Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments
2.3.1. Standardized Neuropsychological Tests
- d2 Test of Attention [49], which assesses selective attention and concentration. The final scores comprise the total number of correct responses and errors, from which a concentration index (hits minus commission errors) is calculated.
- Digit Span subtest from the Wechsler Adult Intelligence Scale-III (WAIS-III) [50]. This test evaluates auditory attention and working memory. The final score is the total number of correctly repeated series.
- Hopkins Verbal Learning Test-Revised (HVLT-R) [51], Form A, which assesses verbal learning and memory. The study included the following indices: Trial 3 (number of words recalled in the third learning trial); Learning T (total words learned across three trials); Delayed recall (number of correctly recalled words after a delay); and Recognition (number of accurately identified words).
- Letters–Numbers Sequencing (L&N) from the WAIS-III [50]. This test assesses working memory. The score is determined by the number of accurately repeated sequences.
- Similarities subtest from the WAIS-III [50]. This evaluates semantic reasoning. The total score is calculated by summing all correctly completed items.
- The Matrix Reasoning Subtest from the WAIS-III [50] assesses abstract reasoning. The score is determined by the overall number of accurate responses.
- Zoo Map Test (Version 1) from the Behavioral Assessment of the Dysexecutive Syndrome (BADS) battery [52]. This test evaluates planning abilities. The final score is obtained by deducting the total errors from the number of accurately completed sequences. Errors include revisiting locations more than once, deviating from the designated route, failing to mark the route with a solid line, and visiting inappropriate locations.
2.3.2. Computerized Neuropsychological Tests
- Session 1: This session includes a marksmanship test, sociodemographic data collection, the Barthel Index for Basic Activities of Daily Living [54], the Lawton–Brody Instrumental Activities of Daily Living Scale [55] and pre-stimulation cognitive assessment tests:
- ◦
- Semantic series: A verbal reasoning task that establishes relationships between word categories. On each screen, a set of words is displayed, and the user must identify the one that does not belong to the group.
- ◦
- Logical series: A reasoning exercise involving figures designed to assess perceptual skills. Different screens display figure sequences that follow a specific pattern. To complete the sequence, the user must determine the underlying criterion and select the appropriate figure from the options provided at the bottom of the screen.
- Session 2: Pre-stimulation Cognitive Screening:
- ◦
- List of Words (short- and long-term memory): This is designed to assess learning and verbal memory. Participants are presented with a list of 12 words in blue for 60 s and are then asked to recall and write down as many as possible. This process is repeated two more times with the same list. Afterward, a different list of words, presented in red, is shown for 60 s, and participants are asked to recall and record them. This red list is shown only once. After approximately 20 min, participants are asked to recall words from the blue list. First, they write down as many as they remember. Then, a recognition task is presented, in which words from both lists, as well as additional unrelated words, appear on separate screens. The participant must indicate whether each word appeared in the blue list by selecting “yes” or “no”. Each word, along with the “yes/no” buttons, appears on a different screen (extending the list to several pages).
- ◦
- Numbers: This exercise is designed to measure attentional capacity. Participants see a sequence of numbers on a blackboard, which they must replicate in the same order. The exercise starts with short sequences, which increase in length as the participant progresses. Two sequences are performed per level; if at least one is correct, the participant advances to the next level. The maximum number of levels is nine, and the exercise ends when the participant makes two errors at the same level.
- ◦
- Numbers–Vowels: This exercise aims to measure working memory using an interface similar to the previous exercise. Participants memorize vowels and numbers that appear sequentially in random order and must input them in a structured manner: first, the numbers in ascending order, followed by the vowels in alphabetical order. For example, if “a, 5” appears, the participant must enter “5, a”. If “8, e, 2, u” appears, they must enter “2, 8, e, u”.
- ◦
- Pyramids: This exercise measures the user’s sustained attention span over a 5 min period. Participants are shown panels containing various images of pyramids—small, large, rotated, facing forward, with or without doors. Their objective is to identify images that contain one large pyramid and two small pyramids turned with a door on the sunny side before the allotted time runs out.
