Optical Imaging of Cilia in the Head and Neck
Abstract
:1. Introduction
2. Structure and Function of Cilia
2.1. Anatomy of Cilia: Structure and Classification
2.2. Physiological Roles of Cilia
2.3. Imaging of Cilia
2.3.1. Ciliary Beat Frequency
2.3.2. Airway Surface Liquid and Periciliary Layer
2.3.3. Mucociliary Transport and Bulk Flow
3. Optical Imaging
3.1. General Principles, Advantages, and Limitations of Optical Imaging
3.2. Epifluorescence, Confocal, and Phase-Contrast Microscopy
3.3. Optical Coherence Tomography
3.3.1. Principle of Interferometry
3.3.2. Types of Imaging Systems
3.3.3. Advanced Imaging Techniques
3.3.4. Technical Considerations in Imaging of Cilia
3.3.5. Strategies to Improve Imaging of Cilia
4. Applications of Optical Imaging of Cilia
4.1. Cilia Dynamics
4.1.1. Ex Vivo Animal Models
4.1.2. In Vivo Animal Models
4.1.3. Ex Vivo Cell Cultures and Human Models
4.1.4. In Vivo Human Models
4.2. Ciliopathy
4.2.1. Primary Ciliary Dyskinesia
4.2.2. Cystic Fibrosis
4.2.3. Chronic Obstructive Pulmonary Disease
4.2.4. Chronic Sinusitis
4.2.5. COVID-19
4.2.6. Hyperoxia
4.2.7. Congenital Hydrocephalus
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ansari, R.; Buj, C.; Pieper, M.; König, P.; Schweikard, A.; Hüttmann, G. Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy. Opt. Express 2015, 23, 23217–23224. [Google Scholar] [CrossRef] [PubMed]
- Koparal, M.; Kurt, E.; Altuntas, E.E.; Dogan, F. Assessment of mucociliary clearance as an indicator of nasal function in patients with COVID-19: A cross-sectional study. Eur. Arch. Otorhinolaryngol. 2021, 278, 1863–1868. [Google Scholar] [CrossRef]
- Huang, B.K.; Choma, M.A. Microscale imaging of cilia-driven fluid flow. Cell Mol. Life Sci. 2014, 72, 1095–1113. [Google Scholar] [CrossRef] [PubMed]
- Afzelius, B. Cilia-related diseases. J. Pathol. 2004, 204, 470–477. [Google Scholar] [CrossRef]
- Liu, L.; Chu, K.K.; Houser, G.H.; Diephuis, B.J.; Li, Y.; Wilsterman, E.J.; Shastry, S.; Dierksen, G.; Birket, S.E.; Mazur, M.; et al. Method for Quantitative Study of Airway Functional Microanatomy Using Micro-Optical Coherence Tomography. PLoS ONE 2013, 8, e54473. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; An, F.; Yang, S.; Yu, N.; Chen, D.; Chen, L. In vivo and in vitro observation of nasal ciliary motion in a guinea pig model. Exp. Biol. Med. 2020, 245, 1039–1048. [Google Scholar] [CrossRef]
- Kosaka, N.; McCann, T.E.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine 2010, 5, 765–776. [Google Scholar] [CrossRef]
- Jayaraman, S.; Song, Y.; Vetrivel, L.; Shankar, L.; Verkman, A.S. Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J. Clin. Investig. 2001, 107, 317–324. [Google Scholar] [CrossRef]
- Griesenbach, U.; Soussi, S.; Larsen, M.B.; Casamayor, I.; Dewar, A.; Regamey, N.; Bush, A.; Shah, P.L.; Davies, J.C.; Alton, E.W.F.W. Quantification of Periciliary Fluid Height in Human Airway Biopsies Is Feasible, but Not Suitable as a Biomarker. Am. J. Respir. Cell Mol. Biol. 2011, 44, 309–315. [Google Scholar] [CrossRef]
- Ballard, S.T.; Trout, L.; Mehta, A.; Inglis, S.K. Liquid secretion inhibitors reduce mucociliary transport in glandular airways. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2002, 283, L329–L335. [Google Scholar] [CrossRef]
