Association Between Cutaneous Immune-Related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Baseline Characteristics
3.2. Cutaneous Immune-Related Adverse Events
3.3. Clinical Outcomes and cirAEs
3.4. Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
CTCAE | Common Terminology Criteria for Adverse Events |
CTLA-4 | Cytotoxic T-lymphocyte antigen-4 |
NSCLC | Non-small-cell cancer |
cirAEs | Cutaneous immune-related adverse event |
ECOG | Eastern Cooperative Oncology Group |
PDL-1 | Programmed death ligand-1 |
DOAJ | Directory of open access journals |
PD-1 | Programmed cell death protein-1 |
ICIs | Immune checkpoint inhibitors |
ORR | Objective Response Rate |
PFS | Progression-Free Survival |
SOC | System/organ class |
CR | Completed response |
CI | Confidence interval |
HR | Hazard Ratios |
OS | Overall survival |
PR | Partial response |
LD | Linear dichroism |
Wt | Will type |
Appendix A
Recist Criteria | All Patients n 510 (100%) | PFS Median +/− (IC 95%) | p-Value | OS Median +/− (IC 95%) | p-Value |
---|---|---|---|---|---|
Partial Response | 176 (34.5) | 19.6 (14.3–24.8) | 0.0001 | 33.1 (27.638.4) | 0.0001 |
Stable disease | 193 (37.8) | 7.0 (6.1–7.8) | 13.3 (10.5–16.1) | ||
Progression disease | 105 (20.6) | 1.7 (1.4–2.1) | 4.6 (3.6–5.5) | ||
Not evaluable | 36 (7.1) | 1.1 (0.7–1.3) | 1.2 (0.9–1.5) |
References
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Piñeros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer 2025, 156, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Boaru, D.L.; De Leon-Oliva, D.; Fraile-Martinez, O.; García-Montero, C.; Rios, L.; Garrido-Gil, M.J.; Barrena-Blázquez, S.; Minaya-Bravo, A.M.; Rios-Parra, A.; et al. PD-1/PD-L1 axis: Implications in immune regulation, cancer progression, and translational applications. J. Mol. Med. 2024, 102, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Alifu, M.; Tao, M.; Chen, X.; Chen, J.; Tang, K.; Tang, Y. Checkpoint inhibitors as dual immunotherapy in advanced non-small cell lung cancer: A meta-analysis. Front. Oncol. 2023, 13, 1146905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr.; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Wenfan, F.; Manman, X.; Xingyuan, S.; Zeyong, J.; Jian, Z.; Lu, D. Comparison of the profiles of first-line PD-1/PD-L1 inhibitors for advanced NSCLC lacking driver gene mutations: A systematic review and Bayesian network meta-analysis. Ther. Adv. Chronic Dis. 2023, 14, 20406223231189224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheng, L.; Gao, J.; Xu, Q.; Zhang, X.; Huang, M.; Dai, X.; Li, S.; Liu, L. Selection of optimal first-line immuno-related therapy based on specific pathological characteristics for patients with advanced driver-gene wild-type non-small cell lung cancer: A systematic review and network meta-analysis. Ther. Adv. Med. Oncol. 2021, 13, 17588359211018537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khranovska, N.; Gorbach, O.; Skachkova, O.; Klimnyuk, G. Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients. Exp. Oncol. 2025, 46, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wan, B.; Chen, X.; Zhan, P.; Zhao, Y.; Zhang, T.; Liu, H.; Afzal, M.Z.; Dermime, S.; Hochwald, S.N.; et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: A meta-analysis of randomized controlled trials. Transl. Lung Cancer Res. 2019, 8, 413–428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.J.; Dougan, S.K.; Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 2023, 9, 543–553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keam, S.; Turner, N.; Kugeratski, F.G.; Rico, R.; Colunga-Minutti, J.; Poojary, R.; Alekseev, S.; Patel, A.B.; Li, Y.J.; Sheshadri, A.; et al. Toxicity in the era of immune checkpoint inhibitor therapy. Front. Immunol. 2024, 15, 1447021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nelli, F.; Fabbri, A.; Virtuoso, A.; Giannarelli, D.; Giron Berrios, J.R.; Marrucci, E.; Fiore, C.; Ruggeri, E.M. Early Changes in LIPI Score Predict Immune-Related Adverse Events: A Propensity Score Matched Analysis in Advanced Non-Small Cell Lung Cancer Patients on Immune Checkpoint Blockade. Cancers 2024, 16, 453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020, 18, 87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Chen, C.; Gu, Y.; Lu, W.; Zhan, P.; Liu, H.; Lv, T.; Song, Y.; Zhang, F. Immune-Related Adverse Events Predict the Efficacy of Immune Checkpoint Inhibitors in Lung Cancer Patients: A Meta-Analysis. Front. Oncol. 2021, 11, 631949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Nishio, M.; Mok, T.S.; Reck, M.; Finley, G.G.; Kaul, M.D.; Yu, W.; Paranthaman, N.; et al. Association of immune-related adverse events with efficacy of atezolizumab in patients with non–small cell lung cancer: Pooled analyses of the phase 3 IMpower130, IMpower132, and IMpower150 randomized clinical trials. JAMA Oncol. 2023, 9, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Roudi, R.; Dai, T.; Chen, S.; Fan, B.; Li, H.; Zhou, Y.; Zhou, M.; Zhu, B.; Yin, C.; et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: A PRISMA systematic review and meta-analysis. BMC Cancer 2019, 19, 558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.T.; Johnson, D.B.; LeBoeuf, N.R.; Zwerner, J.P.; Dewan, A.K. Cutaneous adverse events caused by immune checkpoint inhibitors. J. Am. Acad. Dermatol. 2021, 85, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events (CTCAE). Cancer Therapy Evaluation Program (CTEP), National Cancer Institute. 2020. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm (accessed on 8 December 2022).
