Biomarkers of Inflammation and Association with Cardiovascular Magnetic Resonance Imaging for Risk Stratification and Outcome in Patients with Severe Aortic Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Procedures
2.3. Echocardiography
2.4. Cardiovascular Magnetic Resonance
2.5. Biomarkers of Inflammation
2.6. Outcome Measures
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Imaging Parameters
3.3. Association of Inflammatory Indices with Clinical and Imaging Parameters
3.4. Cardiovascular Outcomes
4. Discussion
5. Clinical Implications and Future Directions
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | Aortic stenosis |
AVR | Aortic valve replacement |
CMR | Cardiovascular magnetic resonance |
ECV | Extracellular volume |
LGE | Late gadolinium enhancement |
MLR | Monocyte-to-lymphocyte ratio |
NLR | Neutrophil-to-lymphocyte ratio |
PIV | Pan-immune inflammation value |
References
- Osnabrugge, R.L.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.; Piazza, N.; Kappetein, A.P. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Mazhar, F.; Faucon, A.-L.; Fu, E.L.; E Szummer, K.; Mathisen, J.; Gerward, S.; Reuter, S.B.; Marx, N.; Mehran, R.; Carrero, J.-J. Systemic inflammation and health outcomes in patients receiving treatment for atherosclerotic cardiovascular disease. Eur. Heart J. 2024, 45, 4719–4730. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Angelopoulos, A.; Papanikolaou, P.; Simantiris, S.; Oikonomou, E.K.; Vamvakaris, K.; Koumpoura, A.; Farmaki, M.; Trivella, M.; Vlachopoulos, C.; et al. Biomarkers of Vascular Inflammation for Cardiovascular Risk Prognostication: A Meta-Analysis. JACC Cardiovasc. Imaging 2021, 15, 460–471. [Google Scholar] [CrossRef]
- Yarmolinsky, J.; Robinson, J.W.; Mariosa, D.; Karhunen, V.; Huang, J.; Dimou, N.; Murphy, N.; Burrows, K.; Bouras, E.; Smith-Byrne, K.; et al. Association between circulating inflammatory markers and adult cancer risk: A Mendelian randomization analysis. EBioMedicine 2024, 100, 104991. [Google Scholar] [CrossRef]
- Poledniczek, M.; Kronberger, C.; List, L.; Gregshammer, B.; Willixhofer, R.; Ermolaev, N.; Duca, F.; Binder, C.; Rettl, R.; Eslam, R.B.; et al. Leukocyte Indices as Markers of Inflammation and Predictors of Outcome in Heart Failure with Preserved Ejection Fraction. J. Clin. Med. 2024, 13, 5875. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Nagai, Y.; Shutta, R.; Masuda, D.; Yamashita, S.; Seo, M.; Yamada, T.; Nakagawa, A.; Yasumura, Y.; Nakagawa, Y.; et al. Combination of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as a Novel Predictor of Cardiac Death in Patients with Acute Decompensated Heart Failure with Preserved Left Ventricular Ejection Fraction: A Multicenter Study. J. Am. Heart Assoc. 2022, 12, e026326. [Google Scholar] [CrossRef] [PubMed]