- Di Benedetto, G.; Magnus, C.J.; Gray, P.T.; Mehta, A. Calcium regulation of ciliary beat frequency in human respiratory epithelium in vitro. J. Physiol. 1991, 439, 103–113. [Google Scholar] [CrossRef]
- Shei, R.-J.; Peabody, J.E.; Rowe, S.M. Functional Anatomic Imaging of the Airway Surface. Ann. Am. Thorac. Soc. 2018, 15, S177–S183. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.K.; Gamm, U.A.; Bhandari, V.; Khokha, M.K.; Choma, M.A. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography. Biomed. Opt. Express 2015, 6, 3515–3538. [Google Scholar] [CrossRef] [PubMed]
- Davenport, J.R.; Yoder, B.K. An incredible decade for the primary cilium: A look at a once-forgotten organelle. Am. J. Physiol.-Ren. Physiol. 2005, 289, F1159–F1169. [Google Scholar] [CrossRef] [PubMed]
- Beisson, J.; Wright, M. Basal body/centriole assembly and continuity. Curr. Opin. Cell Biol. 2003, 15, 96–104. [Google Scholar] [CrossRef]
- Satir, P.; Christensen, S.T. Overview of Structure and Function of Mammalian Cilia. Annu. Rev. Physiol. 2007, 69, 377–400. [Google Scholar] [CrossRef]
- Porter, M.E.; Sale, W.S. The 9 + 2 Axoneme Anchors Multiple Inner Arm Dyneins and a Network of Kinases and Phosphatases That Control Motility. J. Cell Biol. 2000, 151, 37–42. [Google Scholar] [CrossRef]
- Cooper, G.M. Microtubule Motors and Movements. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK9833/ (accessed on 20 November 2024).
- Satir, P.; Heuser, T.; Sale, W.S. A Structural Basis for How Motile Cilia Beat. Bioscience 2014, 64, 1073–1083. [Google Scholar] [CrossRef]
- Hua, K.; Ferland, R.J. Primary cilia proteins: Ciliary and extraciliary sites and functions. Cell Mol. Life Sci. 2018, 75, 1521–1540. [Google Scholar] [CrossRef]
- Jonas, S.; Bhattacharya, D.; Khokha, M.K.; Choma, M.A. Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry. Biomed. Opt. Express 2011, 2, 2022–2034. [Google Scholar] [CrossRef]
- Okada, Y.; Takeda, S.; Tanaka, Y.; Belmonte, J.-C.I.; Hirokawa, N. Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell 2005, 121, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Colantonio, J.R.; Vermot, J.; Wu, D.; Langenbacher, A.D.; Fraser, S.; Chen, J.-N.; Hill, K.L. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 2009, 457, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Gan, L.; Liu, C.; Xu, T.; Zhou, S.; Guo, Y.; Zhang, Z.; Yang, G.-Y.; Tian, H.; Tang, Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis. 2023, 14, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Chilvers, M.; O’Callaghan, C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax 2000, 55, 314–317. [Google Scholar] [CrossRef]
- Peabody, J.E.; Shei, R.-J.; Bermingham, B.M.; Phillips, S.E.; Turner, B.; Rowe, S.M.; Solomon, G.M. Seeing cilia: Imaging modalities for ciliary motion and clinical connections. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L909–L921. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017, 9, a028241. [Google Scholar] [CrossRef]
- He, Y.; Qu, Y.; Jing, J.C.; Chen, Z. Characterization of oviduct ciliary beat frequency using real time phase resolved Doppler spectrally encoded interferometric microscopy. Biomed. Opt. Express 2019, 10, 5650–5659. [Google Scholar] [CrossRef]