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Reinikainen, J.; Adeleke, K.A.; Pieterse, M.E.; Groothuis-Oudshoorn, C.G.M. Time-varying covariates and coefficients in Cox regression models. Ann. Transl. Med. 2018, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wu, W.; Chen, M.; Dong, Z.; Wang, F. Cutaneous Adverse Events and Cancer Survival Prognosis with Immune Checkpoint Inhibitor Treatment: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2023, 159, 1093–1101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Zeng, D.; Ou, Q.; Liu, S.; Li, A.; Chen, Y.; Lin, D.; Gao, Q.; Zhou, H.; Liao, W.; et al. Association of Survival and Immune-Related Biomarkers with Immunotherapy in Patients with Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis. JAMA Netw. Open 2019, 2, e196879. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curkovic, N.B.; Bai, K.; Ye, F.; Johnson, D.B. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 340. [Google Scholar] [CrossRef]
- Cortellini, A.; Chiari, R.; Ricciuti, B.; Metro, G.; Perrone, F.; Tiseo, M.; Bersanelli, M.; Bordi, P.; Santini, D.; Giusti, R.; et al. Correlations Between the Immune-related Adverse Events Spectrum and Efficacy of Anti-PD1 Immunotherapy in NSCLC Patients. Clin. Lung Cancer 2019, 20, 237–247.e1. [Google Scholar] [CrossRef] [PubMed]
- Shankar, B.; Zhang, J.; Naqash, A.R.; Forde, P.M.; Feliciano, J.L.; Marrone, K.A.; Ettinger, D.S.; Hann, C.L.; Brahmer, J.R.; Ricciuti, B.; et al. Multisystem Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors for Treatment of Non-Small Cell Lung Cancer. JAMA Oncol. 2020, 6, 1952–1956. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | All Patients n = 510 | cirAE n = 139 | Non-cirAE n = 371 | p-Value |
---|---|---|---|---|
Age | 0.288 | |||
<65 | 263 (51.5) | 75 (53.9) | 188 (50.7) | |
>65 | 247 (48.5) | 64 (45.1) | 183 (49.3) | |
Gender | 0.186 | |||
Male | 390 (76.5) | 102 (73.4) | 288 (77.6) | |
Female | 120 (23.5) | 37 (26.6) | 83 (22.4) | |
Smoker | 0.502 | |||
Former/Never smoker | 282 (55.3) | 77 (55.4) | 205 (55.3) | |
Current smoker | 228 (44.7) | 62 (44.6) | 166 (44.7) | |
Histology | 0.743 | |||
Adenocarcinoma | 311 (61) | 87 (62.6) | 224 (60.4) | |
Squamous | 175 (34.3) | 47 (33.8) | 128 (34.5) | |
Undifferentiated Cell | 24 (4.7) | 5 (3.6) | 19 (5.1) | |
PdL1% | 0.290 | |||
>50 | 102 (20) | 29 (20.8) | 73 (19.7) | |
1–49 | 111 (21.8) | 37 (26.6) | 74 (19.9) | |
<1 | 194 (38.1) | 45 (32.4) | 149 (40.2) | |
Unknown | 75 (14.7) | 28 (20.1) | 75 (20.2) | |
Kras | 0.130 | |||
Wt | 159 (31.2) | 44 (31.6) | 115 (31) | |
mutated | 55 (10.8) | 21 (15.1) | 34 (9.2) | |
Unknown | 296 (58) | 74 (53.2) | 222 (59.8) | |
ECOG performance status | 0.018 | |||
