Prognostic Implications of Diabetes Insipidus in Heart Failure Hospitalizations: Insights from the U.S. National Readmissions Database 2016–2021
Abstract
:1. Introduction
2. Methodology
2.1. Study Population
2.2. Outcomes
2.3. Statistical Analysis
3. Results
3.1. Demographics and Baseline Comorbidities
3.2. In-Hospital Outcomes
3.3. In-Hospital Complications
3.4. Thirty-Day Readmissions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
AVP | Arginine vasopressin |
CCSR | Clinical Classifications Software Refined |
CI | Confidence interval |
ICD-10 | International Classification of Diseases, Tenth Revision |
ICU | Intensive Care Unit |
MI | Myocardial infarction |
NRD | National Readmission Database |
NYHA | New York Heart Association |
OR | Odds ratio |
PCI | Percutaneous coronary intervention |
PSM | Propensity score matching |
SGLT2 | Sodium-glucose cotransporter 2 |
UTI | Urinary tract infection |
V1a and V2 | Vasopressin receptors 1a and 2 |
References
- Mutter, C.M.; Smith, T.; Menze, O.; Zakharia, M.; Nguyen, H. Diabetes Insipidus: Pathogenesis, Diagnosis, and Clinical Management. Cureus 2021, 13, e13523. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.; Galiveeti, S.; Bichet, D.G.; Roth, J. Diabetes insipidus: Celebrating a century of vasopressin therapy. Endocrinology 2014, 155, 4605–4621. [Google Scholar] [CrossRef] [PubMed]
- Bourque, C.W. Osmoregulation of vasopressin neurons: A synergy of intrinsic and synaptic processes. Prog. Brain Res. 1998, 119, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Winzeler, B.; Refardt, J. Diagnosis and management of diabetes insipidus for the internist: An update. J. Intern. Med. 2021, 290, 73–87. [Google Scholar] [CrossRef]
- Ananthakrishnan, S. Gestational diabetes insipidus: Diagnosis and management. Best. Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101384. [Google Scholar] [CrossRef]
- Arima, H.; Cheetham, T.; Christ-Crain, M.; Cooper, D.; Drummond, J.; Gurnell, M.; Levy, M.; McCormack, A.; Newell-Price, J.; Verbalis, J.G.; et al. Changing the Name of Diabetes Insipidus: A Position Statement of the Working Group for Renaming Diabetes Insipidus. J. Clin. Endocrinol. Metab. 2022, 108, 1–3. [Google Scholar] [CrossRef]
- Bozkurt, B.; Ahmad, T.; Alexander, K.; Baker, W.L.; Bosak, K.; Breathett, K.; Carter, S.; Drazner, M.H.; Dunlay, S.M.; Fonarow, G.C.; et al. HF STATS 2024: Heart Failure Epidemiology and Outcomes Statistics An Updated 2024 Report from the Heart Failure Society of America. J. Card. Fail. 2025, 31, 66–116. [Google Scholar] [CrossRef]
- Khan, M.S.; Sreenivasan, J.; Lateef, N.; Abougergi, M.S.; Greene, S.J.; Ahmad, T.; Anker, S.D.; Fonarow, G.C.; Butler, J. Trends in 30- and 90-Day Readmission Rates for Heart Failure. Circ. Heart Fail. 2021, 14, e008335. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- NRD Overview. Available online: http://hcup-us.ahrq.gov/nrdoverview.jsp (accessed on 12 July 2022).