- Christensen, S.T.; Pedersen, L.B.; Schneider, L.; Satir, P. Sensory Cilia and Integration of Signal Transduction in Human Health and Disease. Traffic 2007, 8, 97–109. [Google Scholar] [CrossRef]
- Anvarian, Z.; Mykytyn, K.; Mukhopadhyay, S.; Pedersen, L.B.; Christensen, S.T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 2019, 15, 199–219. [Google Scholar] [CrossRef]
- Fawcett, D.W.; Porter, K.R. A study of the fine structure of ciliated epithelia. J. Morphol. 1954, 94, 221–281. [Google Scholar] [CrossRef]
- Rezaei, M.; Soheili, A.; Ziai, S.A.; Fakharian, A.; Toreyhi, H.; Pourabdollah, M.; Ghorbani, J.; Karimi-Galougahi, M.; Mahdaviani, S.A.; Hasanzad, M.; et al. Transmission electron microscopy study of suspected primary ciliary dyskinesia patients. Sci. Rep. 2022, 12, 2375. [Google Scholar] [CrossRef] [PubMed]
- Dalhamn, T.; Rylander, R. Frequency of Ciliary Beat measured with a Photo-sensitive Cell. Nature 1962, 196, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.T.; Moninger, T.; Debavalya, N.; Hsu, W.H. Use of confocal linescan to document ciliary beat frequency. J. Microsc. 2006, 223, 159–164. [Google Scholar] [CrossRef]
- Roomans, G.M.; Kozlova, I.; Nilsson, H.; Vanthanouvong, V.; Button, B.; Tarran, R. Measurements of airway surface liquid height and mucus transport by fluorescence microscopy, and of ion composition by X-ray microanalysis. J. Cyst. Fibros. 2004, 3, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Randell, S.H.; Peretti, S.W.; Davis, C.W.; Boucher, R.C. Coordinated Clearance of Periciliary Liquid and Mucus from Airway Surfaces. J. Clin. Investig. 1998, 102, 1125–1131. [Google Scholar] [CrossRef]
- Milana, E.; Zhang, R.; Vetrano, M.R.; Peerlinck, S.; De Volder, M.; Onck, P.R.; Reynaerts, D.; Gorissen, B. Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Sci. Adv. 2020, 6, eabd2508. [Google Scholar] [CrossRef]
- Sher, A.C.; Stacy, M.R.; Reynolds, S.D.; Chiang, T. In vivo detection of pulmonary mucociliary clearance: Present challenges and future directions. Eur. Respir. Rev. 2024, 33, 240073. [Google Scholar] [CrossRef]
- Song, E.; Iwasaki, A. Method for Measuring Mucociliary Clearance and Cilia-generated Flow in Mice by ex vivo Imaging. Bio-protocol 2020, 10, e3554. [Google Scholar] [CrossRef]
- Ling, Y.; Yao, X.; Gamm, U.A.; Arteaga-Solis, E.; Emala, C.W.; Choma, M.A.; Hendon, C.P. Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography. Lasers Surg. Med. 2017, 49, 270–279. [Google Scholar] [CrossRef]
- Popescu, D.P.; Choo-Smith, L.-P.; Flueraru, C.; Mao, Y.; Chang, S.; Disano, J.; Sherif, S.; Sowa, M.G. Optical coherence tomography: Fundamental principles, instrumental designs and biomedical applications. Biophys. Rev. 2011, 3, 155. [Google Scholar] [CrossRef]
- Dhawan, A.P.; D’Alessandro, B.; Fu, X. Optical Imaging Modalities for Biomedical Applications. IEEE Rev. Biomed. Eng. 2010, 3, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Torigian, D.A.; Huang, S.S.; Houseni, M.; Alavi, A. Functional Imaging of Cancer with Emphasis on Molecular Techniques. CA Cancer J. Clin. 2007, 57, 206–224. [Google Scholar] [CrossRef]