0 | 171 (33.5) | 59 (42.4) | 112 (30.2) | |
1 | 317 (62.2) | 76 (54.7) | 241 (65) | |
2 | 21 (4.1) | 3 (2.1) | 18 (4.8) | |
Number of therapies | 0.028 | |||
First line | 310 (60.7) | 95 (68.3) | 215 (57.9) | |
Second line | 148 (29.1) | 37 (26.6) | 111 (30) | |
Third line | 52 (10.2) | 7 (5.1) | 45 (12.1) | |
Type of treatment | 0.037 | |||
ICI | 320 (62.7) | 78 (56.1) | 242 (65.2) | |
ICI + Chemotherapy | 190 (37.3) | 61 (43.9) | 129 (34.8) | |
Number of SOC irAEs | 0.0001 | |||
1 SOC | 148 (46.2) | 36 (25.8) | 112 (61.5) | |
2–4 SOC | 173 (53.8) | 103 (74.2) | 70 (38.5) |
Recist Criteria | All Patients | cirAE/Non-cirAE | p-Value | cirAE OS (95% CI) | p-Value | Non-cirAE OS 95% CI | p-Value |
---|---|---|---|---|---|---|---|
Partial Response | 176 (34.5) | 75/101 | 0.001 | 36.9 (12.8–61.1) | 0.0001 | 23.7 (14.8–32.6) | 0.0001 |
Stable disease | 193 (37.8) | 54/133 | 20.8 (16.7–24.8) | 10.4 (8.6–12.1) | |||
Progression disease | 105 (20.6) | 9/96 | 7.8 (6.6–9.0) | 4.1 (3.3–4.9) | |||
Not evaluable | 36 (7.1) | 1/35 | 2.2 (0.7–1.3) | 1.1 (0.6–1.4) |
Characteristics | All Patients n 510 (100%) | PFS Median (95% CI) | p-Value | OS Median (95% CI) | p-Value |
---|---|---|---|---|---|
Age | 0.267 | 0.061 | |||
<65 | 263 (51.5) | 7.06 (5.7–8.3) | 15.3 (12.0–18.7) | ||
>65 | 247 (48.5) | 5.9 (4.5–7.4) | 11.2 (8.4–14.1) | ||
Gender | 0.560 | 0.046 | |||
Male | 390 (76.5) | 6.7 (5.4–8.1) | 12.8 (1.4) | ||
Female | 120 (23.5) | 6.9 (5.6–8.2) | 16.6 (2.3) | ||
Smoking status | 0.063 | 0.042 | |||
Former/Never smoker | 282 (55.3) | 5.8 (4.1–7.4) | 12.2 (9.3–15.1) | ||
Current smoker | 224 (43.9) | 7.3 (5.9–8.7) | 16 (12.3–19.6) | ||
Histology | 0.036 | 0.033 | |||
Adenocarcinoma | 311 (61) | 7.6 (6.4–8.7) | 15.3 (12.1–18.6) | ||
Squamous | 175 (34.3) | 5.6 (4.6–6.6) | 12.2 (9.6–14.4) | ||
Undifferentiated Cell | 24 (4.7) | 4.4 (0.1–11.1) | 12.8 (0.1–27.1) | ||
PdL1% | 0.016 | 0.047 | |||
>50 | 102 (20) | 8.1 (4.1–12.2) | 15 (11.5–18.4) | ||
1–49 | 111 (21.8) | 8.9 (7.8–9.9) | 18 (11.3–24.6) | ||
<1 | 194 (38.1) | 6.5 (5.3–7.6) | 13.8 (7.9–19.6) | ||
Unknown | 103 (20.1) | 4.2 (2.1–6.3) | 9.1 (7.1–11.1) | ||
Kras | 0.001 | 0.001 | |||
Wt | 159 (31.2) | 8.6 (6.1–11.2) | 17.9 (14.5–21.2) | ||
mutated | 55 (10.8) | 10.3 (0.7–19.9) | 31.6 (16.9–46.3) | ||
Unknown | 296 (58) | 5.0 (4.0–6.1) | 10.4 (8.4–12.3) | ||
ECOG performance status | 0.110 | 0.003 | |||
0 | 171 (33.5) | 7.9 (5.7–10.2) | 18.8 (15.2–22.3) | ||
1 | 317 (62.2) | 6.5 (5.4–7.5) | 12.2 (10.2–14.2) | ||
2 | 22 (4.3) | 4.6 (0.1–10.7) | 7.3 (0.1–14.5) | ||
Number of therapies | 0.001 | 0.0001 | |||
First line | 310 (60.7) | 9.1 (7.6–10.6) | 17.3 (14.6–20.0) | ||
Second line | 148 (29.1) | 4.2 (2.4–6.1) | 9.5 (7.2–11.8) | ||
