Indirect Impact of Pandemic on the Diagnosis of New Primary Melanoma: A Retrospective, Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Study Periods
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Interval from Diagnosis to Surgery
3.2. Breslow Thickness
3.3. Tumor Stage
3.4. Tumor-Infiltrating Lymphocytes (TILs)
3.5. Mitosis
3.6. Ulceration
3.7. SLNB
3.8. SLNB Positivity
3.9. Number of Positive Nodes
3.10. Largest Size of Positive Nodes (Tumor Burden)
3.11. Secondary Analysis of the Indirect Impact of the Pandemic Stratified by Sex
4. Discussion
4.1. COVID-19 Pandemic in Italy
4.2. The Impact of the COVID-19 Pandemic on Skin Cancer Screening and Diagnosis
4.3. Diagnosis Delay and Organization During the Pandemic
4.4. Strengths and Implications for Future Pandemics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heistein, J.B.; Acharya, U.; Mukkamalla, S.K.R. Malignant Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Green, A.C.; Williams, G.M.; Logan, V.; Strutton, G.M. Reduced melanoma after regular sunscreen use: Randomized trial follow-up. J. Clin. Oncol. 2011, 29, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Autier, P.; Boyle, P.; Gandini, S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ (Clin. Res. Ed.) 2012, 345, e4757. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Available online: https://gco.iarc.fr/ (accessed on 15 February 2025).
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA A Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 15 February 2025).
- Seretis, K.; Bounas, N.; Gaitanis, G.; Bassukas, I. A Meta-Analysis on the Impact of the COVID-19 Pandemic on Cutaneous Melanoma Diagnosis in Europe. Cancers 2022, 14, 6085. [Google Scholar] [CrossRef]
- Fanning, J.E.; Kalsi, S.; Krag, D.N. Impact of the COVID-19 pandemic on melanoma diagnosis and presentation: A review. Int. J. Dermatol. 2023, 62, 850–856. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.; Diaz-Calvillo, P.; Cuenca-Barrales, C.; Montero-Vilchez, T.; Sanchez-Diaz, M.; Buendia-Eisman, A.; Arias-Santiago, S. Impact of the COVID-19 Pandemic on the Diagnosis and Prognosis of Melanoma. J. Clin. Med. 2022, 11, 4181. [Google Scholar] [CrossRef]
- Jeremić, J.; Suđecki, B.; Radenović, K.; Mihaljević, J.; Radosavljević, I.; Jovanović, M.; Milić, N.; Pavlović, V.; Brašanac, D.; Jović, M. Impact of the COVID-19 Pandemic on Melanoma Diagnosis: Increased Breslow Thickness in Primary Melanomas-A Single Center Experience. Int. J. Environ. Res. Public Health 2022, 19, 16806. [Google Scholar] [CrossRef]
- I Numeri del Cancro in Italia 2023. 2023. Available online: https://www.aiom.it/wp-content/uploads/2023/12/2023_AIOM_NDC-web.pdf (accessed on 15 February 2025).
- Gisondi, P.; Cazzaniga, S.; Di Leo, S.; Piaserico, S.; Bellinato, F.; Pizzolato, M.; Gatti, A.; Eccher, A.; Brunelli, M.; Saraggi, D.; et al. Impact of the COVID-19 pandemic on melanoma diagnosis. J. Eur. Acad. Dermatol. Venereol. JEADV 2021, 35, e714–e715. [Google Scholar] [CrossRef]
- Cariti, C.; Merli, M.; Avallone, G.; Rubatto, M.; Marra, E.; Fava, P.; Caliendo, V.; Picciotto, F.; Gualdi, G.; Stanganelli, I.; et al. Melanoma Management during the COVID-19 Pandemic Emergency: A Literature Review and Single-Center Experience. Cancers 2021, 13, 6071. [Google Scholar] [CrossRef]
