieb, R.A.; et al. Intermittent Use of a Short-Course Glucagon-like Peptide-1 Receptor Agonist Therapy Limits Adverse Cardiac Remodeling via Parkin-Dependent Mitochondrial Turnover. Sci. Rep. 2020, 10, 8284. [Google Scholar] [CrossRef]
- Koska, J.; Sands, M.; Burciu, C.; D’Souza, K.M.; Raravikar, K.; Liu, J.; Truran, S.; Franco, D.A.; Schwartz, E.A.; Schwenke, D.C.; et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes 2015, 64, 2624–2635. [Google Scholar] [CrossRef]
- Quagliariello, V.; Canale, M.L.; Bisceglia, I.; Iovine, M.; Giordano, V.; Giacobbe, I.; Scherillo, M.; Gabrielli, D.; Maurea, C.; Barbato, M.; et al. Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients. Int. J. Mol. Sci. 2024, 25, 11299. [Google Scholar] [CrossRef]
- Carrasco, R.; Castillo, R.L.; Gormaz, J.G.; Carrillo, M.; Thavendiranathan, P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. Oxid. Med. Cell Longev. 2021, 2021, 8863789. [Google Scholar] [CrossRef]
- Luna-Marco, C.; de Marañon, A.M.; Hermo-Argibay, A.; Rodriguez-Hernandez, Y.; Hermenejildo, J.; Fernandez-Reyes, M.; Apostolova, N.; Vila, J.; Sola, E.; Morillas, C.; et al. Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes. Redox Biol. 2023, 66, 102849. [Google Scholar] [CrossRef]
- Sawyer, D.B. Anthracycline-Induced Vascular Dysfunction: Is MitoQ the Answer? JACC CardioOncol. 2020, 2, 489–490. [Google Scholar] [CrossRef]
- Menghini, R.; Casagrande, V.; Rizza, S.; Federici, M. GLP-1RAs and cardiovascular disease: Is the endothelium a relevant platform? Acta Diabetol. 2023, 60, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hutchins, E.; Yang, E.H.; Stein-Merlob, A.F. Inflammation in Chemotherapy-Induced Cardiotoxicity. Curr. Cardiol. Rep. 2024, 26, 1329–1340. [Google Scholar] [CrossRef]
- Bendotti, G.; Montefusco, L.; Lunati, M.E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A.J.; El Essawy, B.; Jang, J.; et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022, 182, 106320. [Google Scholar] [CrossRef]
- Russo, M.; Bono, E.; Ghigo, A. The Interplay Between Autophagy and Senescence in Anthracycline Cardiotoxicity. Curr. Heart Fail. Rep. 2021, 18, 180–190. [Google Scholar] [CrossRef]
- Costantino, S.; Paneni, F. GLP-1-based therapies to boost autophagy in cardiometabolic patients: From experimental evidence to clinical trials. Vascul Pharmacol. 2019, 115, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Cho, H.; Lee, S.; Woo, J.S.; Cho, B.H.; Kang, J.H.; Jeong, Y.M.; Cheng, X.W.; Kim, W. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int. J. Cardiol. 2017, 232, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.A.T.; Kabil, S.L. Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 1145–1153. [Google Scholar] [CrossRef]
- Altieri, P.; Murialdo, R.; Barisione, C.; Lazzarini, E.; Garibaldi, S.; Fabbi, P.; Ruggeri, C.; Borile, S.; Carbone, F.; Armirotti, A.; et al. 5-fluorouracil causes endothelial cell senescence: Potential protective role of glucagon-like peptide 1. Br. J. Pharmacol. 2017, 174, 3713–3726. [Google Scholar] [CrossRef]
- Taşkıran, E.; Erdoğan, M.A.; Yiğittürk, G.; Erbaş, O. Therapeutic Effects of Liraglutide, Oxytocin and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model: An Experimental Animal Study. Cardiovasc. Toxicol. 2019, 19, 510–517. [Google Scholar] [CrossRef]