- ◦
- Parcel delivery: This exercise is designed to evaluate planning and organizational skills (to achieve planned goals). Participants act as package delivery drivers, picking up and delivering color-coded packages while following an optimal route and avoiding unnecessary detours. Before starting, they receive instructions on how to navigate the city. The interface continuously displays the remaining fuel level and the packages being carried. The task list remains visible throughout, showing the three packages that need to be picked up and the three that need to be delivered, eliminating the need for memorization.
2.4. Procedure
- Phase 1. This consisted of a single session of approximately one hour, during which participants were assessed on attention, verbal memory, working memory, reasoning, and planning using standardized tests.
- Phase 2. This phase consisted of two sessions, each approximately 45 min long. Participants completed seven cognitive tasks from the VIRTRAEL assessment module in these sessions, corresponding to the cognitive domains previously evaluated with paper-and-pencil tests. Each participant was assigned a unique username and password to access the platform.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamalakannan, S.K.; Gudlavalleti, A.S.V.; Murthy Gudlavalleti, V.S.; Goenka, S.; Kuper, H. Challenges in Understanding the Epidemiology of Acquired Brain Injury in India. Ann. Indian. Acad. Neurol. 2015, 18, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Donnan, G.A.; Fisher, M.; Macleod, M.; Davis, S.M. Stroke. Lancet 2008, 371, 1612–1623. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Barker-Collo, S.; Krishnamurthi, R.; Theadom, A.; Starkey, N. Epidemiology of Ischaemic Stroke and Traumatic Brain Injury. Best. Pract. Res. Clin. Anaesthesiol. 2010, 24, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kong, X.; Yang, C.; Cheng, Z.; Lv, J.; Guo, H.; Liu, X. Global, Regional, and National Burden of Ischemic Stroke, 1990–2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 75, 102758. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the Global Incidence of Traumatic Brain Injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef]
- Huang, X.-F.; Ma, S.-F.; Jiang, X.-H.; Song, R.-J.; Li, M.; Zhang, J.; Sun, T.-J.; Hu, Q.; Wang, W.-R.; Yu, A.-Y.; et al. Causes and Global, Regional, and National Burdens of Traumatic Brain Injury from 1990 to 2019. Chin. J. Traumatol. 2024, 27, 311–322. [Google Scholar] [CrossRef]
- Corrigan, J.D.; Hammond, F.M. Traumatic Brain Injury as a Chronic Health Condition. Arch. Phys. Med. Rehabil. 2013, 94, 1199–1201. [Google Scholar] [CrossRef]
- Dikmen, S.; McLean, A.; Temkin, N.R.; Wyler, A.R. Neuropsychologic Outcome at One-Month Postinjury. Arch. Phys. Med. Rehabil. 1986, 67, 507–513. [Google Scholar]
- Goldstein, F.C.; Levin, H.S.; Presley, R.M.; Searcy, J.; Colohan, A.R.; Eisenberg, H.M.; Jann, B.; Bertolino-Kusnerik, L. Neurobehavioural Consequences of Closed Head Injury in Older Adults. J. Neurol. Neurosurg. Psychiatry 1994, 57, 961–966. [Google Scholar] [CrossRef]