- Arbel, Y.; Finkelstein, A.; Halkin, A.; Birati, E.Y.; Revivo, M.; Zuzut, M.; Shevach, A.; Berliner, S.; Herz, I.; Keren, G.; et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis 2012, 225, 456–460. [Google Scholar] [CrossRef]
- Jiang, R.; Ruan, H.; Wu, W.; Wang, Y.; Huang, H.; Lu, X.; Liang, W.; Zhou, Y.; Wu, J.; Ruan, X.; et al. Monocyte/lymphocyte ratio as a risk factor of cardiovascular and all-cause mortality in coronary artery disease with low-density lipoprotein cholesterol levels below 1.4 mmol/L: A large longitudinal multicenter study. J. Clin. Lipidol. 2024, 18, e986–e994. [Google Scholar] [CrossRef]
- Treibel, T.A.; Kozor, R.; Schofield, R.; Benedetti, G.; Fontana, M.; Bhuva, A.N.; Sheikh, A.; López, B.; González, A.; Manisty, C.; et al. Reverse Myocardial Remodeling Following Valve Replacement in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 860–871. [Google Scholar] [CrossRef]
- Lange, T.; Backhaus, S.J.; Beuthner, B.E.; Topci, R.; Rigorth, K.-R.; Kowallick, J.T.; Evertz, R.; Schnelle, M.; Ravassa, S.; Dã ez, J.; et al. Functional and structural reverse myocardial remodeling following transcatheter aortic valve replacement: A prospective cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2022, 24, 45. [Google Scholar] [CrossRef]
- Marques, M.D.; Nauffal, V.; Ambale-Venkatesh, B.; Vasconcellos, H.D.; Wu, C.; Bahrami, H.; Tracy, R.P.; Cushman, M.; Bluemke, D.A.; Lima, J.A. Association Between Inflammatory Markers and Myocardial Fibrosis. Hypertension 2018, 72, 902–908. [Google Scholar] [CrossRef]
- Rajamannan, N.M.; Evans, F.J.; Aikawa, E.; Grande-Allen, K.J.; Demer, L.L.; Heistad, D.D.; Simmons, C.A.; Masters, K.S.; Mathieu, P.; O’Brien, K.D.; et al. Calcific aortic valve disease: Not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 2011, 124, 1783–1791. [Google Scholar] [CrossRef]
- Ferrari, S.; Pesce, M. The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Front. Cardiovasc. Med. 2022, 8, 791646. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 254–275. [Google Scholar] [CrossRef]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.J.; von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 2020, 22, 19. [Google Scholar] [CrossRef]
- Bondarenko, O.; Beek, A.; Hofman, M.; Kühl, H.; Twisk, J.; van Dockum, W.; Visser, C.; van Rossum, A. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J. Cardiovasc. Magn. Reson. 2005, 7, 481–485. [Google Scholar] [CrossRef]
- Wong, T.C.; Piehler, K.; Meier, C.G.; Testa, S.M.; Klock, A.M.; Aneizi, A.A.; Shakesprere, J.; Kellman, P.; Shroff, S.G.; Schwartzman, D.S.; et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012, 126, 1206–1216. [Google Scholar] [CrossRef]