- AlAsmari, A.F.; Ali, N.; AlAsmari, F.; AlAnazi, W.A.; AlShammari, M.A.; Al-Harbi, N.O.; Alhoshani, A.; As Sobeai, H.M.; AlSwayyed, M.; AlAnazi, M.M.; et al. Liraglutide attenuates gefitinib-induced cardiotoxicity and promotes cardioprotection through the regulation of MAPK/NF-κB signaling pathways. Saudi Pharm. J. 2020, 28, 509–518. [Google Scholar] [CrossRef]
- Mahmoud, R.H.; Mohammed, M.A.; Said, E.S.; Morsi, E.M.; Abdelaleem, O.O.; All, M.O.A.; Elsayed, R.M.; Abdelmeguid, E.A.; Eldosoki, D.E. Assessment of the Cardioprotective Effect of Liraglutide on Methotrexate Induced Cardiac Dysfunction through Suppression of Inflammation and Enhancement of Angiogenesis in Rats. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6013–6024. [Google Scholar] [CrossRef]
- Atef, M.M.; Hafez, Y.M.; El-Deeb, O.S.; Basha, E.H.; Ismail, R.; Alshenawy, H.; El-Esawy, R.O.; Eltokhy, A.K. The Cardioprotective Effect of Human Glucagon-like Peptide-1 Receptor Agonist (Semaglutide) on Cisplatin-Induced Cardiotoxicity in Rats: Targeting Mitochondrial Functions, Dynamics, Biogenesis, and Redox Status Pathways. Cell Biochem. Funct. 2023, 41, 450–460. [Google Scholar] [CrossRef]
- Chiang, C.H.; Song, J.; Chi, K.Y.; Chang, Y.C.; Xanthavanij, N.; Chang, Y.; Hsia, Y.P.; Chiang, C.H.; Ghamari, A.; Reynolds, K.L.; et al. Glucagon-like Peptide-1 Agonists Reduce Cardiovascular Events in Cancer Patients on Immune Checkpoint Inhibitors. Eur. J. Cancer 2025, 216, 115170. [Google Scholar] [CrossRef]
- Tonon, C.R.; Monte, M.G.; Balin, P.S.; Fujimori, A.S.S.; Ribeiro, A.P.D.; Ferreira, N.F.; Vieira, N.M.; Cabral, R.P.; Okoshi, M.P.; Okoshi, K.; et al. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int. J. Mol. Sci. 2024, 25, 5833. [Google Scholar] [CrossRef]
- HamaSalih, R.M. Effects of Semaglutide in Doxorubicin-Induced Cardiac Toxicity in Wistar Albino Rats. Cancer Manag. Res. 2024, 16, 731–740. [Google Scholar] [CrossRef]
- Li, X.; Luo, W.; Tang, Y.; Wu, J.; Zhang, J.; Chen, S.; Zhou, L.; Tao, Y.; Tang, Y.; Wang, F.; et al. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction. Redox Biol. 2024, 72, 103129. [Google Scholar] [CrossRef]
- Vignarajah, A.; Kim, S.; Albliwi, M.; Ahn, H.M.; Izda, A.; Naffa, F.; Vigneswaramoorthy, N.; Barot, S.; Shah, G. The Role of GLP-1 Receptor Agonists in Managing Cancer Therapy-Related Cardiac Dysfunction. medRxiv 2025, 2025.01.02.25319923. [Google Scholar] [CrossRef]
- Gao, F.; Xu, T.; Zang, F.; Luo, Y.; Pan, D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des. Dev. Ther. 2024, 18, 4089–4116. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Osataphan, N.; Abdel-Qadir, H.; Zebrowska, A.M.; Borowiec, A. Sodium-Glucose Cotransporter 2 Inhibitors During Cancer Therapy: Benefits, Risks, and Ongoing Clinical Trials. Curr. Oncol. Rep. 2024, 26, 1188–1196. [Google Scholar] [CrossRef]
- Mohsin, S.; Hasan, M.; Sheikh, Z.M.; Mustafa, F.; Tegeltija, V.; Kumar, S.; Kumar, J. Efficacy of SGLT2 Inhibitors for Anthracycline-Induced Cardiotoxicity: A Meta-Analysis in Cancer Patients. Future Cardiol. 2024, 20, 395–407. [Google Scholar] [CrossRef]
- Ineichen, B.V.; Furrer, E.; Grüninger, S.L.; Zürrer, W.E.; Macleod, M.R. Analysis of Animal-to-Human Translation Shows That Only 5% of Animal-Tested Therapeutic Interventions Obtain Regulatory Approval for Human Applications. PLoS Biol. 2024, 22, e3002667. [Google Scholar] [CrossRef]