- Lambert, L.; Blais, C.; Hamel, D.; Brown, K.; Rinfret, S.; Cartier, R.; Giguère, M.; Carroll, C.; Beauchamp, C.; Bogaty, P. Evaluation of care and surveillance of cardiovascular disease: Can we trust medico-administrative hospital data? Can. J. Cardiol. 2012, 28, 162–168. [Google Scholar] [CrossRef]
- Lauridsen, M.D.; Gammelager, H.; Schmidt, M.; Nielsen, H.; Christiansen, C.F. Positive predictive value of International Classification of Diseases, 10th revision, diagnosis codes for cardiogenic, hypovolemic, and septic shock in the Danish National Patient Registry. BMC Med. Res. Methodol. 2015, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Bansal, K.; Pawar, S.; Gupta, T.; Gilani, F.; Khera, S.; Kolte, D. Association Between Hospital Volume and 30-Day Readmissions After Transcatheter Mitral Valve Edge-to-Edge Repair. Am. J. Cardiol. 2023, 203, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Butala, N.M.; Bucholz, E.M.; Kolte, D.; Elmariah, S. Association of Hospital Inpatient Percutaneous Coronary Intervention Volume With Clinical Outcomes After Transcatheter Aortic Valve Replacement and Transcatheter Mitral Valve Repair. JAMA Cardiol. 2020, 5, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Krumholz, H.M. With Great Power Comes Great Responsibility: Big Data Research From the National Inpatient Sample. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003846. [Google Scholar] [CrossRef]
- Yoon, F.; Sheng, M.; Jiang, H.J.; Steiner, C.A.; Barrett, M.L. Calculating Nationwide Readmissions Database (NRD) Variances. 2017. Available online: https://hcup-us.ahrq.gov/reports/methods/2017-01.pdf (accessed on 23 January 2025).
- Ohara, N.; Kaneko, M.; Suwabe, T.; Yoshie, T.; Kuwano, H.; Ebe, K.; Fujita, T.; Fuse, K.; Kaneko, K.; Kamoi, K. A case of central diabetes insipidus associated with cardiac dysfunction. Clin. Case Rep. 2016, 4, 1101–1106. [Google Scholar] [CrossRef]
- Vaz de Castro, P.A.S.; Bitencourt, L.; de Oliveira Campos, J.L.; Fischer, B.L.; Soares de Brito, S.B.C.; Soares, B.S.; Drummond, J.B.; Simões, E.S.A.C. Nephrogenic diabetes insipidus: A comprehensive overview. J. Pediatr. Endocrinol. Metab. 2022, 35, 421–434. [Google Scholar] [CrossRef]
- Vicent, L.; Alvarez-Garcia, J.; Gonzalez-Juanatey, J.R.; Rivera, M.; Segovia, J.; Worner, F.; Bover, R.; Pascual-Figal, D.; Vázquez, R.; Cinca, J.; et al. Prognostic impact of hyponatraemia and hypernatraemia at admission and discharge in heart failure patients with preserved, mid-range and reduced ejection fraction. Intern. Med. J. 2021, 51, 930–938. [Google Scholar] [CrossRef]
- Sterns, R.H. Evidence for Managing Hypernatremia: Is It Just Hyponatremia in Reverse? Clin. J. Am. Soc. Nephrol. 2019, 14, 645–647. [Google Scholar] [CrossRef]
- Ali, K.; Workicho, A.; Gudina, E.K. Hyponatremia in patients hospitalized with heart failure: A condition often overlooked in low-income settings. Int. J. Gen. Med. 2016, 9, 267–273. [Google Scholar] [CrossRef]