- Kawel-Boehm, N.; Hetzel, S.J.; Ambale-Venkatesh, B.; Captur, G.; Francois, C.J.; Jerosch-Herold, M.; Salerno, M.; Teague, S.D.; Valsangiacomo-Buechel, E.; van der Geest, R.J.; et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 87. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.D.; Denaxas, S.; Nicholas, O.; Hingorani, A.D.; Hemingway, H. Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. J. Am. Coll. Cardiol. 2017, 69, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Shahim, B.; Redfors, B.; Lindman, B.R.; Chen, S.; Dahlen, T.; Nazif, T.; Kapadia, S.; Gertz, Z.M.; Crowley, A.C.; Li, D.; et al. Neutrophil-to-Lymphocyte Ratios in Patients Undergoing Aortic Valve Replacement: The PARTNER Trials and Registries. J. Am. Heart Assoc. 2022, 11, e024091. [Google Scholar] [CrossRef] [PubMed]
- Lurz, J.A.; Luecke, C.; Lang, D.; Besler, C.; Rommel, K.-P.; Klingel, K.; Kandolf, R.; Adams, V.; Schöne, K.; Hindricks, G.; et al. CMR-Derived Extracellular Volume Fraction as a Marker for Myocardial Fibrosis: The Importance of Coexisting Myocardial Inflammation. JACC Cardiovasc. Imaging 2017, 11, 38–45. [Google Scholar] [CrossRef]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef]
- Thompson, P.; Duckett, M.; Tomoaia, R.; Javed, W.; Xue, H.; Saunderson, C.; Kellman, P.; Greenwood, J.P.; Plein, S.; Swoboda, P. Mechanisms affecting the neutrophil to lymphocyte ratio in heart failure: A prospective CMR study. Eur. Heart J. 2024, 45 (Suppl.1), ehae666.994. [Google Scholar] [CrossRef]
- Arfsten, H.; Cho, A.; Prausmüller, S.; Spinka, G.; Novak, J.; Goliasch, G.; Bartko, P.E.; Raderer, M.; Gisslinger, H.; Kornek, G.; et al. Inflammation-Based Scores as a Common Tool for Prognostic Assessment in Heart Failure or Cancer. Front. Cardiovasc. Med. 2021, 8, 725903. [Google Scholar] [CrossRef]
- Lund, L.H.; Lam, C.S.; Pizzato, P.E.; Gabrielsen, A.; Michaëlsson, E.; Nelander, K.; Ericsson, H.; Holden, J.; Folkvaljon, F.; Mattsson, A.; et al. Rationale and design of ENDEAVOR: A sequential phase 2b-3 randomized clinical trial to evaluate the effect of myeloperoxidase inhibition on symptoms and exercise capacity in heart failure with preserved or mildly reduced ejection fraction. Eur. J. Heart Fail. 2023, 25, 1696–1707. [Google Scholar] [CrossRef]
- Koschutnik, M.; Dannenberg, V.; Nitsche, C.; Donà, C.; Siller-Matula, J.M.; Winter, M.-P.; Andreas, M.; Zafar, A.; E Bartko, P.; Beitzke, D.; et al. Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1295–1303. [Google Scholar] [CrossRef]
All Patients (n = 356) | Combined Endpoint Met (n = 162) | Combined Endpoint Not Met (n = 194) | p Value | |
---|---|---|---|---|
Clinical parameters | ||||
Age (years) | 80 (77–85) | 82 (78–86) | 79 (76–83) | <0.001 |
Male sex, n (%) | 177 (50) | 84 (52) | 93 (48) | 0.462 |
Body mass index (kg/m2) | 27 (24–30) | 26 (23–30) | 27 (24–31) | 0.034 |
EuroSCORE II (%) | 4.1 (3.7–4.8) | 4.4 (3.9–5.3) | 3.9 (3.3–4.3) | <0.001 |