- Teasell, R.; Bayona, N.; Marshall, S.; Cullen, N.; Bayley, M.; Chundamala, J.; Villamere, J.; Mackie, D.; Rees, L.; Hartridge, C.; et al. A Systematic Review of the Rehabilitation of Moderate to Severe Acquired Brain Injuries. Brain Inj. 2007, 21, 107–112. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Krishnamurthi, R.; Feigin, V.; Jones, A.; Theadom, A.; Barber, P.A.; Starkey, N.; McPherson, K.; Rush, E.; Bennett, D. Neuropsychological Outcome and Its Predictors Across the First Year After Ischaemic Stroke. Brain Impair. 2016, 17, 111–122. [Google Scholar] [CrossRef]
- Bohorquez-Montoya, L.; Matute, E. Working Memory after Traumatic Brain Injury in Late Childhood and Adolescence. In Traumatic Brain Injury: Diagnosis, Management and Long-Term Outcomes; Nova Biomedical: Waltham, MA, USA, 2016; pp. 1–36. [Google Scholar]
- Emmanouel, A.; Boelen, D.; Mouza, E.; Allain, P.; Kessels, R.P.C.; Fasotti, L. Script Generation and Executive Dysfunction in Patients with Anterior and Posterior Brain Lesions. Brain Impair. 2016, 17, 193–208. [Google Scholar] [CrossRef]
- Gutbrod, K.; Heinemann, D.; Müri, R. Neurorehabilitation of Cognitive Disorders. Ther. Umsch. 2017, 74, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Fakhran, S.; Alhilali, L. Neurodegenerative Changes After Mild Traumatic Brain Injury. Prog. Neurol. Surg. 2014, 28, 234–242. [Google Scholar] [CrossRef]
- Lye, T.C.; Shores, E.A. Traumatic Brain Injury as a Risk Factor for Alzheimer’s Disease: A Review. Neuropsychol. Rev. 2000, 10, 115–129. [Google Scholar] [CrossRef]
- Van Den Heuvel, C.; Thornton, E.; Vink, R. Traumatic Brain Injury and Alzheimer’s Disease: A Review. In Progress in Brain Research; Neurotrauma: New Insights into Pathology and Treatment; Weber, J.T., Maas, A.I.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 161, pp. 303–316. [Google Scholar]
- Zhou, J.; Yu, J.-T.; Wang, H.-F.; Meng, X.-F.; Tan, C.-C.; Wang, J.; Wang, C.; Tan, L. Association between Stroke and Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Ramos-Cejudo, J.; Wisniewski, T.; Marmar, C.; Zetterberg, H.; Blennow, K.; de Leon, M.J.; Fossati, S. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. eBioMedicine 2018, 28, 21–30. [Google Scholar] [CrossRef]
- Kober, S.E.; Schweiger, D.; Reichert, J.L.; Neuper, C.; Wood, G. Upper Alpha Based Neurofeedback Training in Chronic Stroke: Brain Plasticity Processes and Cognitive Effects. Appl. Psychophysiol. Biofeedback 2017, 42, 69–83. [Google Scholar] [CrossRef]
- Smeets, S.M.J.; Vink, M.; Ponds, R.W.H.M.; Winkens, I.; van Heugten, C.M. Changes in Impaired Self-Awareness After Acquired Brain Injury in Patients Following Intensive Neuropsychological Rehabilitation. Neuropsychol. Rehabil. 2017, 27, 116–132. [Google Scholar] [CrossRef]
- Vestri, A.; Peruch, F.; Marchi, S.; Frare, M.; Guerra, P.; Pizzighello, S.; Meneghetti, S.; Nutbrown, A.; Martinuzzi, A. Individual and Group Treatment for Patients with Acquired Brain Injury in Comprehensive Rehabilitation. Brain Inj. 2014, 28, 1102–1108. [Google Scholar] [CrossRef]