- Kapłon-Cieślicka, A.; Benson, L.; Chioncel, O.; Crespo-Leiro, M.G.; Coats, A.J.S.; Anker, S.D.; Ruschitzka, F.; Hage, C.; Drożdż, J.; Seferovic, P.; et al. Hyponatraemia and changes in natraemia during hospitalization for acute heart failure and associations with in-hospital and long-term outcomes—From the ESC-HFA EORP Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2023, 25, 1571–1583. [Google Scholar] [CrossRef]
- Goldsmith, S.R. Arginine vasopressin antagonism in heart failure: Current status and possible new directions. J. Cardiol. 2019, 74, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Saepudin, S.; Ball, P.A.; Morrissey, H. Hyponatremia during hospitalization and in-hospital mortality in patients hospitalized from heart failure. BMC Cardiovasc. Disord. 2015, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Pivonello, R.; Faggiano, A.; Arrichiello, P.; Di Sarno, A.; Di Somma, C.; Ferone, D.; Lombardi, G.; Colao, A. Central diabetes insipidus and heart: Effect of acute arginine vasopressin deficiency and replacement treatment with desmopressin on cardiac performance. Clin. Endocrinol. 2001, 54, 97–106. [Google Scholar] [CrossRef]
- Stewart, P.M.; Biller, B.M.; Marelli, C.; Gunnarsson, C.; Ryan, M.P.; Johannsson, G. Exploring Inpatient Hospitalizations and Morbidity in Patients With Adrenal Insufficiency. J. Clin. Endocrinol. Metab. 2016, 101, 4843–4850. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Kutz, A.; Wagner, U.; Illigens, B.; Siepmann, T.; Schuetz, P.; Christ-Crain, M.; Mueller, B.; Christ, E.R. Excess Mortality Among Hospitalized Patients With Hypopituitarism-A Population-Based, Matched-Cohort Study. J. Clin. Endocrinol. Metab. 2020, 105, e3910–e3918. [Google Scholar] [CrossRef]
- Yiadom, M.; Baugh, C.W.; Barrett, T.W.; Liu, X.; Storrow, A.B.; Vogus, T.J.; Tiwari, V.; Slovis, C.M.; Russ, S.; Liu, D. Measuring Emergency Department Acuity. Acad. Emerg. Med. 2018, 25, 65–75. [Google Scholar] [CrossRef]
- Konstam, M.A.; Gheorghiade, M.; Burnett, J.C., Jr.; Grinfeld, L.; Maggioni, A.P.; Swedberg, K.; Udelson, J.E.; Zannad, F.; Cook, T.; Ouyang, J.; et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The EVEREST Outcome Trial. JAMA 2007, 297, 1319–1331. [Google Scholar] [CrossRef]
- Konstam, M.A.; Kiernan, M.; Chandler, A.; Dhingra, R.; Mody, F.V.; Eisen, H.; Haught, W.H.; Wagoner, L.; Gupta, D.; Patten, R.; et al. Short-Term Effects of Tolvaptan in Patients With Acute Heart Failure and Volume Overload. J. Am. Coll. Cardiol. 2017, 69, 1409–1419. [Google Scholar] [CrossRef]
- Tarun, T.; Ghanta, S.N.; Ong, V.; Kore, R.; Menon, L.; Kovesdy, C.; Mehta, J.L.; Jain, N. Updates on New Therapies for Patients with CKD. Kidney Int. Rep. 2024, 9, 16–28. [Google Scholar] [CrossRef]
- Marton, A.; Saffari, S.E.; Rauh, M.; Sun, R.N.; Nagel, A.M.; Linz, P.; Lim, T.T.; Takase-Minegishi, K.; Pajarillaga, A.; Saw, S.; et al. Water Conservation Overrides Osmotic Diuresis During SGLT2 Inhibition in Patients With Heart Failure. J. Am. Coll. Cardiol. 2024, 83, 1386–1398. [Google Scholar] [CrossRef]