- Islam, N.; Sharp, S.J.; Chowell, G.; Shabnam, S.; Kawachi, I.; Lacey, B.; Massaro, J.M.; D’Agostino, R.B., Sr.; White, M. Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. BMJ (Clin. Res. Ed.) 2020, 370, m2743. [Google Scholar] [CrossRef]
- Moynihan, R.; Sanders, S.; Michaleff, Z.A.; Scott, A.M.; Clark, J.; To, E.J.; Jones, M.; Kitchener, E.; Fox, M.; Johansson, M.; et al. Impact of COVID-19 pandemic on utilisation of healthcare services: A systematic review. BMJ Open 2021, 11, e045343. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; McGinty, E.E.; Presskreischer, R.; Barry, C.L. Reports of Forgone Medical Care Among US Adults During the Initial Phase of the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2034882. [Google Scholar] [CrossRef] [PubMed]
- COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: Global predictive modelling to inform surgical recovery plans. Br. J. Surg. 2020, 107, 1440–1449. [Google Scholar]
- Gironi, L.C.; Boggio, P.; Giorgione, R.; Esposto, E.; Tarantino, V.; Damiani, G.; Savoia, P. The impact of COVID-19 pandemics on dermatologic surgery: Real-life data from the Italian Red-Zone. J. Dermatolog. Treat. 2022, 33, 897–903. [Google Scholar] [CrossRef]
- Dorn, F.; Lange, B.; Braml, M.; Gstrein, D.; Nyirenda, J.L.; Vanella, P.; Winter, J.; Fuest, C.; Krause, G. The challenge of estimating the direct and indirect effects of COVID-19 interventions—Toward an integrated economic and epidemiological approach. Econ. Hum. Biol. 2023, 49, 101198. [Google Scholar] [CrossRef]
- Kutlu, Ö.; Güneş, R.; Coerdt, K.; Metin, A.; Khachemoune, A. The effect of the “stay-at-home” policy on requests for dermatology outpatient clinic visits after the COVID-19 outbreak. Dermatol. Ther. 2020, 33, e13581. [Google Scholar] [CrossRef]
- Trepanowski, N.; Chang, M.S.; Zhou, G.; Ahmad, M.; Berry, E.G.; Bui, K.; Butler, W.H.; Chu, E.Y.; Curiel-Lewandrowski, C.; Dellalana, L.E.; et al. Delays in melanoma presentation during the COVID-19 pandemic: A nation- wide multi-institutional cohort study. J. Am. Acad. Dermatol. 2022, 87, 1217–1219. [Google Scholar] [CrossRef]
- Scharf, C.; Brancaccio, G.; Di Stefani, A.; Fargnoli, M.C.; Kittler, H.; Kyrgidis, A.; Lallas, A.; Longo, C.; Malvehy, J.; Moscarella, E.; et al. The association between COVID-19 lockdowns and melanoma diagnosis and 504 thickness: A multicenter retrospective study from Europe. J. Am. Acad. Dermatol. 2022, 87, 648–649. [Google Scholar] [CrossRef]
- Aw, K.; Lau, R.; Nessim, C. Prioritizing Melanoma Surgeries to Prevent Wait Time Delays and Upstaging of Mel-anoma during the COVID-19 Pandemic. Curr. Oncol. 2023, 30, 8328–8337. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 15 February 2025).
- Raccomandazioni per la Gestione dei Pazienti Oncologici e Onco-Ematologici in Corso di Emergenza da COVID-19. Available online: https://www.salute.gov.it/portale/nuovocoronavirus/archivioNormativaNuovoCoronavirus.jsp?lingua=italiano&testo=&tipologia=&giorno=10&mese=03&anno=2020&btnCerca=cerca (accessed on 15 February 2025).
- Linee di Indirizzo per la Rimodulazione dell’attività Programmata Differibile in Corso di Emergenza da COVID-19. 2020. Available online: https://portale.fnomceo.it/wp-content/uploads/2020/11/All._Linee_indirizzo_attivita_programmata_differibile_strutture_intermedie.pdf (accessed on 15 February 2025).