- Bogdanova, Y.; Yee, M.K.; Ho, V.T.; Cicerone, K.D. Computerized Cognitive Rehabilitation of Attention and Executive Function in Acquired Brain Injury: A Systematic Review. J. Head. Trauma Rehabil. 2016, 31, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Bringas, M.L.; Salazar, S.; Rodríguez, D.; García, M.E.; Torres, M. Clinical Impact of RehaCom Software for Cognitive Rehabilitation of Patients with Acquired Brain Injury. MEDICC Rev. 2012, 14, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Hallock, H.; Collins, D.; Lampit, A.; Deol, K.; Fleming, J.; Valenzuela, M. Cognitive Training for Post-Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2016, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- Bramlett, H.M.; Dietrich, W.D. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J. Neurotrauma 2015, 32, 1834–1848. [Google Scholar] [CrossRef]
- Masel, B.E.; Scheibel, R.S.; Kimbark, T.; Kuna, S.T. Excessive Daytime Sleepiness in Adults with Brain Injuries. Arch. Phys. Med. Rehabil. 2001, 82, 1526–1532. [Google Scholar] [CrossRef]
- Nakling, A.E.; Aarsland, D.; Næss, H.; Wollschlaeger, D.; Fladby, T.; Hofstad, H.; Wehling, E. Cognitive Deficits in Chronic Stroke Patients: Neuropsychological Assessment, Depression, and Self-Reports. Dement. Geriatr. Cogn. Dis. Extra 2017, 7, 283–296. [Google Scholar] [CrossRef]
- Chen, A.; Bushmeneva, K.; Zagorski, B.; Colantonio, A.; Parsons, D.; Wodchis, W.P. Direct Cost Associated with Acquired Brain Injury in Ontario. BMC Neurol. 2012, 12, 76. [Google Scholar] [CrossRef]
- Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Ekman, M.; Faravelli, C.; Fratiglioni, L.; et al. Cost of Disorders of the Brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 718–779. [Google Scholar] [CrossRef]
- Langhorne, P.; O’Donnell, M.J.; Chin, S.L.; Zhang, H.; Xavier, D.; Avezum, A.; Mathur, N.; Turner, M.; MacLeod, M.J.; Lopez-Jaramillo, P.; et al. Practice Patterns and Outcomes After Stroke Across Countries at Different Economic Levels (INTERSTROKE): An International Observational Study. Lancet 2018, 391, 2019–2027. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, H.; Wu, X.; Sun, Y.; Yao, H.; Zhou, L.; Hu, J. Characteristics of Acute Treatment Costs of Traumatic Brain Injury in Eastern China: A Multi-Centre Prospective Observational Study. Injury 2012, 43, 2094–2099. [Google Scholar] [CrossRef]
- Andelic, N.; Howe, E.I.; Hellstrøm, T.; Sanchez, M.F.; Lu, J.; Løvstad, M.; Røe, C. Disability and Quality of Life 20 Years After Traumatic Brain Injury. Brain Behav. 2018, 8, e01018. [Google Scholar] [CrossRef] [PubMed]
- Federación Española de Daño Cerebral FEDACE. Available online: https://fedace.org/index.php?V_dir=MSC&V_mod=shownews&idn=1867 (accessed on 30 July 2024).
- Des Roches, C.A.; Kiran, S. Technology-Based Rehabilitation to Improve Communication After Acquired Brain Injury. Front. Neurosci. 2017, 11, 382. [Google Scholar] [CrossRef]
- Geraldo, A.; Dores, A.R.; Coelho, B.; Ramião, E.; Castro-Caldas, A.; Barbosa, F. Efficacy of ICT-Based Neurocognitive Rehabilitation Programs for Acquired Brain Injury. Eur. Psychol. 2018, 23, 250–264. [Google Scholar] [CrossRef]
- Fernandez, E.; Bergado Rosado, J.A.; Rodriguez Perez, D.; Salazar Santana, S.; Torres Aguilar, M.; Bringas, M.L. Effectiveness of a Computer-Based Training Program of Attention and Memory in Patients with Acquired Brain Damage. Behav. Sci. 2017, 8, 4. [Google Scholar] [CrossRef]