- Lemieux, B.T.; Chen, J.J.; Jing, J.; Chen, Z.; Wong, B.J.F. Measurement of ciliary beat frequency using Doppler optical coherence tomography. Int. Forum Allergy Rhinol. 2015, 5, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jing, J.C.; Qu, Y.; Wong, B.J.; Chen, Z. Spatial mapping of tracheal ciliary beat frequency using real time phase-resolved Doppler spectrally encoded interferometric microscopy. ACS Photonics 2020, 7, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Jing, J.C.; Chou, L.; Zhu, Z.; Wong, B.J.F.; Chen, Z. Phase-resolved dynamic wavefront imaging of cilia metachronal waves. Quant. Imaging Med. Surg. 2023, 13, 2364–2375. [Google Scholar] [CrossRef]
- Jing, J.C.; Chen, J.J.; Chou, L.; Wong, B.J.F.; Chen, Z. Visualization and Detection of Ciliary Beating Pattern and Frequency in the Upper Airway using Phase Resolved Doppler Optical Coherence Tomography. Sci. Rep. 2017, 7, 8522. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef]
- Honzel, E.; Joshi, A.; Hernandez-Morato, I.; Pennington-FitzGerald, W.; Pitman, M.J. A comparison of confocal and epifluorescence microscopy for quantification of RNAScope and immunohistochemistry fluorescent images. J. Neurosci. Methods 2024, 403, 110050. [Google Scholar] [CrossRef]
- Yin, Z.; Kanade, T.; Chen, M. Understanding the Phase Contrast Optics to Restore Artifact-free Microscopy Images for Segmentation. Med. Image Anal. 2012, 16, 1047–1062. [Google Scholar] [CrossRef]
- Baručić, D.; Kaushik, S.; Kybic, J.; Stanková, J.; Džubák, P.; Hajdúch, M. Characterization of drug effects on cell cultures from phase-contrast microscopy images. Comput. Biol. Med. 2022, 151, 106171. [Google Scholar] [CrossRef]
- Umezu, K.; Larina, I.V. Optical coherence tomography for dynamic investigation of mammalian reproductive processes. Mol. Reprod. Dev. 2023, 90, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Pircher, M.; Zawadzki, R.J. Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging. Biomed. Opt. Express 2017, 8, 2536–2562. [Google Scholar] [CrossRef] [PubMed]
- Volgger, V.; Sharma, G.K.; Jing, J.; Peaks, Y.-S.A.; Loy, A.C.; Lazarow, F.; Wang, A.; Qu, Y.; Su, E.; Chen, Z.; et al. Long-range Fourier domain optical coherence tomography of the pediatric subglottis. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shastry, S.; Byan-Parker, S.; Houser, G.; Chu, K.K.; Birket, S.E.; Fernandez, C.M.; Gardecki, J.A.; Grizzle, W.E.; Wilsterman, E.J.; et al. An Autoregulatory Mechanism Governing Mucociliary Transport Is Sensitive to Mucus Load. Am. J. Respir. Cell Mol. Biol. 2014, 51, 485–493. [Google Scholar] [CrossRef]
- Patel, R.; Achamfuo-Yeboah, S.; Light, R.; Clark, M. Widefield two laser interferometry. Opt. Express 2014, 22, 27094–27101. [Google Scholar] [CrossRef]
- Pitris, C.; Brezinski, M.E.; Bouma, B.E.; Tearney, G.J.; Southern, J.F.; Fujimoto, J.G. High Resolution Imaging of the Upper Respiratory Tract with Optical Coherence Tomography. Am. J. Respir. Crit. Care Med. 1998, 157, 1640–1644. [Google Scholar] [CrossRef]
- Zhang, J.; Mazlin, V.; Fei, K.; Boccara, A.C.; Yuan, J.; Xiao, P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther. Adv. Chronic Dis. 2023, 14, 20406223231170146. [Google Scholar] [CrossRef]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-16637-3. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554044/ (accessed on 26 January 2025).