- Biegus, J.; Voors, A.A.; Collins, S.P.; Kosiborod, M.N.; Teerlink, J.R.; Angermann, C.E.; Tromp, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; et al. Impact of empagliflozin on decongestion in acute heart failure: The EMPULSE trial. Eur. Heart J. 2023, 44, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, M.; Lawless, S.; Martin-Grace, J.; Sherlock, M.; Thompson, C.J. Diagnosis and Management of Central Diabetes Insipidus in Adults. J. Clin. Endocrinol. Metab. 2022, 107, 2701–2715. [Google Scholar] [CrossRef]
- Levtchenko, E.; Ariceta, G.; Arguedas Flores, O.; Bichet, D.G.; Bockenhauer, D.; Emma, F.; Hoorn, E.J.; Koster-Kamphuis, L.; Nijenhuis, T.; Trepiccione, F.; et al. International expert consensus statement on the diagnosis and management of congenital nephrogenic diabetes insipidus (arginine vasopressin resistance). Nat. Rev. Nephrol. 2025, 21, 83–96. [Google Scholar] [CrossRef]
- Mekhaimar, M.; Dargham, S.; El-Shazly, M.; Al Suwaidi, J.; Jneid, H.; Abi Khalil, C. Diabetes-related cardiovascular and economic burden in patients hospitalized for heart failure in the US: A recent temporal trend analysis from the National Inpatient Sample. Heart Fail. Rev. 2021, 26, 289–300. [Google Scholar] [CrossRef]
- Thyagaturu, H.S.; Bolton, A.R.; Li, S.; Kumar, A.; Shah, K.R.; Katz, D. Effect of Diabetes Mellitus on 30 and 90-Day Readmissions of Patients With Heart Failure. Am. J. Cardiol. 2021, 155, 78–85. [Google Scholar] [CrossRef]
- Ryu, H.H.; Chung, J.H.; Shin, B.C.; Kim, H.L. Congenital nephrogenic diabetes insipidus with end-stage renal disease. Korean J. Intern. Med. 2015, 30, 259–261. [Google Scholar] [CrossRef]
Characteristic—n (%) | Unweighted | Propensity Score Matched | ||||
---|---|---|---|---|---|---|
Diabetes Insipidus (n = 2594) | Without Diabetes Insipidus (n = 5,944,155) | SMD † | Diabetes Insipidus (n = 2590) | Without Diabetes Insipidus (n = 2590) | SMD † | |
Patient Characteristics | ||||||
Age (years)—median (IQR) | 64 (52–75) | 76 (65–85) | 0.75 | 63 (49–77) | 64 (52–74) | 0.06 |
Women | 1249 (48.2) | 2,952,827 (49.7) | 0.04 | 1247 (48.2) | 1242 (47.9) | 0.01 |
Primary Expected Payer | ||||||
Medicare | 1565 (60.5) | 4,477,688 (75.4) | 0.22 | 1572 (60.7) | 1536 (59.3) | 0.04 |
Medicaid | 421 (16.3) | 486,114 (8.2) | 419 (16.2) | 495 (19.1) | ||
Private | 466 (18) | 708,044 (11.9) | 466 (17.9) | 436 (16.8) | ||
Uninsured | 85 (3.3) | 124,443 (2.1) | 85 (3.3) | 78 (3.1) | ||
Others | 46 (1.8) | 126,567 (2.1) | 46 (1.8) | 41 (1.6) | ||
Median Household Income, Percentile | ||||||
0–25th | 665 (26) | 1,627,525 (27.7) | 0.07 | 699 (26.9) | 733 (28.3) | 0.02 |
26–50th | 646 (25.3) | 1,585,547 (27) | 646 (24.9) | 665 (25.7) | ||
51–75th | 633 (24.8) | 1,438,871 (24.5) | 633 (24.4) | 659 (25.4) | ||
76–100th | 612 (23.9) | 1,214,028 (20.7) | 612 (23.6) | 533 (20.6) | ||
Years | ||||||
2016 | 360 (13.8) | 880,540 (14.8) | 0.03 | 360 (13.9) | 358 (13.8) | <0.01 |
2017 | 430 (16.6) | 980,784 (16.5) | 426 (16.5) | 418 (16.1) | ||
2018 | 411 (15.8) | 1,004,580 (16.9) | 411 (15.8) | 423 (16.3) | ||
2019 | 472 (18.2) | 1064,650 (17.9) | 472 (18.2) | 483 (18.6) | ||