- Gil-Pagés, M.; Solana, J.; Sánchez-Carrión, R.; Tormos, J.M.; Enseñat-Cantallops, A.; García-Molina, A. A Customized Home-Based Computerized Cognitive Rehabilitation Platform for Patients with Chronic-Stage Stroke: Study Protocol for a Randomized Controlled Trial. Trials 2018, 19, 191. [Google Scholar] [CrossRef]
- Erlanger, D.M.; Kaushik, T.; Broshek, D.; Freeman, J.; Feldman, D.; Festa, J. Development and Validation of a Web-Based Screening Tool for Monitoring Cognitive Status. J. Head Trauma Rehabil. 2002, 17, 458–476. [Google Scholar] [CrossRef]
- Maruff, P.; Thomas, E.; Cysique, L.; Brew, B.; Collie, A.; Snyder, P.; Pietrzak, R.H. Validity of the CogState Brief Battery: Relationship to Standardized Tests and Sensitivity to Cognitive Impairment in Mild Traumatic Brain Injury, Schizophrenia, and AIDS Dementia Complex. Arch. Clin. Neuropsychol. 2009, 24, 165–178. [Google Scholar] [CrossRef]
- Bauer, R.M.; Iverson, G.L.; Cernich, A.N.; Binder, L.M.; Ruff, R.M.; Naugle, R.I. Computerized Neuropsychological Assessment Devices: Joint Position Paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. Arch. Clin. Neuropsychol. 2012, 27, 362–373. [Google Scholar] [CrossRef]
- Mataix-Cols, D.; Bartrés-Faz, D. Is the Use of the Wooden and Computerized Versions of the Tower of Hanoi Puzzle Equivalent? Appl. Neuropsychol. 2002, 9, 117–120. [Google Scholar] [CrossRef]
- Schatz, P.; Browndyke, J. Applications of Computer-Based Neuropsychological Assessment. J. Head. Trauma. Rehabil. 2002, 17, 395–410. [Google Scholar] [CrossRef]
- Woo, E. Computerized Neuropsychological Assessments. CNS Spectr. 2008, 13, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.D.; LaRoche, A.A.; Pfaller, A.Y.; Lerner, E.B.; Hammeke, T.A.; Randolph, C.; Barr, W.B.; Guskiewicz, K.; McCrea, M.A. Prospective, Head-to-Head Study of Three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and Validity for the Assessment of Sport-Related Concussion. J. Int. Neuropsychol. Soc. 2016, 22, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Rute-Pérez, S.; Santiago-Ramajo, S.; Hurtado, M.V.; Rodríguez-Fórtiz, M.J.; Caracuel, A. Challenges in Software Applications for the Cognitive Evaluation and Stimulation of the Elderly. J. NeuroEng. Rehabil. 2014, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Rute-Pérez, S.; Rodríguez-Domínguez, C.; Vélez-Coto, M.; Pérez-García, M.; Caracuel, A. Effectiveness of Computerized Cognitive Training by VIRTRAEL on Memory and Executive Function in Older People: A Pilot Study. Brain Sci. 2023, 13, 684. [Google Scholar] [CrossRef]
- MacKenzie, D.M.; Copp, P.; Shaw, R.J.; Goodwin, G.M. Brief Cognitive Screening of the Elderly: A Comparison of the Mini-Mental State Examination (MMSE), Abbreviated Mental Test (AMT) and Mental Status Questionnaire (MSQ). Psychol. Med. 1996, 26, 427–430. [Google Scholar] [CrossRef]
- Brickenkamp, R.; Zillmer, E. The D2 Test of Attention; Hogrefe & Huber Pub: Göttingen, Germany, 1998. [Google Scholar]
- Wechsler. WAIS-III: Escala de Inteligencia de Wechsler Para Adultos; TEA Ediciones: Madrid, Spain, 1999. [Google Scholar]