NYHA functional class ≥ III, n (%) | 159 (45) | 71 (44) | 88 (45) | 0.772 |
CCS class ≥ III, n (%) | 35 (10) | 18 (11) | 17 (9) | 0.459 |
Syncopes, n (%) | 42 (12) | 22 (14) | 20 (10) | 0.341 |
NT-proBNP (pg/mL) | 1332 (561–3280) | 2210 (912–5848) | 923 (375–1862) | <0.001 |
Creatinine (mg/dL) | 1.0 (0.8–1.3) | 1.1 (0.9–1.6) | 1.0 (0.8–1.2) | <0.001 |
eGFR (mL/min/1.73 m2) | 64 (48–81) | 56 (40–74) | 71 (55–87) | <0.001 |
Comorbidities | ||||
Coronary artery disease, n (%) | 167 (47) | 84 (52) | 83 (43) | 0.088 |
Myocardial infarction, n (%) | 20 (6) | 9 (6) | 11 (6) | 0.963 |
Percutaneous coronary intervention, n (%) | 123 (35) | 60 (37) | 63 (33) | 0.367 |
Coronary artery bypass graft, n (%) | 35 (10) | 22 (14) | 13 (7) | 0.030 |
Previous valve surgery, n (%) | 28 (8) | 14 (9) | 14 (7) | 0.619 |
Atrial fibrillation, n (%) | 124 (35) | 62 (38) | 62 (32) | 0.213 |
Arterial hypertension, n (%) | 295 (83) | 133 (82) | 162 (84) | 0.726 |
Diabetes mellitus type II, n (%) | 102 (29) | 48 (30) | 54 (28) | 0.709 |
Hyperlipidemia, n (%) | 109 (31) | 41 (25) | 68 (35) | 0.047 |
Previous stroke, n (%) | 50 (14) | 27 (17) | 23 (12) | 0.193 |
Cerebral artery disease, n (%) | 66 (19) | 32 (20) | 34 (18) | 0.590 |
Peripheral artery disease, n (%) | 27 (8) | 20 (12) | 7 (4) | 0.002 |
COPD, n (%) | 42 (12) | 30 (19) | 12 (6) | <0.001 |
Concomitant medication | ||||
Beta blockers, n (%) | 221 (62) | 102 (63) | 119 (61) | 0.753 |
ACE inhibitors, n (%) | 120 (34) | 52 (32) | 68 (35) | 0.557 |
Angiotensin receptor blockers, n (%) | 136 (38) | 61 (38) | 75 (39) | 0.846 |
ARNIs, n (%) | 1 (<1) | 1 (<1) | 0 (0) | 0.455 |
SGLT2 inhibitors, n (%) | 18 (5) | 3 (2) | 15 (8) | 0.014 |
Spironolactone, n (%)/daily dose (mg) | 111 (31)/50 (25–50) | 64 (40)/50 (50–50) | 47 (24)/50 (25–50) | 0.002 |
Loop diuretics, n (%)/daily dose (mg) | 145 (41)/40 (30–60) | 81 (50)/40 (40–60) | 64 (33)/40 (20–40) | 0.001 |
Thiazide diuretics, n (%)/daily dose (mg) | 89 (25)/12.5 (12.5–16.3) | 42 (26)/12.5 (12.5–21.3) | 47 (24)/12.5 (12.5–12.5) | 0.712 |
Oral anticoagulants, n (%) | 149 (42) | 77 (48) | 72 (37) | 0.047 |
Procedural data | ||||
TAVR, n (%) | 320 (90) | 146 (90) | 174 (90) | 0.893 |
SAVR, n (%) | 18 (5) | 2 (1) | 16 (8) | 0.003 |
No valvular intervention, n (%) | 18 (5) | 14 (9) | 4 (2) | 0.006 |
Markers of inflammation | ||||
Leukocytes (G/L) | 7.1 (5.9–8.4) | 6.9 (5.7–8.4) | 7.3 (5.9–8.4) | 0.213 |
Neutrophils (G/L) | 4.9 (3.9–6.1) | 4.9 (3.8–6.1) | 5.0 (3.9–6.1) | 0.503 |
Monocytes (G/L) | 0.6 (0.5–0.8) | 0.6 (0.5–0.8) | 0.6 (0.5–0.7) | 0.162 |
Lymphocytes (G/L) | 1.3 (1.0–1.7) | 1.1 (0.9–1.6) | 1.4 (1.1–1.8) | <0.001 |
Thrombocytes (G/L) | 210 (175–255) | 213 (175–266) | 209 (175–248) | 0.436 |
C-reactive protein (mg/dL) | 0.3 (0.1–1.1) | 0.6 (0.2–1.7) | 0.2 (0.1–0.6) | <0.001 |
NLR | 3.7 (2.6–5.2) | 4.0 (2.8–5.9) | 3.4 (2.5–4.9) | 0.004 |