- Vakoc, B.J.; Yun, S.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E. Phase-resolved optical frequency domain imaging. Opt. Express 2005, 13, 5483–5493. [Google Scholar] [CrossRef]
- Boudoux, C.; Yun, S.H.; Oh, W.Y.; White, W.M.; Iftimia, N.V.; Shishkov, M.; Bouma, B.E.; Tearney, G.J. Rapid wavelength-swept spectrally encoded confocal microscopy. Opt. Express 2005, 13, 8214–8221. [Google Scholar] [CrossRef]
- Yelin, D.; White, W.M.; Motz, J.T.; Yun, S.H.; Bouma, B.E.; Tearney, G.J. Spectral-domain spectrally-encoded endoscopy. Opt. Express 2007, 15, 2432–2444. [Google Scholar] [CrossRef]
- Zhou, K.C.; Huang, B.K.; Gamm, U.A.; Bhandari, V.; Khokha, M.K.; Choma, M.A. Particle streak velocimetry-optical coherence tomography: A novel method for multidimensional imaging of microscale fluid flows. Biomed. Opt. Express 2016, 7, 1590–1603. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Patarroyo, N.; Post, A.L.; Ruiz-Lopera, S.; Faber, D.J.; Bouma, B.E. Noise and bias in optical coherence tomography intensity signal decorrelation. OSA Contin. 2020, 3, 709–741. [Google Scholar] [CrossRef]
- Scholler, J. Motion artifact removal and signal enhancement to achieve in vivo dynamic full field OCT. Opt. Express 2019, 27, 19562–19572. [Google Scholar] [CrossRef] [PubMed]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef]
- Chu, K.K.; Unglert, C.; Ford, T.N.; Cui, D.; Carruth, R.W.; Singh, K.; Liu, L.; Birket, S.E.; Solomon, G.M.; Rowe, S.M.; et al. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography. Biomed. Opt. Express 2016, 7, 2494–2505. [Google Scholar] [CrossRef]
- Tang, T.; Deniz, E.; Khokha, M.K.; Tagare, H.D. Gaussian process post-processing for particle tracking velocimetry. Biomed. Opt. Express 2019, 10, 3196–3216. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Chu, K.K.; Yin, B.; Ford, T.N.; Hyun, C.; Leung, H.M.; Gardecki, J.A.; Solomon, G.M.; Birket, S.E.; Liu, L.; et al. Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia. Opt. Lett. 2017, 42, 867–870. [Google Scholar] [CrossRef]
- Yin, B.; Hyun, C.; Gardecki, J.A.; Tearney, G.J. Extended depth of focus for coherence-based cellular imaging. Optica 2017, 4, 959–965. [Google Scholar] [CrossRef]
- Svartengren, K.; Wiman, L.G.; Thyberg, P.; Rigler, R. Laser light scattering spectroscopy: A new method to measure tracheobronchial mucociliary activity. Thorax 1989, 44, 539–547. [Google Scholar] [CrossRef]
- Oldenburg, A.L.; Chhetri, R.K.; Hill, D.B.; Button, B. Monitoring airway mucus flow and ciliary activity with optical coherence tomography. Biomed. Opt. Express 2012, 3, 1978–1992. [Google Scholar] [CrossRef]
- Sencan, I.; Huang, B.K.; Bian, Y.; Mis, E.; Khokha, M.K.; Cao, H.; Choma, M. Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology. Biomed. Opt. Express 2016, 7, 4674–4684. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Bu, R.; Iftimia, N.; Price, H.; Zdanski, C.; Oldenburg, A.L. Combined anatomical optical coherence tomography and intraluminal pressure reveal viscoelasticity of the in vivo airway. J. Biomed. Opt. 2018, 23, 100501. [Google Scholar] [CrossRef] [PubMed]