- Karp, N.A.; Sharpe, A.; Phillips, B. Preclinical Pilot Studies: Five Common Pitfalls and How to Avoid Them. Lab. Anim. 2024, 58, 481–485. [Google Scholar] [CrossRef]
- Qi, A.; Li, Y.; Yan, S.; Sun, H.; Chen, Y. Effect of Anthracycline-Based Postoperative Chemotherapy on Blood Glucose and Lipid Profiles in Patients with Invasive Breast Cancer. Ann. Palliat. Med. 2021, 10, 5502–5508. [Google Scholar] [CrossRef]
- Han, J.Y.; Seo, Y.E.; Kwon, J.H.; Kim, J.H.; Kim, M.G. Cardioprotective Effects of PARP Inhibitors: A Re-Analysis of a Meta-Analysis and a Real-Word Data Analysis Using the FAERS Database. J. Clin. Med. 2024, 13, 1218. [Google Scholar] [CrossRef]
- Li, R.; Sun, X.; Li, P.; Li, W.; Zhao, L.; Zhu, L.; Zhu, S. GLP-1-Induced AMPK Activation Inhibits PARP-1 and Promotes LXR-Mediated ABCA1 Expression to Protect Pancreatic β-Cells Against Cholesterol-Induced Toxicity Through Cholesterol Efflux. Front. Cell Dev. Biol. 2021, 9, 646113. [Google Scholar] [CrossRef]
- Park, S.K.; Kim, H.I.; Yang, Y.I.; Hur, D.Y. Effects of Methotrexate on Vascular Endothelial Growth Factor, Angiopoietin 1, and Angiopoietin 2 in Nasal Polyps. Am. J. Rhinol. Allergy 2011, 25, e129–e132. [Google Scholar] [CrossRef]
- Mese, H.; Sasaki, A.; Nakayama, S.; Alcalde, R.E.; Matsumura, T. The Role of Caspase Family Protease, Caspase-3 on Cisplatin-Induced Apoptosis in Cisplatin-Resistant A431 Cell Line. Cancer Chemother. Pharmacol. 2000, 46, 241–245. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, X.; Teng, T.; Ma, Z.G.; Tang, Q.Z. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis. 2022, 13, 103–128. [Google Scholar] [CrossRef]
- Stoczynska-Fidelus, E.; Wȩgierska, M.; Kierasińska, A.; Ciunowicz, D.; Rieske, P. Role of Senescence in Tumorigenesis and Anticancer Therapy. J. Oncol. 2022, 2022, 5969536. [Google Scholar] [CrossRef]
- Wang, L.; Lankhorst, L.; Bernards, R. Exploiting Senescence for the Treatment of Cancer. Nat. Rev. Cancer 2022, 22, 340–355. [Google Scholar] [CrossRef]
- Ensor, J.E. Addressing Confounders in Retrospective Studies. J. Vasc. Interv. Radiol. 2017, 28, 558–560. [Google Scholar] [CrossRef]
- Habib, S.L.; Rojna, M. Diabetes and Risk of Cancer. Int. Sch. Res. Not. 2013, 2013, 583786. [Google Scholar] [CrossRef]
- Nesti, L.; Trico, D. Cardioprotective Effects of Glucagon-like Peptide 1 Receptor Agonists in Heart Failure: Myth or Truth? World J. Diabetes 2024, 15, 818. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Barnett, A.H. Dapagliflozin: A Sodium Glucose Cotransporter 2 Inhibitor in Development for Type 2 Diabetes. Diabetes Ther. 2010, 1, 45–56. [Google Scholar] [CrossRef]
- Bland, K.A.; Zopf, E.M.; Harrison, M.; Ely, M.; Cormie, P.; Liu, E.; Dowd, A.; Martin, P. Prognostic Markers of Overall Survival in Cancer Patients Attending a Cachexia Support Service: An Evaluation of Clinically Assessed Physical Function, Malnutrition and Inflammatory Status. Nutr. Cancer 2021, 73, 1400–1410. [Google Scholar] [CrossRef]
- Prado, C.M.; Phillips, S.M.; Gonzalez, M.C.; Heymsfield, S.B. Muscle Matters: The Effects of Medically Induced Weight Loss on Skeletal Muscle. Lancet Diabetes Endocrinol. 2024, 12, 785–787. [Google Scholar] [CrossRef]