MLR | 0.5 (0.3–0.7) | 0.5 (0.4–0.8) | 0.4 (0.3–0.6) | <0.001 |
PIV | 454 (276–781) | 551 (267–950) | 434 (277–671) | 0.018 |
All Patients (n = 356) | Combined Endpoint Met (n = 162) | Combined Endpoint Not Met (n = 194) | p Value | |
---|---|---|---|---|
Echocardiography | ||||
LV end-diastolic diameter (mm) | 44 (39–48) | 44 (40–48) | 43 (39–48) | 0.223 |
RV end-diastolic diameter (mm) | 32 (29–36) | 33 (30–38) | 32 (27–35) | <0.001 |
Interventricular septum (mm) | 15 (13–17) | 14 (13–17) | 15 (13–16) | 0.996 |
LV ejection fraction (%) | 55 (52–63) | 55 (45–61) | 55 (55–65) | 0.019 |
AV mean pressure gradient (mmHg) | 45 (36–54) | 43 (33–52) | 47 (39–56) | 0.008 |
AV peak pressure gradient (mmHg) | 73 (59–86) | 70 (53–84) | 73 (64–88) | 0.006 |
AV Vmax (m/s) | 4.3 (3.9–4.7) | 4.2 (3.7–4.6) | 4.3 (4.0–4.7) | 0.013 |
AV area index (cm2/m2) | 0.7 (0.6–0.8) | 0.7 (0.6–0.8) | 0.7 (0.6–0.8) | 0.811 |
Systolic PAP (mmHg) | 48 (37–61) | 48 (40–61) | 46 (35–61) | 0.152 |
TAPSE (mm) | 21 (18–24) | 20 (17–24) | 22 (19–24) | 0.123 |
RV FAC (%) | 46 (39–55) | 44 (37–53) | 47 (44–55) | 0.028 |
Mitral regurgitation ≥ moderate, n (%) | 74 (21) | 46 (28) | 28 (14) | 0.001 |
Tricuspid regurgitation ≥ moderate, n (%) | 72 (20) | 46 (28) | 26 (13) | <0.001 |
CMR | ||||
LV end-diastolic volume (mL) | 145 (113–185) | 155 (118–192) | 139 (110–174) | 0.054 |
LV end-systolic volume (mL) | 57 (38–95) | 66 (41–106) | 52 (36–84) | 0.005 |
LV cardiac index (L/min/m2) | 3.0 (2.5–3.5) | 2.8 (2.4–3.5) | 3.1 (2.6–3.5) | 0.029 |
LV ejection fraction (%) | 60 (47–67) | 57 (37–67) | 62 (51–68) | <0.001 |
LV global longitudinal strain (-%) | 13 (10–16) | 13 (9–15) | 14 (11–17) | 0.002 |
LV mass index (g/m2) | 78 (63–94) | 80 (65–96) | 75 (62–91) | 0.161 |
Interventricular septum (mm) | 13 (11–15) | 13 (11–15) | 13 (11–15) | 0.423 |
RV end-diastolic volume (mL) | 136 (112–175) | 147 (114–194) | 132 (110–164) | 0.010 |
RV end-systolic volume (mL) | 64 (48–88) | 71 (53–104) | 60 (45–79) | <0.001 |
RV cardiac index (L/min/m2) | 2.7 (2.3–3.2) | 2.7 (2.3–3.3) | 2.7 (2.3–3.2) | 0.738 |
RV ejection fraction (%) | 54 (45–61) | 51 (40–60) | 55 (49–61) | <0.001 |
Presence of LGE, n (%) | 165 (46) | 79 (51) | 86 (44) | 0.240 |
Native 2ch myocardial T1 times (ms) | 1029 (1007–1053) | 1039 (1016–1073) | 1019 (1004–1044) | <0.001 |
ECV (%) | 26.6 (24.6–28.8) | 28.0 (25.7–31.0) | 25.8 (24.0–27.5) | <0.001 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | aHR | 95% CI | p Value | |
Clinical parameters | ||||||
Age | 1.05 | 1.02–1.08 | <0.001 | |||
Male sex | 1.20 | 0.88–1.63 | 0.247 | |||
EuroSCORE II ≥ 4% | 2.25 | 1.61–3.17 | <0.001 | 1.50 | 1.02–2.21 | 0.040 |
NT-proBNP (logarithmized) | 2.60 | 1.96–3.44 | <0.001 | 1.55 | 1.09–2.19 | 0.014 |
eGFR | 0.98 | 0.98–0.99 | <0.001 | |||
Markers of inflammation | ||||||