- Marty, S.; Lamé, G.; Guével, E.; Priou, S.; Chatellier, G.; Tournigand, C.; Kempf, E.; a CRAB* initiative. Impact of the SARS-CoV-2 outbreak on the initial clinical presentation of new solid cancer diagnoses: A systematic review and meta-analysis. BMC Cancer 2024, 24, 143. [Google Scholar] [CrossRef]
- Li, T.; Nickel, B.; Ngo, P.; McFadden, K.; Brennan, M.; Marinovich, M.L.; Houssami, N. A systematic review of the impact of the COVID-19 pandemic on breast cancer screening and diagnosis. Breast 2023, 67, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Giampieri, R.; Villani, S.; Magnarini, A.; Gelsomino, F.; Traisci, D.; Barbin, F.; Salvatore, L.; Zichi, C.; Di Pietro, F.R.; et al. Changes in clinical presentation, management and survival outcomes in patients affected by colorectal cancer following COVID 19 pandemic. Oncologist 2024, oyae310, Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.O.; Prodan, M.; Reddyreddy, A.R.; Seclaman, E.; Crainiceanu, Z.; Bloanca, V.; Bratosin, F.; Dumitru, C.; Pilut, C.N.; Alambaram, S.; et al. The epidemiology of Maloignant melanoma during the first two years of the 533 COVID19 pandemic: A systematic review. Int. J. Envirom. Res. Public Health 2023, 20, 305. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Caini, S.; Gaeta, A.; Lucantonio, E.; Mastrangelo, M.; Bruni, M.; Esposito, M.; Doccioli, C.; Queirolo, P.; Tosti, G.; et al. Impact of COVID-19 Pandemic on Delay of Melanoma Diagnosis: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3734. [Google Scholar] [CrossRef]
- Ali, O.M.; Wright, B.; Goodhead, C.; Hampton, P.J. Patient-led skin cancer teledermatology without dermoscopy during the COVID-19 pandemic: Important lessons for the development of future patient-facing teledermatology and artificial intelligence-assisted -self-diagnosis. Clin. Exp. Dermatol. 2024, 49, 1056–1059. [Google Scholar] [CrossRef]
- Wei, M.L.; Tada, M.; So, A.; Torres, R. Artificial intelligence and skin cancer. Front. Med. 2024, 11, 1331895. [Google Scholar] [CrossRef]
- Papachristou, P.; Söderholm, M.; Pallon, J.; Taloyan, M.; Polesie, S.; Paoli, J.; Anderson, C.D.; Falk, M. Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: A prospective real-life clinical trial. Br. J. Dermatol. 2024, 191, 125–133. [Google Scholar] [CrossRef]
- Mashoudy, K.D.; Perez, S.M.; Nouri, K. From diagnosis to intervention: A review of telemedicine’s role in skin cancer care. Arch. Dermatol. Res. 2024, 316, 139. [Google Scholar] [CrossRef]
Outcome Measure | COVID-19-Free Centers | COVID-19 Centers | ||
---|---|---|---|---|
Pre-Pandemic Period (n = 1143) | Pandemic Period (n = 827) | Pre-Pandemic Period (n = 497) | Pandemic Period (n = 465) | |
Time interval from diagnosis to surgery, days: mean (SD) | 67.9 (50.6) | 67.5 (35.8) | 68.9 (112.2) | 56.3 (36.3) |
Breslow thickness, mm: mean (SD) | 1.5 (2.7) | 1.9 (2.7) | 1.7 (2.7) | 1.9 (2.6) |
Stage II–III: n/N (%) | 249/1120 (22.2%) | 223/812 (27.5%) | 73/459 (15.9%) | 114/444 (25.7%) |
Stage N+: n/N (%) | 89/1131 (7.9%) | 81/814 (10.0%) | 30/462 (6.5%) | 51/448 (11.4%) |
TIL Brisk: n/N (%) a | 216/538 (40.1%) | 136/279 (48.7%) | 249/381 (65.3%) | 264/388 (68.0%) |