Mechanism of Anthracycline Cardiotoxicity | Supporting References | GLP-1 RA Activity | Supporting References |
---|---|---|---|
Oxidative Stress, ROS Formation, and Mitochondrial Function | Carrasco L. et al. [48] | Reduces ROS and oxidative stress | Clara Luna-Marco et al. [49] |
Endothelial Dysfunction and Microvascular Injury | Sawyer et al. [50] | Protects endothelial cells | Rossella Menghini et al. [51] |
Inflammation and Apoptotic Pathways Activation | Hutchins et al. [52] | Reduces inflammatory markers | Giulia Bendotti et al. [53] |
Autophagy Dysregulation | Russo et al. [54] | Modulates autophagy | Sarah Costantino et al. [55] |
Paper Title | First Author and Reference | Year of Publication | Study Type | Endpoints | Evidence of Cardioprotection | Mechanicistic Insights/Molecular Findings |
---|---|---|---|---|---|---|
Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity | Kyung Hye Lee, et al. [56] | 2017 | Cell culture (H9C2 cardiomyoblast) + animal study (Sprague Dawley rats). | Cell viability, ROS generation, autophagic flux, echocardiographic parameters. | Recovery of ejection fraction and fractional shortening. | Increase in autophagic flux; Reduced caspase-3 activation; AMPK activation; Reduced ROS. |
Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway | Noha A. T. Abbas, Soad L. Kabil [57] | 2017 | Animal study (Wistar rats). | CK-MB, troponin I, SOD, MDA, TNF-α, IL-6, GSK-3β, AMPK, p-Akt, Bcl-2 expression. | Decrease in troponin I, CK-MB. | Increase in SOD, AMPK, p-Akt activity. Decrease in MDA, IL-6, TNF-α, GSK-3β, TGF-β1, and caspase-3. Increased Bcl-2 expression. Reduction in inflammation and necrosis. Reduction in TGF-β. |
5-Fluorouracil Causes Endothelial Cell Senescence: Potential Protective Role of GLP-1 | Paola Altieri, et al. [58] | 2017 | Cell culture (EA.hy926 endothelial cells). | Cell senescence, eNOS, SIRT-1, PKA, and PI3K pathway activation. | // | Decreased senescence. Reduced eNOS and SIRT-1. |
Therapeutic Effects of Liraglutide, Oxytocin, and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model | Emin Taskiran, et al. [59] | 2019 | Animal Study (Sprague Dawley rats). | ECG, MDA, TNF-α, troponin T, pro-BNP, caspase-3. | Decrease in troponin T and pro-BNP. | Caspase-3 immunosuppression. Reduction in plasmaTNF-α. |
Liraglutide attenuates gefitinib-induced cardiotoxicity and promotes cardioprotection through the regulation of MAPK/NF-κB signaling pathways | Abdullah F. AlAsmari, et al. [60] | 2020 | Animal study (Wistar albino rats). | ECG, biochemical markers, histology. | Decrease in troponin, CK-MB, NT-pro-BNP. | Reduction in NF-κB. Reduced PARP expression. Increase in SOD expression. KNK and p38 phosphorylation. |
Assessment of the cardioprotective effect of liraglutide on methotrexate-induced cardiac dysfunction through suppression of inflammation and enhancement of angiogenesis in rats | R.H. Mahmoud, et al. [61] | 2021 | Animal study (Wistar albino rats). | ECG, biochemical markers, histology. | Improved ECG change; normalized histopathological changes. | Increased VEGF expression. Decreased IL-6 and IL-1β. |