- Brandt, J. The Hopkins Verbal Learning Test: Development of a New Memory Test with Six Equivalent Forms. Clin. Neuropsychol. 1991, 5, 125–142. [Google Scholar] [CrossRef]
- Wilson, B.A.; Alderman, N.; Burgess, P.W.; Emslie, H.; Evans, J.J. Behavioural Assessment of the Dysexecutiv e Syndrome; Thames Valley Test Company: Bury St Edmunds, UK, 1996. [Google Scholar]
- Rodríguez, M.; Rodríguez-Fórtiz, M.; Hornos, M.; Samos, J.; Rodríguez-Domínguez, C.; Rute-Pérez, S. Design Guide and Usability Questionnaire to Develop and Assess VIRTRAEL, a Web-Based Cognitive Training Tool for the Elderly. Behav. Inf. Technol. 2020, 40, 1355–1374. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Bisquerra Alzina, R. Metodología de la Investigación Educativa; La Muralla: Madrid, Spain, 2004; ISBN 978-84-7133-748-1. [Google Scholar]
- Fasfous, A.F.; Peralta-Ramirez, M.I.; Pérez-Marfil, M.N.; Cruz-Quintana, F.; Catena-Martinez, A.; Pérez-García, M. Reliability and Validity of the Arabic Version of the Computerized Battery for Neuropsychological Evaluation of Children (BENCI). Child. Neuropsychol. 2015, 21, 210–224. [Google Scholar] [CrossRef]
- Chan, R.C.K.; Shum, D.; Toulopoulou, T.; Chen, E.Y.H. Assessment of Executive Functions: Review of Instruments and Identification of Critical Issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.d.C.; Machado, W.d.L.; da Fontoura, D.R.; Almeida, A.G.; Brondani, R.; Martins, S.O.; Ruschel Bandeira, D.; de Salles, J.F. What Neuropsychological Functions Best Discriminate Performance in Adults Post-Stroke? Appl. Neuropsychol. Adult 2018, 26, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Espeland, M.A.; Katula, J.A.; Rushing, J.; Kramer, A.F.; Jennings, J.M.; Sink, K.M.; Nadkarni, N.K.; Reid, K.F.; Castro, C.M.; Church, T.; et al. Performance of a Computer-Based Assessment of Cognitive Function Measures in Two Cohorts of Seniors. Int. J. Geriatr. Psychiatry 2013, 28, 1239–1250. [Google Scholar] [CrossRef]
- Fernández Martínez, E.; Fernández Castro, Y.; Crespo Moinelo, M.C.; Fernández Martínez, E.; Fernández Castro, Y.; Crespo Moinelo, M.C. Integración de Las Tecnologías de La Información y La Comunicación En La Intervención Neuropsicológica. Rev. Cuba. Inf. Cienc. Salud 2020, 31, 1–17. [Google Scholar]
- Gualtieri, C.T.; Johnson, L.G. A Computerized Test Battery Sensitive to Mild and Severe Brain Injury. Medscape J. Med. 2008, 10, 90. [Google Scholar]
- Arrieux, J.P.; Cole, W.R.; Ahrens, A.P. A Review of the Validity of Computerized Neurocognitive Assessment Tools in Mild Traumatic Brain Injury Assessment. Concussion 2017, 2, CNC31. [Google Scholar] [CrossRef]
- Cahn-Weiner, D.A.; Farias, S.T.; Julian, L.; Harvey, D.J.; Kramer, J.H.; Reed, B.R.; Mungas, D.; Wetzel, M.; Chui, H. Cognitive and Neuroimaging Predictors of Instrumental Activities of Daily Living. J. Int. Neuropsychol. Soc. 2007, 13, 747–757. [Google Scholar] [CrossRef]
- Raimo, S.; Maggi, G.; Ilardi, C.R.; Cavallo, N.D.; Torchia, V.; Pilgrom, M.A.; Cropano, M.; Roldán-Tapia, M.D.; Santangelo, G. The Relation Between Cognitive Functioning and Activities of Daily Living in Normal Aging, Mild Cognitive Impairment, and Dementia: A Meta-Analysis. Neurol. Sci. 2024, 45, 2427–2443. [Google Scholar] [CrossRef]