TIL non-Brisk: n/N (%) a | 231/481 (48.0%) | 147/280 (52.5%) | 278/360 (60.4%) | 190/334 (56.9%) |
Mitosis, unit/mm2: mean (SD) | 2.3 (4.8) | 3.0 (5.3) | 1.9 (2.8) | 2.4 (3.7) |
Ulceration: n/N (%) | 169/1067 (15.8%) | 143/746 (19.2%) | 65/373 (17.4%) | 70/364 (19.2%) |
Patients who underwent SLNB: n/N (%) | 454/1131 (40.1%) | 354/811 (43.6%) | 138/463 (29.8%) | 195/447 (43.6%) |
Patients with positive SLNB: n/N (%) | 87/454 (19.2%) | 78/353 (22.1%) | 29/135 (21.5%) | 51/193 (26.4%) |
Number of positive nodes among patients with positive SLNB: mean (SD) | 1.4 (0.7) | 1.2 (0.5) | 1.1 (0.3) | 1.4 (0.8) |
Tumor burden, mm: mean (SD) b | 2.6 (2.9) | 2.4 (2.9) | 2.1 (2.1) | 3.6 (4.0) |
Outcome Measure | Effect Size | Period: Pandemic vs. Pre-Pandemic | Center: COVID-19 vs. COVID-19-Free | Interaction Term (Period × Center) |
---|---|---|---|---|
Time interval from diagnosis to surgery, days | MD (95% cluster-robust CI) | −0.5 (−1.7 to 0.6) | 0.9 (−13.2 to 14.9) | −12.1 (−18.4 to −5.7) * |
Breslow thickness, mm | MD (95% cluster-robust CI) | 0.3 (0.2 to 0.5) * | 0.0 (−0.4 to 0.4) | −0.2 (−0.4 to 0.1) |
Stage II–III | OR (95% cluster-robust CI) | 1.45 (1.14 to 1.85) * | 0.78 (0.42 to 1.47) | 1.38 (0.78 to 2.43) |
Stage N+ | OR (95% cluster-robust CI) | 1.45 (1.13 to 1.85) * | 0.99 (0.53 to 1.84) | 1.43 (0.87 to 2.34) |
TIL Brisk | OR (95% cluster-robust CI) | 1.27 (0.93 to 1.74) | 2.55 (0.37 to 17.76) | 0.80 (0.46 to 11.39) |
TIL non-Brisk | OR (95% cluster-robust CI) | 1.01 (0.52 to 1.99) | 1.16 (0.18 to 7.46) | 0.46 (0.16 to 1.32) |
Mitosis, unit/mm2 | MD (95% cluster-robust CI) | 0.6 (0.4 to 0.9) * | −0.6 (−1.1 to −0.1) | 0.0 (−0.5 to 0.4) |
Ulceration a | OR (95% cluster-robust CI) | 1.22 (1.01 to 1.48) * | 1.06 (0.81 to 1.40) | 0.89 (0.64 to 1.24) |
Patients who underwent SLNB: n/N (%) | OR (95% cluster-robust CI) | 1.33 (1.02 to 1.74) * | 0.79 (0.27 to 3.32) | 1.58 (0.88 to 2.82) |
Patients with positive SLNB: n/N (%) | OR (95% cluster-robust CI) | 1.26 (1.01 to 1.57) * | 1.22 (0.92 to 1.79) | 1.10 (0.54 to 2.23) |
Number of positive nodes among patients with positive SLNB | MD (95% cluster-robust CI) | −0.2 (−0.4 to 0.1) | −0.2 (−0.4 to −0.1) * | 0.4 (0.1 to 0.8) * |
Tumor burden, mm | MD (95% cluster-robust CI) | −0.2 (−0.6 to 0.3) | −0.5 (−1.6 to 0.6) | 1.6 (−0.2 to 3.4) |
Outcome Measure | Females | Males | ||
---|---|---|---|---|
Pre-Pandemic Period (n = 727) | Pandemic Period (n = 565) | Pre-Pandemic Period (n = 913) | Pandemic Period (n = 727) | |
Time interval from diagnosis to surgery, days: mean (SD) | 70.5 (95.6) | 60.7 (32.0) | 66.4 (45.2) | 65.2 (39.5) |
Breslow thickness, mm: mean (SD) | 1.3 (2.1) | 1.8 (2.6) | 1.6 (3.1) | 2.0 (2.6) |
Stage II–III: n/N (%) | 120/707 (17.0%) | 133/549 (24.2%) | 202/972 (23.2%) | 204/707 (28.8%) |
Stage N+: n/N (%) | 45/712 (6.3%) | 52/551 (9.4%) | 74/881 (8.4%) | 80/711 (11.2%) |
TIL Brisk: n/N (%) a | 206/396 (52.0%) | 196/317 (61.8%) | 259/523 (49.5%) | 204/350 (58.3%) |
TIL non Brisk: n/N (%) a | 198/399 (49.6%) | 134/276 (48.6%) | 311/542 (57.4%) | 203/338 (60.0%) |
Mitosis, unit/mm2: mean (SD) | 1.9 (4.5) | 2.5 (4.4) | 2.4 (4.2 | 3.0 (5.2) |
Ulceration: n/N (%) | 82/631 (13.0%) | 74/747 (15.6%) | 152/809 (18.8%) | 139/636 (21.9%) |