Third line | 52 (10.2) | 2.9 (2.6–3.2) | 6.8 (2.4–11.2) | ||
Type of treatment | 0.0001 | 0.005 | |||
ICI | 320 (62.7) | 4.7 (3.7–5.7) | 10.5 (7.8–13.1) | ||
ICI + Chemotherapy | 190 (37.3) | 10.6 (7.5–3.6) | 17.3 (14.0–20.6) | ||
Cutaneous irAE | 0.0001 | 0.0001 | |||
cirAE | 139 (51.5) | 14.6 (12.3–16.8) | 29 (21.3–33.6) | ||
None | 371 (48.5) | 4.7 (3.9–5.5) | 9.2 (7.7–10.6) | ||
Cutaneous irAE | 0.0001 | 0.0001 | |||
G1 | 96 (18.8) | 14.9 (10.3–19.3) | 29 (22.0–35.9) | ||
G2 | 30 (5.9) | 14.9 (10.2–19.6) | 31.1 (10.9–51.2) | ||
G3 | 12 (2.3) | 8.3 (1.1–15.5) | 15.6 (7.6–10.6) | ||
G4 | - | - | - | ||
Non-cirAE | 372 (73) | 4.8 (4.0–5.6) | 9.1 (7.6–10.6) | ||
Number of SOCs | 0.0001 | 0.0001 | |||
1 | 173 (33.9) | 7.1 (5.4–8.7) | 13 (8.7–17.2) | ||
2–4 | 148 (29.0) | 14.4 (12.7–16.1) | 25.7 (19.2–32.1) | ||
None | 189 (37.1) | 2.83 (2.3–3.3) | 6.2 (4.5–7.9) |
Subgroup | Sample | HR (95% CI) | p-Value |
---|---|---|---|
Overall | 510 (100) | 0.40 (0.31–0.51) | 0.0001 |
Age < 65 | 263 (51.5) | 0.69 (0.57–0.85) | 0.0001 |
Age > 65 | 247 (48.5) | 0.77 (0.64–0.93) | 0.0002 |
Male | 390 (76.5) | 0.77 (0.66–0.88) | 0.0001 |
Female | 120 (23.5) | 0.63 (0.45–0.87) | 0.001 |
Former/Never smoker | 282 (55.3) | 0.76 (0.64–0.90) | 0.0001 |
Current smoker | 224 (43.9) | 0.69 (0.55–0.87) | 0.0001 |
Adenocarcinoma | 311 (61) | 0.71 (0.59–0.87) | 0.0001 |
Squamous | 175 (34.3) | 0.72 (0.58–0.89) | 0.0001 |
Undifferentiated Cell | 24 (4.7) | 1.09 (0.65–1.81) | 0.634 |
PdL1 > 50 | 102 (20) | 0.67 (0.49–0.92) | 0.002 |
PdL1 1–49 | 111 (21.8) | 0.64 (0.46–0.90) | 0.004 |
PdL1 < 1 | 194 (38.1) | 0.70 (0.53–0.91) | 0.002 |
Unknown | 75 (14.7) | 0.93 (0.79–1.10) | 0.454 |
Kras Wt | 159 (31.2) | 0.63 (0.46–0.86) | 0.001 |
Kras mutated | 55 (10.8) | 0.52 (0.29–0.93) | 0.012 |
ECOG 0 | 171 (33.5) | 0.73 (0.58–0.93) | 0.003 |
ECOG 1 | 317 (62.2) | 0.72 (0.60–0.87) | 0.0001 |
ECOG 2 | 21 (4.1) | 1.12 (0.95–1.32) | 0.729 |
First line | 310 (60.7) | 0.74 (0.62–0.89) | 0.000 |
Second line | 148 (29.1) | 0.71 (0.55–0.92) | 0.001 |
Third line | 52 (10.2) | 0.89 (0.66–1.22) | 0.358 |
ICI | 320 (62.7) | 0.73 (0.61–0.86) | 0.011 |
ICI + Chemotherapy | 190 (37.3) | 0.75 (0.59–0.96) | 0.0001 |
1 SOC irAE | 320 (62.7) | 0.73 (0.61–0.86) | 0.011 |
≥2 SOC irAEs | 190 (37.3) | 0.75 (0.59–0.95) | 0.0001 |
Partial Response | 176 (34.5) | 0.77 (0.59–1.02) | 0.067 |
Stable disease | 193 (37.8) | 0.79 (0.66–0.95) | 0.003 |
Progression disease | 105 (20.6) | 0.99 (0.81–1.21) | 0.646 |
Baseline Characteristics | PFS HR (95% CI) | p-Value | OS HR (95% CI) | p-Value |
---|---|---|---|---|
Age | 0.469 | |||
<65 vs. >65 years | - | 0.92 (0.75–1.14) | ||
Gender | 0.580 | |||
Female vs. Male | - | 0.93 (0.72–1.19) | ||