- Tipirneni, K.E.; Grayson, J.W.; Zhang, S.; Cho, D.-Y.; Skinner, D.F.; Lim, D.-J.; Mackey, C.; Tearney, G.J.; Rowe, S.M.; Woodworth, B.A. Assessment of acquired mucociliary clearance defects using micro-optical coherence tomography. Int. Forum Allergy Rhinol. 2017, 7, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Oeler, K.J.; Blackmon, R.L.; Kreda, S.M.; Robinson, T.; Ghelardini, M.; Chapman, B.S.; Tracy, J.; Hill, D.B.; Oldenburg, A.L. In situ pulmonary mucus hydration assay using rotational and translational diffusion of gold nanorods with polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2024, 29, 046004. [Google Scholar] [CrossRef]
- Kohlfaerber, T.; Pieper, M.; Münter, M.; Holzhausen, C.; Ahrens, M.; Idel, C.; Bruchhage, K.-L.; Leichtle, A.; König, P.; Hüttmann, G.; et al. Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways. Biomed. Opt. Express 2022, 13, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Lever, J.E.P.; Turner, K.B.; Fernandez, C.M.; Leung, H.M.; Hussain, S.S.; Shei, R.-J.; Lin, V.Y.; Birket, S.E.; Chu, K.K.; Tearney, G.J.; et al. Metachrony drives effective mucociliary transport via a calcium-dependent mechanism. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2024, 327, L282–L292. [Google Scholar] [CrossRef]
- Schulz-Hildebrandt, H.; Pieper, M.; Stehmar, C.; Ahrens, M.; Idel, C.; Wollenberg, B.; König, P.; Hüttmann, G. Novel endoscope with increased depth of field for imaging human nasal tissue by microscopic optical coherence tomography. Biomed. Opt. Express 2018, 9, 636–647. [Google Scholar] [CrossRef]
- Solomon, G.M.; Francis, R.; Chu, K.K.; Birket, S.E.; Gabriel, G.; Trombley, J.E.; Lemke, K.L.; Klena, N.; Turner, B.; Tearney, G.J.; et al. Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight 2017, 2, e91702. [Google Scholar] [CrossRef] [PubMed]
- Chilvers, M.A.; Rutman, A.; O’Callaghan, C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 2003, 112, 518–524. [Google Scholar] [CrossRef]
- Rossman, C.M.; Forrest, J.B.; Lee, R.M.K.W.; Newhouse, M.T. The Dyskinetic Cilia Syndrome: Ciliary Motility in Immotile Cilia Syndrome. Chest 1980, 78, 580–582. [Google Scholar] [CrossRef]
- Huang, B.K.; Gamm, U.A.; Jonas, S.; Khokha, M.K.; Choma, M.A. Quantitative optical coherence tomography imaging of intermediate flow defect phenotypes in ciliary physiology and pathophysiology. J. Biomed. Opt. 2015, 20, 030502. [Google Scholar] [CrossRef]
- Leung, H.M.; Birket, S.E.; Hyun, C.; Ford, T.N.; Cui, D.; Solomon, G.M.; Shei, R.-J.; Adewale, A.T.; Lenzie, A.R.; Fernandez-Petty, C.M.; et al. Intranasal micro-optical coherence tomography imaging for cystic fibrosis studies. Sci. Transl. Med. 2019, 11, eaav3505. [Google Scholar] [CrossRef]
- Pieper, M.; Schulz-Hildebrandt, H.; Mall, M.A.; Hüttmann, G.; König, P. Intravital microscopic optical coherence tomography imaging to assess mucus-mobilizing interventions for muco-obstructive lung disease in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L518–L524. [Google Scholar] [CrossRef]
- Hessel, J.; Heldrich, J.; Fuller, J.; Staudt, M.R.; Radisch, S.; Hollmann, C.; Harvey, B.-G.; Kaner, R.J.; Salit, J.; Yee-Levin, J.; et al. Intraflagellar Transport Gene Expression Associated with Short Cilia in Smoking and COPD. PLoS ONE 2014, 9, e85453. [Google Scholar] [CrossRef]
- Kaza, N.; Lin, V.Y.; Stanford, D.; Hussain, S.S.; Libby, E.F.; Kim, H.; Borgonovi, M.; Conrath, K.; Mutyam, V.; Byzek, S.A.; et al. Evaluation of a novel CFTR potentiator in COPD ferrets with acquired CFTR dysfunction. Eur. Respir. J. 2022, 60, 2101581. [Google Scholar] [CrossRef]