The cardioprotective effect of human glucagon-like peptide-1 receptor agonist (semaglutide) on cisplatin-induced cardiotoxicity in rats: Targeting mitochondrial functions, dynamics, biogenesis, and redox status pathways | Marwa Mohamed Atef, et al. [62] | 2023 | Animal study (Wistar rats). | Mitochondrial function, dynamics, biogenesis, redox status, apoptosis. | Decrease in CK-MB and LDH. | Increase in SOD expression. Attenuation of PINK1 and parkin mRNA overexpression. Elevation of PGC-1. Reduced p53 expression. Reduction in caspase-3 expression. |
Glucagon-like Peptide-1 Agonists Reduce Cardiovascular Events in Cancer Patients on Immune Checkpoint Inhibitors | Cho han Chiang, et al. [63] | 2023 | Retrospective, clinical study. | Major Adverse Cardiovascular Events (MACEs), mortality. | Reductions in myocardial infarction or need for coronary revascularization, heart failure, and all-cause mortality. | // |
Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats | Carolina R. Tonon, et al. [64] | 2024 | Animal study (Wistar rats). | Echocardiogram, isolated heart functional study. | No improvement at echocardiogram. | // |
Effects of Semaglutide in Doxorubicin-Induced Cardiac Toxicity in Wistar Albino Rats | Raz Muhammed HamaSalih, et al. [65] | 2024 | Animal study (Wistar rats). | Serum biochemical markers (troponin, CPK, LDL, etc.); histopathological analysis. | Decrease in CPK and troponin; improved vascular congestion and inflammation. | Decrease in LDL cholesterol. |
Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction | Xiaoping Li, et al. [66] | 2024 | Animal study (mice). | Cardiac function, mitochondrial function. | Decrease in CK-MB, BNP. Improvement at echocardiogram. | BNIP3 reduction through activation of PI3K/AKT pathway. |
The Role of GLP-1 Receptor Agonists in Managing Cancer Therapy-Related Cardiac Dysfunction (MEdRxiv Preprint) | Aravinthan Vignarajah, et al. [67] | 2025 | Retrospective clinical study (TriNetX research network registry). | Composite of heart failure exacerbation, death, and admission to the hospital or emergency department; mortality rate; heart failure; all-cause hospitalization. | Reduction in composite outcome; improved survival decrease in mortality rate, heart failure, and all-cause hospitalisation. | // |
Study | Authors and Reference | Dose and Administration | Order and Time Delay |
---|---|---|---|
Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity | Kyung Hye Lee, et al. [56] | Exenatide: 10 μg/kg, subcutaneous injection, every 2 days for six doses. Doxorubicin: 20 mg/kg cumulative dose, intraperitoneal injection. | Exenatide first, followed by doxorubicin after 1 h; once every 2 days, six total times, euthanasia at 28th day. |
The cardioprotective effect of human glucagon-like peptide-1 receptor agonist (semaglutide) on cisplatin-induced cardiotoxicity in rats: Targeting mitochondrial functions, dynamics, biogenesis, and redox status pathways | Marwa Mohamed Atef, et al. [62] | Cisplatin: 2 mg/kg/day, intraperitoneal injection for 1 week. Semaglutide: 12 μg/kg, subcutaneous injection once daily for 8 weeks after cisplatin treatment. | Cisplatin first for 1 week, followed by semaglutide daily for the next 8 weeks. |