- Boyle, P.A.; Cohen, R.A.; Paul, R.; Moser, D.; Gordon, N. Cognitive and Motor Impairments Predict Functional Declines in Patients with Vascular Dementia. Int. J. Geriatr. Psychiatry 2002, 17, 164–169. [Google Scholar] [CrossRef]
- Perneczky, R.; Pohl, C.; Sorg, C.; Hartmann, J.; Komossa, K.; Alexopoulos, P.; Wagenpfeil, S.; Kurz, A. Complex Activities of Daily Living in Mild Cognitive Impairment: Conceptual and Diagnostic Issues. Age Ageing 2006, 35, 240–245. [Google Scholar] [CrossRef]
- Tramontano, M.; Argento, O.; Manocchio, N.; Piacentini, C.; Bustos, A.S.O.; Angelis, S.D.; Bossa, M.; Nocentini, U. Dynamic Cognitive–Motor Training Versus Cognitive Computer-Based Training in People with Multiple Sclerosis: A Preliminary Randomized Controlled Trial with 2-Month Follow-Up. J. Clin. Med. 2024, 13, 2664. [Google Scholar] [CrossRef]
Cognitive Domain | Standardized Tests | VIRTRAEL Tests |
---|---|---|
Attention | d2 test | Pyramids |
Digits (WAIS-III) | Numbers | |
Learning and verbal memory | HVLT-R | List of Words |
Working memory | Letters and Numbers (WAIS-III) | Numbers and Vowels |
Reasoning | Matrix (WAIS-III) | Logical Series |
Similarities (WAIS-III) | Semantic Series | |
Planning | Zoo maps-version 1 (BADS) | Parcel delivery |
Cognitive Domains | Standard Format | Computerized Format VIRTRAEL | r/Rho (p) | ||
---|---|---|---|---|---|
Index (Test) | Mean (SD) | Index (Test) | Mean (SD) | ||
Attention | Hits (d2) | 110.22 (42.46) | Hits (Pyramids) | 82.75 (35.37) | 0.783 (p < 0.001) |
Concentration (d2) | 107.72 (44.49) | Concentration (Pyramids) | 78.94 (38.66) | 0.780 (p < 0.001) | |
Span attention (Digits, WAIS-III) | 7.63 (2.18) | Span attention (Numbers) | 8.03 (3.10) | 0.711 (p < 0.001) | |
Learning-verbal memory | Trial 3 learning (HVLT-R) | 8.66 (2.50) | Trial 3 learning (List of Words) | 8.13 (2.68) | 0.771 (p < 0.001) |
Total learning (HVLT-R) | 22.78 (6.78) | Total learning (List of Words) | 20.47 (8.35) | 0.806 (p < 0.001) | |
Delayed recall (HVLT-R) | 7.41 (2.90) | Delayed recall (List of Words) | 5.70 (3.14) | 0.818 (p < 0.001) | |
Recognition (HVLT-R) | 10.69 (1.71) | Recognition (List of Words) | 10.71 (1.79) | 0.113 (p = 0.546) | |
Working memory | Letters and Numbers (WAIS-III) | 7.13 (2.83) | Numbers and Vowels | 7.87 (3.81) | 0.662 (p < 0.001) |
Reasoning | Matrix (WAIS-III) | 10.81 (5.57) | Logical Series | 2.53 (1.31) | 0.444 (p = 0.011) |
Similarities (WAIS-II) | 16.75 (5.68) | Semantic Series | 4.25 (0.84) | 0.207 (p = 0.255) | |
Planning | Zoo maps-version 1 (BADS) | −0.94 (5.64) | Parcel delivery | 5.64 (1.11) | 0.408 (p = 0.02) |
Attention | Memory | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Attentional Span | Concentration | Learning | Long-Term Memory | |||||||||
Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | |
Digits | Numbers | d2-CON | PYR-CON | HVLT-R-trial3 | LW-trial3 | HVLT-R-LearT | LW-LearT | HVLT-R-Delayed | LW-Delayed | HVLT-R-Recog | LW-Recog | |
d2-CON | 0.413 * | 0.544 ** | - | 0.780 ** | 0.403 * | 0.560 ** | 0.407 * | 0.3 a | 0.410 * | 0.404 * | 0.378 * | −0.226 |
HVLT-R-trial3 | 0.155 | 0.164 | 0.403 * | 0.452 ** | - | 0.771 ** | 0.960 ** | 0.811 ** | 0.855 ** | 0.844 ** | 0.668 ** | 0.118 |