Smoker | 0.092 | 0.039 | ||
Current vs. Former/Never | 0.84 (0.68–1.02) | 0.80 (0.64–0.98) | ||
Histology | 0.014 | 0.057 0.698 0.018 | ||
Adenocarcinoma | 0.85 (0.51–1.4) | 0.53 | 0.89 (0.51–1.55) | |
Squamous | 0.72 (0.58–0.9) | 0.03 | 0.75 (0.60–0.95) | |
Undifferentiated Cell | ref | ref | ||
PdL1% | 0.746 | 0.900 | ||
>50 | 0.88 (0.64–1.20) | 0.429 | 0.92 (0.67–1.26) | 0.611 |
1–49 | 0.85 (0.60–1.19) | 0.356 | 0.89 (0.63–1.16) | 0.539 |
<1 | 0.97 (0.67–1.13) | 0.872 | 0.99 (0.69–1.42) | 0.666 |
Unknown | ref | ref | ||
Kras | 0.218 0.450 0.085 | 0.021 0.110 0.008 | ||
Wt | 0.91 (0.71–1.16) | 0.80 (0.62–1.05) | ||
mutated | 0.72 (0.50–1.04) | 0.57 (0.38–0.86) | ||
Unknown | ref | ref | ||
ECOG | - | 0.005 | ||
0 | 0.43 (0.26–0.73) | 0.002 | ||
1 | 0.53 (0.32–0.87) | 0.013 | ||
2 | ref | |||
Number of therapies | 0.645 0.728 0.733 | 0.410 0.194 0.255 | ||
First line | 0.92 (0.60–1.41) | 0.76 (0.51–1.14) | ||
Second line | 1.06 (0.73–1.56) | 0.80 (0.55–1.16) | ||
Third line | ref | ref | ||
Type of treatment | ||||
ICI + Chemotherapy vs. ICI | 0.86 (0.64–0.96) | 0.307 | 0.99 (0.73–1.33) | 0.956 |
Cutaneous irAE | 0.044 | 0.0001 | ||
G1–4 vs. Non | 0.74 (0.56–0.99) | 0.60 (0.44–0.80) | ||
Number of SOC irAEs | 0.0001 0.0001 0.0001 | 0.0001 0.006 0.0001 | ||
1 SOC | 0.51 (0.40–0.66) | 0.69 (0.54–0.90) | ||
2–4 SOCs | 0.34 (0.25–0.46) | 0.45 (0.34–0.61) | ||
None | ref | ref |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurado, J.M.; Gutiérrez, V.; Cantero, A.; Berciano-Guerrero, M.-Á.; Padilla, A.; Pérez-Ruiz, E.; Montesa, Á.; Carabantes, F.; Cobo, M. Association Between Cutaneous Immune-Related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer. J. Clin. Med. 2025, 14, 2499. https://doi.org/10.3390/jcm14072499
Jurado JM, Gutiérrez V, Cantero A, Berciano-Guerrero M-Á, Padilla A, Pérez-Ruiz E, Montesa Á, Carabantes F, Cobo M. Association Between Cutaneous Immune-Related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2025; 14(7):2499. https://doi.org/10.3390/jcm14072499
Chicago/Turabian StyleJurado, José Miguel, Vanesa Gutiérrez, Alexandra Cantero, Miguel-Ángel Berciano-Guerrero, Airam Padilla, Elisabet Pérez-Ruiz, Álvaro Montesa, Francisco Carabantes, and Manuel Cobo. 2025. "Association Between Cutaneous Immune-Related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer" Journal of Clinical Medicine 14, no. 7: 2499. https://doi.org/10.3390/jcm14072499
APA StyleJurado, J. M., Gutiérrez, V., Cantero, A., Berciano-Guerrero, M.-Á., Padilla, A., Pérez-Ruiz, E., Montesa, Á., Carabantes, F., & Cobo, M. (2025). Association Between Cutaneous Immune-Related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 14(7), 2499. https://doi.org/10.3390/jcm14072499