- Raju, S.V.; Lin, V.Y.; Liu, L.; McNicholas, C.M.; Karki, S.; Sloane, P.A.; Tang, L.; Jackson, P.L.; Wang, W.; Wilson, L.; et al. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am. J. Respir. Cell Mol. Biol. 2017, 56, 99–108. [Google Scholar] [CrossRef]
- Cho, D.-Y.; Mackey, C.; Van Der Pol, W.J.; Skinner, D.; Morrow, C.D.; Schoeb, T.R.; Rowe, S.M.; Swords, W.E.; Tearney, G.J.; Woodworth, B.A. Sinus Microanatomy and Microbiota in a Rabbit Model of Rhinosinusitis. Front. Cell Infect. Microbiol. 2018, 7, 540. [Google Scholar] [CrossRef]
- Li, Q.; Vijaykumar, K.; Phillips, S.E.; Hussain, S.S.; Huynh, N.V.; Fernandez-Petty, C.M.; Lever, J.E.P.; Foote, J.B.; Ren, J.; Campos-Gómez, J.; et al. Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection. JCI Insight 2023, 8, e163962. [Google Scholar] [CrossRef]
- Vijaykumar, K.; Leung, H.M.; Barrios, A.; Fernandez-Petty, C.M.; Solomon, G.M.; Hathorne, H.Y.; Wade, J.D.; Monroe, K.; Slaten, K.B.; Li, Q.; et al. COVID-19 Causes Ciliary Dysfunction as Demonstrated by Human Intranasal Micro-Optical Coherence Tomography Imaging. Am. J. Respir. Cell Mol. Biol. 2022, 69, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Gamm, U.A.; Huang, B.K.; Syed, M.; Zhang, X.; Bhandari, V.; Choma, M.A. Quantifying hyperoxia-mediated damage to mammalian respiratory cilia-driven fluid flow using particle tracking velocimetry optical coherence tomography. J. Biomed. Opt. 2015, 20, 080505. [Google Scholar] [CrossRef]
- Ibañez-Tallon, I.; Pagenstecher, A.; Fliegauf, M.; Olbrich, H.; Kispert, A.; Ketelsen, U.-P.; North, A.; Heintz, N.; Omran, H. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 2004, 13, 2133–2141. [Google Scholar] [CrossRef]
- Date, P.; Ackermann, P.; Furey, C.; Fink, I.B.; Jonas, S.; Khokha, M.K.; Kahle, K.T.; Deniz, E. Visualizing flow in an intact CSF network using optical coherence tomography: Implications for human congenital hydrocephalus. Sci. Rep. 2019, 9, 6196. [Google Scholar] [CrossRef] [PubMed]
- Dur, A.H.; Tang, T.; Viviano, S.; Sekuri, A.; Willsey, H.R.; Tagare, H.D.; Kahle, K.T.; Deniz, E. In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. Fluids Barriers CNS 2020, 17, 72. [Google Scholar] [CrossRef]
- Zeppieri, M.; Marsili, S.; Enaholo, E.S.; Shuaibu, A.O.; Uwagboe, N.; Salati, C.; Spadea, L.; Musa, M. Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. Medicina 2023, 59, 2114. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Chou, L.; Chen, Z.; Wong, B.J.F. Optical Imaging of Cilia in the Head and Neck. J. Clin. Med. 2025, 14, 2059. https://doi.org/10.3390/jcm14062059
Lee E, Chou L, Chen Z, Wong BJF. Optical Imaging of Cilia in the Head and Neck. Journal of Clinical Medicine. 2025; 14(6):2059. https://doi.org/10.3390/jcm14062059
Chicago/Turabian StyleLee, Elizabeth, Lidek Chou, Zhongping Chen, and Brian J. F. Wong. 2025. "Optical Imaging of Cilia in the Head and Neck" Journal of Clinical Medicine 14, no. 6: 2059. https://doi.org/10.3390/jcm14062059
APA StyleLee, E., Chou, L., Chen, Z., & Wong, B. J. F. (2025). Optical Imaging of Cilia in the Head and Neck. Journal of Clinical Medicine, 14(6), 2059. https://doi.org/10.3390/jcm14062059