Assessment of the cardioprotective effect of liraglutide on methotrexate-induced cardiac dysfunction through suppression of inflammation and enhancement of angiogenesis in rats | R.H. Mahmoud, et al. [61] | Liraglutide: 300 μg/kg/day, subcutaneously for 10 days. Methotrexate: 20 mg/kg, intraperitoneally as a single dose on day 10. | Methotrexate first, on day 10, followed by liraglutide daily for 10 days. |
Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats | Carolina R. Tonon, et al. [64] | Liraglutide: 0.6 mg/kg/day, subcutaneously for 14 days. Doxorubicin: 20 mg/kg, intraperitoneally on day 12. | Liraglutide daily for 14 days, and doxorubicin on day 12 (only for D and DL. groups). |
Effects of Semaglutide in Doxorubicin-Induced Cardiac Toxicity in Wistar Albino Rats | Raz Muhammed HamaSalih, et al. [65] | Semaglutide (low dose): 0.06 mg/kg or 0.12 mg/kg/day or 0.24 mg/kg/day, subcutaneously for 7 days. Doxorubicin (DOX): 12 mg/kg, intraperitoneally on day 7. | Semaglutide daily for 7 days, followed by doxorubicin on day 7. |
Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction | Xiaoping Li, et al. [66] | Doxorubicin: 5 mg/kg, intraperitoneally once a week for 4 weeks. Semaglutide: 12 μg/kg, subcutaneously daily for 6 weeks. | Semaglutide daily for 6 weeks, with doxorubicin given in four intermediate weeks. |
Therapeutic Effects of Liraglutide, Oxytocin, and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model | Emin Taskiran, et al. [59] | Doxorubicin: 2.5 mg/kg/day, intraperitoneally every other day for six doses (total 15 mg/kg). Liraglutide: 1.8 mg/kg/day, intraperitoneally for 15 days. Oxytocin: 160 μg/kg/day, intraperitoneally for 15 days. Filgrastim: 100 μg/kg/day, intraperitoneally for 15 days. | Semaglutide and doxycycline co-administered for 15 days. |
Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway | Noha A. T. Abbas, Soad L. Kabil [57] | Doxorubicin: 1.25 mg/kg, intraperitoneally, four times per week for 4 weeks. Liraglutide: 100 μg/kg, intraperitoneally daily for the following 4 weeks. | Doxorubicin administered 4×/week for 4 weeks, followed by liraglutide daily for 4 weeks. |
Liraglutide attenuates gefitinib-induced cardiotoxicity and promotes cardioprotection through the regulation of MAPK/NF-κB signaling pathways | Abdullah F. AlAsmari, et al. [60] | Liraglutide: 200 mg/kg, intraperitoneally, once daily. Gefitinib: 30 mg/kg, orally, once daily. | Liraglutide pre-administered daily for 7 days, followed by co-administration of liraglutide and gefitinib daily for 21 days. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biondi, F.; Madonna, R. The Potential Role of GLP1-RAs Against Anticancer-Drug Cardiotoxicity: A Scoping Review. J. Clin. Med. 2025, 14, 2705. https://doi.org/10.3390/jcm14082705
Biondi F, Madonna R. The Potential Role of GLP1-RAs Against Anticancer-Drug Cardiotoxicity: A Scoping Review. Journal of Clinical Medicine. 2025; 14(8):2705. https://doi.org/10.3390/jcm14082705
Chicago/Turabian StyleBiondi, Filippo, and Rosalinda Madonna. 2025. "The Potential Role of GLP1-RAs Against Anticancer-Drug Cardiotoxicity: A Scoping Review" Journal of Clinical Medicine 14, no. 8: 2705. https://doi.org/10.3390/jcm14082705
APA StyleBiondi, F., & Madonna, R. (2025). The Potential Role of GLP1-RAs Against Anticancer-Drug Cardiotoxicity: A Scoping Review. Journal of Clinical Medicine, 14(8), 2705. https://doi.org/10.3390/jcm14082705