C-reactive protein (above Q3) | 2.28 | 1.65–3.15 | <0.001 | 1.32 | 0.90–1.92 | 0.155 |
Echocardiography | ||||||
LV ejection fraction | 0.98 | 0.97–0.99 | <0.001 | |||
AV mean pressure gradient | 0.99 | 0.98–1.00 | 0.003 | 1.00 | 1.00–1.00 | 0.642 |
Systolic PAP | 1.01 | 1.00–1.02 | 0.043 | |||
TAPSE | 0.97 | 0.93–1.00 | 0.074 | |||
RV FAC | 0.14 | 0.02–0.79 | 0.026 | |||
CMR | ||||||
LV ejection fraction | 0.98 | 0.97–0.99 | <0.001 | |||
LV global longitudinal strain | 0.93 | 0.89–0.97 | <0.001 | |||
RV ejection fraction < 45% | 2.13 | 1.53–2.96 | <0.001 | 1.28 | 0.86–1.91 | 0.229 |
Presence of LGE | 1.23 | 0.90–1.68 | 0.202 | |||
Native 2ch myocardial T1 times | 1.01 | 1.01–1.01 | <0.001 | |||
ECV (median) | 3.05 | 2.15–4.33 | <0.001 | 2.33 | 1.59–3.42 | <0.001 |
Inflammatory indices | ||||||
NLR (above Q3) | 1.72 | 1.24–2.40 | 0.001 | 1.45 | 1.01–2.06 | 0.042 |
MLR (above Q3) | 1.98 | 1.44–2.73 | <0.001 | 1.48 | 1.05–2.09 | 0.026 |
PIV (above Q3) | 1.76 | 1.27–2.45 | <0.001 | 1.56 | 1.11–2.21 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koschutnik, M.; Brunner, C.; Nitsche, C.; Donà, C.; Dannenberg, V.; Halavina, K.; Koschatko, S.; Jantsch, C.; Mascherbauer, K.; Kronberger, C.; et al. Biomarkers of Inflammation and Association with Cardiovascular Magnetic Resonance Imaging for Risk Stratification and Outcome in Patients with Severe Aortic Stenosis. J. Clin. Med. 2025, 14, 2512. https://doi.org/10.3390/jcm14072512
Koschutnik M, Brunner C, Nitsche C, Donà C, Dannenberg V, Halavina K, Koschatko S, Jantsch C, Mascherbauer K, Kronberger C, et al. Biomarkers of Inflammation and Association with Cardiovascular Magnetic Resonance Imaging for Risk Stratification and Outcome in Patients with Severe Aortic Stenosis. Journal of Clinical Medicine. 2025; 14(7):2512. https://doi.org/10.3390/jcm14072512
Chicago/Turabian StyleKoschutnik, Matthias, Christina Brunner, Christian Nitsche, Carolina Donà, Varius Dannenberg, Kseniya Halavina, Sophia Koschatko, Charlotte Jantsch, Katharina Mascherbauer, Christina Kronberger, and et al. 2025. "Biomarkers of Inflammation and Association with Cardiovascular Magnetic Resonance Imaging for Risk Stratification and Outcome in Patients with Severe Aortic Stenosis" Journal of Clinical Medicine 14, no. 7: 2512. https://doi.org/10.3390/jcm14072512
APA StyleKoschutnik, M., Brunner, C., Nitsche, C., Donà, C., Dannenberg, V., Halavina, K., Koschatko, S., Jantsch, C., Mascherbauer, K., Kronberger, C., Poledniczek, M., Demirel, C., Beitzke, D., Loewe, C., Hengstenberg, C., Kammerlander, A. A., & Bartko, P. E. (2025). Biomarkers of Inflammation and Association with Cardiovascular Magnetic Resonance Imaging for Risk Stratification and Outcome in Patients with Severe Aortic Stenosis. Journal of Clinical Medicine, 14(7), 2512. https://doi.org/10.3390/jcm14072512