2020 | 456 (17.6) | 989,323 (16.6) | 456 (17.6) | 457 (17.6) | ||
2021 | 465 (17.9) | 1,024,278 (17.2) | 465 (17.9) | 451 (17.4) | ||
Comorbidities | ||||||
Smoking | 535 (20.6) | 1,784,689 (30.1) | 0.21 | 535 (20.6) | 553 (21.4) | 0.03 |
Dyslipidemia | 921 (35.5) | 2,868,441 (48.3) | 0.25 | 917 (35.4) | 895 (34.6) | 0.01 |
Hypertension | 504 (19.4) | 1,643,818 (27.6) | 0.37 | 502 (19.4) | 457 (17.6) | 0.02 |
Obesity | 561 (21.6) | 1,026,002 (17.3) | 0.11 | 561 (21.6) | 569 (21.9) | 0.02 |
Known CAD | 628 (24.1) | 2,441,741 (41.1) | 0.36 | 626 (24.2) | 575 (22.2) | 0.07 |
Prior MI | 175 (6.7) | 728,571 (12.3) | 0.17 | 175 (6.8) | 138 (5.3) | 0.03 |
Prior PCI | 122 (4.7) | 633,862 (10.6) | 0.22 | 122 (4.7) | 95 (3.7) | 0.04 |
Prior CABG | 101 (3.8) | 554,588 (9.3) | 0.23 | 101 (3.9) | 87 (3.4) | 0.05 |
Prior TIA/stroke | 194 (7.5) | 581,929 (9.8) | 0.09 | 194 (7.5) | 183 (7.1) | 0.02 |
Peripheral vascular disease | 281 (10.8) | 1,068,557 (17.9) | 0.19 | 279 (10.7) | 249 (9.6) | 0.05 |
Anemia | 176 (6.8) | 383,060 (6.4) | 0.01 | 176 (6.8) | 161 (6.2) | 0.01 |
Chronic kidney disease | 665 (25.6) | 1,711,774 (28.8) | 0.07 | 665 (25.7) | 640 (24.7) | 0.02 |
Chronic lung disease | 714 (27.5) | 2,189,842 (36.8) | 0.20 | 710 (27.4) | 691 (26.7) | 0.06 |
Chronic liver disease | 269 (10.4) | 366,099 (6.1) | 0.15 | 269 (10.4) | 246 (9.5) | 0.02 |
Coagulopathy | 457 (17.6) | 633,448 (10.6) | 0.20 | 457 (17.6) | 428 (16.5) | 0.08 |
Hypothyroidism | 730 (28.1) | 1,092,122 (18.4) | 0.23 | 730 (28.2) | 719 (27.8) | 0.06 |
Pulmonary circulation disorders | 352 (13.6) | 992,286 (16.7) | 0.08 | 352 (13.6) | 351 (13.5) | 0.05 |
Cancer | 78 (3.1) | 164,677 (2.8) | <0.01 | 78 (3.1) | 99 (3.8) | <0.01 |
No. of Elixhauser comorbidities—median (IQR) | 5 (4–7) | 6 (5–7) | 0.16 | 6 (5–7) | 6 (5–7) | 0.04 |
Hospital Characteristics | ||||||
Bed Size | ||||||
Small | 362 (13.9) | 1,049,228 (17.6) | 0.16 | 362 (13.9) | 320 (12.4) | 0.03 |
Medium | 631 (24.3) | 1,682,046 (28.3) | 631 (24.4) | 607 (23.4) | ||
Large | 1601 (61.7) | 3,212,881 (54.1) | 1597 (61.7) | 1663 (64.2) | ||
Location | ||||||
Urban | 2225 (86.1) | 4,945,427 (83.5) | 0.12 | 2229 (86.1) | 2218 (85.6) | 0.06 |
Rural | 361 (13.9) | 974,666 (16.5) | 361 (13.9) | 372 (14.4) | ||
Teaching Status | ||||||
Nonteaching | 443 (17.1) | 1,348,724 (22.7) | 0.03 | 443 (17.1) | 501 (19.3) | <0.01 |
Teaching | 2021 (77.9) | 4,070,850 (68.5) | 2017 (77.8) | 1916 (73.9) |
Outcomes | Diabetes Insipidus (n = 2590) | Without Diabetes Insipidus (n = 2590) | Odds Ratio (95% Confidence Interval) | p-Value | |
---|---|---|---|---|---|
Unadjusted | Adjusted | ||||
In-hospital Outcomes | |||||
Mortality | 683 (26.4) | 176 (6.8) | 4.91 (4.11–5.85) | 5.77 (4.78–6.97) | <0.001 |
Acute kidney injury | 1274 (49.2) | 874 (33.7) | 1.90 (1.69–2.12) | 2.11 (1.86–2.39) | <0.001 |
Hyponatremia | 342 (13.2) | 417 (16.1) | 0.79 (0.67–0.92) | 0.77 (0.66–0.91) | <0.001 |
Hypernatremia | 557 (21.5) | 153 (5.9) | 4.36 (3.61–5.26) | 4.98 (4.08–6.08) | <0.001 |
Acute pulmonary edema | 18 (0.7) | 16 (0.6) | 1.12 (0.57–2.21) | 1.09 (0.55–2.17) | 0.79 |