HVLT-R-LearT | 0.171 | 0.207 | 0.407 * | 0.472 ** | 0.960 ** | 0.706 ** | - | 0.806 ** | 0.833 ** | 0.828 ** | 0.677 ** | 0.038 |
HVLT-R-delayed | 0.17 | 0.136 | 0.410 * | 0.379 * | 0.855 ** | 0.686 ** | 0.833 ** | 0.689 ** | - | 0.818 ** | 0.786 ** | 0.249 |
HVLT-R-recog | 0.07 | 0.216 | 0.378 * | 0.374 * | 0.668 ** | 0.543 ** | 0.677 ** | 0.468 ** | 0.786 ** | 0.664 ** | - | 0.113 |
Digits | - | 0.711 ** | 0.413 * | 0.354 * | 0.155 | 0.238 | 0.171 | 0.118 | 0.017 | 0.124 | 0.216 | 0.07 |
L&N | 0.677 ** | 0.645 ** | 0.673 ** | 0.690 ** | 0.376 * | 0.397 * | 0.363 * | 0.223 | 0.443 * | 0.344 b | 0.449 * | −0.257 |
Matrix | 0.414 * | 0.591 ** | 0.577 ** | 0.465 ** | 0.347 | 0.444 * | 0.294 | 0.202 | 0.396 * | 0.418 * | 0.366 * | 0.097 |
Similarities | 0.429 * | 0.317 | 0.428 * | 0.451 ** | 0.366 * | 0.562 ** | 0.468 ** | 0.498 ** | 0.296 | 0.321 | 0.224 | −0.214 |
Zoo maps | 0.238 | 0.333 | 0.366 * | 0.404 * | 0.401 * | 0.474 ** | 0.706 ** | 0.311 b | 0.507 ** | 0.515 ** | 0.663 ** | 0.17 |
Executive Function | ||||||||
---|---|---|---|---|---|---|---|---|
Working Memory | Reasoning | Planning | ||||||
Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | Standard | VIRTRAEL | |
L&N | N&V | Matrix | S. Log | Similarities | S. Sem | Zoo Maps | Parcel | |
d2-CON | 0.673 ** | 0.746 ** | 0.577 ** | 0.529 ** | 0.428 * | −0.063 | 0.366 * | 0.665 ** |
HVLT-R-trial3 | 0.376 * | 0.437 * | 0.347 | 0.316 | 0.366 * | 0.053 | 0.401 * | 0.165 |
HVLT-R-LearT | 0.363 * | 0.409 * | 0.294 | 0.328 | 0.468 ** | 0.02 | 0.706 ** | 0.170 |
HVLT-R-delayed | 0.443 * | 0.433 * | 0.396 * | 0.325 a | 0.296 | 0.003 | 0.507 ** | 0.247 |
HVLT-R-recog | 0.449 * | 0.287 | 0.366 * | 0.355 ** | 0.224 | 0.088 | 0.663 ** | 0.287 |
Digits | 0.677 ** | 0.427 * | 0.414 * | 0.318 | 0.429 * | 0.114 | 0.238 | 0.366 * |
L&N | - | 0.662 ** | 0.567 ** | 0.519 ** | 0.544 ** | 0.046 | 0.437 * | 0.660 ** |
Matrix | 0.414 * | 0.371 * | - | 0.444 * | 0.472 ** | 0.096 | 0.638 ** | 0.482 ** |
Similarities | 0.429 * | 0.224 | 0.544 ** | 0.24 | - | 0.207 | 0.427 * | 0.128 |
Zoo maps | 0.238 | 0.315 | 0.437 * | 0.315 b | 0.638 ** | 0.102 | - | 0.408 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rute-Pérez, S.; Rodríguez-Domínguez, C.; Sáez-Sanz, N.; Pérez-García, M.; Caracuel, A. Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study. J. Clin. Med. 2025, 14, 2153. https://doi.org/10.3390/jcm14072153
Rute-Pérez S, Rodríguez-Domínguez C, Sáez-Sanz N, Pérez-García M, Caracuel A. Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study. Journal of Clinical Medicine. 2025; 14(7):2153. https://doi.org/10.3390/jcm14072153
Chicago/Turabian StyleRute-Pérez, Sandra, Carlos Rodríguez-Domínguez, Noelia Sáez-Sanz, Miguel Pérez-García, and Alfonso Caracuel. 2025. "Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study" Journal of Clinical Medicine 14, no. 7: 2153. https://doi.org/10.3390/jcm14072153
APA StyleRute-Pérez, S., Rodríguez-Domínguez, C., Sáez-Sanz, N., Pérez-García, M., & Caracuel, A. (2025). Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study. Journal of Clinical Medicine, 14(7), 2153. https://doi.org/10.3390/jcm14072153