Chronic pulmonary edema | 24 (0.93) | 20 (0.77) | 1.20 (0.66–2.18) | 1.19 (0.65–2.20) | 0.55 |
Cerebral edema | 393 (15.2) | 26 (1) | 17.64 (11.81–26.34) | 22.28 (14.74–33.69) | <0.001 |
Atrial fibrillation | 719 (27.8) | 949 (36.6) | 0.66 (0.59–0.74) | 0.61 (0.53–0.69) | <0.001 |
Urinary tract infections | 444 (17.1) | 317 (12.2) | 1.48 (1.26–1.73) | 1.59 (1.35–1.87) | <0.001 |
Vasopressor use | 232 (8.9) | 84 (3.2) | 2.93 (2.27–3.79) | 3.07 (2.35–3.99) | <0.001 |
Mechanical ventilation | 976 (37.7) | 349 (13.5) | 3.88 (3.38–4.45) | 5.23 (4.46–6.14) | <0.001 |
Cardiogenic shock | 204 (7.9) | 125 (4.8) | 1.68 (1.34–2.12) | 1.69 (1.32–2.15) | <0.001 |
Septic shock | 394 (15.2) | 165 (6.4) | 2.63 (2.17–3.19) | 2.86 (2.34–3.49) | <0.001 |
Ventricular tachycardia | 0 | 0 | - | - | - |
Outcomes | Diabetes Insipidus (n = 2590) | Without Diabetes Insipidus (n = 2590) | Coefficient (95% Confidence Interval) | p-Value | |
Unadjusted | Adjusted | ||||
Cost—median (IQR) | 25,299 (11,596–53,420) | 12,898 (6695–26,103) | 0.60 (0.59–0.61) | 0.55 (0.54–0.56) | <0.001 |
Length of stay—median (IQR) | 7 (4–16) | 5 (3–10) | 0.43 (0.42–0.45) | 0.44 (0.42–0.45) | <0.001 |
Outcomes—n(%) | Diabetes Insipidus (n = 2590) | Without Diabetes Insipidus (n = 2590) | Odds Ratio (95% Confidence Interval) | p-Value | |
---|---|---|---|---|---|
Unadjusted | Adjusted | ||||
All-cause readmissions | 358 (13.8) | 393 (15.2) | 0.89 (0.76–1.04) | 0.89 (0.76–1.04) | 0.14 |
Cardiac readmissions | 265 (74.1) | 333 (84.7) | 0.51 (0.35–0.73) | 0.45 (0.30–0.67) | <0.001 |
Non-cardiac readmissions | 93 (25.9) | 60 (15.3) | 1.94 (1.35–2.79) | 2.21 (1.48–3.29) | <0.001 |
Heart failure readmissions | 216 (8.4) | 293 (11.3) | 0.51 (0.38–0.70) | 0.47 (0.33–0.66) | <0.001 |
Composite of in-hospital mortality or 30-day all-cause readmissions | 1041 (40.2) | 569 (21.9) | 2.38 (2.11–2.69) | 2.48 (2.19–2.81) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menon, L.; Pawar, S.; Regalla, D.K.R. Prognostic Implications of Diabetes Insipidus in Heart Failure Hospitalizations: Insights from the U.S. National Readmissions Database 2016–2021. J. Clin. Med. 2025, 14, 2308. https://doi.org/10.3390/jcm14072308
Menon L, Pawar S, Regalla DKR. Prognostic Implications of Diabetes Insipidus in Heart Failure Hospitalizations: Insights from the U.S. National Readmissions Database 2016–2021. Journal of Clinical Medicine. 2025; 14(7):2308. https://doi.org/10.3390/jcm14072308
Chicago/Turabian StyleMenon, Lakshmi, Shubhadarshini Pawar, and Dileep Kumar Reddy Regalla. 2025. "Prognostic Implications of Diabetes Insipidus in Heart Failure Hospitalizations: Insights from the U.S. National Readmissions Database 2016–2021" Journal of Clinical Medicine 14, no. 7: 2308. https://doi.org/10.3390/jcm14072308
APA StyleMenon, L., Pawar, S., & Regalla, D. K. R. (2025). Prognostic Implications of Diabetes Insipidus in Heart Failure Hospitalizations: Insights from the U.S. National Readmissions Database 2016–2021. Journal of Clinical Medicine, 14(7), 2308. https://doi.org/10.3390/jcm14072308