Patients who underwent SLNB: n/N (%) | 245/712 (34.4%) | 225/550 (40.9%) | 347/882 (39.3%) | 324/708 (45.8%) |
Patients with positive SLNB: n/N (%) | 44/244 (18.0%) | 52/225 (23.1%) | 72/345 (20.9%) | 77/321 (24.0%) |
Number of positive nodes among patients with positive SLNB: mean (SD) | 1.3 (0.7) | 1.3 (0.7) | 1.3 (0.7) | 1.3 (0.6) |
Tumor burden, mm: mean (SD) | 2.6 (2.5) | 3.0 (3.5) | 2.3 (2.8) | 2.9 (3.5) |
Outcome Measure | Effect Size | Period: Pandemic vs. Pre-Pandemic | Sex: Males vs. Females | Interaction Term (Period × Sex) |
---|---|---|---|---|
Time interval from diagnosis to surgery, days | MD (95% cluster-robust CI) | −9.7 (−20.4 to 1.0) | −4.1 (−14.8 to 6.5) | 8.6 (−3.1 to −20.3) |
Breslow thickness, mm | MD (95% cluster-robust CI) | 0.3 (0.2 to 0.5) * | 0.3 (0.1 to 0.6) * | −0.1 (−0.6 to 0.3) |
Stage II-III | OR (95% cluster-robust CI) | 1.43 (1.12 to 1.82) * | 1.13 (1.13 to 1.66) * | 0.86 (0.61 to 1.22) |
Stage N+ | OR (95% cluster-robust CI) | 1.44 (1.14 to 1.83) * | 1.28 (0.95 to 1.74) | 0.89 (0.50 to 1.60) |
TIL Brisk | OR (95% cluster-robust CI) | 1.47 (0.86 to 2.52) | 1.33 (1.16 to 1.52) * | 0.86 (0.60 to 1.25) |
TIL non-Brisk | OR (95% cluster-robust CI) | 1.04 (0.54 to 1.98) | 1.45 (1.21 to 1.74) * | 1.16 (0.69 to 1.96) |
Mitosis, unit/mm2 | MD (95% cluster-robust CI) | 0.6 (0.3 to 0.9) * | 0.5 (0.1 to 0.9) | 0.0 (−0.6 to 0.6) |
Ulceration | OR (95% cluster-robust CI) | 1.22 (1.01 to 1.47) * | 1.53 (1.34 to 1.76) * | 0.98 (0.60 to 1.59) |
Patients who underwent SLNB: n/N (%) | OR (95% cluster-robust CI) | 1.31 (1.00 to 1.71) * | 1.23 (1.03 to 1.41) * | 0.99 (0.77 to 1.27) |
Patients with positive SLNB: n/N (%) | OR (95% cluster-robust CI) | 1.26 (1.01 to 1.57) * | 1.20 (0.84 to 1.49) | 0.88 (0.48 to 1.60) |
Number of positive nodes among patients with positive SLNB | MD (95% cluster-robust CI) | 0.0 (−0.2 to 0.2) | 0.0 (−0.2 to 0.2) | 0.0 (−0.3 to 0.3) |
Largest size of positive nodes, mm | MD (95% cluster-robust CI) | 0.4 (−0.9 to 1.7) | −0.3 (−1.4 to 0.8) | 0.1 (−1.1 to 1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nespoli, L.; Borgognoni, L.; Caliendo, V.; Piazzalunga, D.; Rossi, P.; Clementi, M.; Guadagni, S.; Caracò, C.; Sestini, S.; Valente, M.G.; et al. Indirect Impact of Pandemic on the Diagnosis of New Primary Melanoma: A Retrospective, Multicenter Study. J. Clin. Med. 2025, 14, 2017. https://doi.org/10.3390/jcm14062017
Nespoli L, Borgognoni L, Caliendo V, Piazzalunga D, Rossi P, Clementi M, Guadagni S, Caracò C, Sestini S, Valente MG, et al. Indirect Impact of Pandemic on the Diagnosis of New Primary Melanoma: A Retrospective, Multicenter Study. Journal of Clinical Medicine. 2025; 14(6):2017. https://doi.org/10.3390/jcm14062017
Chicago/Turabian StyleNespoli, Luca, Lorenzo Borgognoni, Virginia Caliendo, Dario Piazzalunga, Piero Rossi, Marco Clementi, Stefano Guadagni, Corrado Caracò, Serena Sestini, Maria Gabriella Valente, and et al. 2025. "Indirect Impact of Pandemic on the Diagnosis of New Primary Melanoma: A Retrospective, Multicenter Study" Journal of Clinical Medicine 14, no. 6: 2017. https://doi.org/10.3390/jcm14062017
APA StyleNespoli, L., Borgognoni, L., Caliendo, V., Piazzalunga, D., Rossi, P., Clementi, M., Guadagni, S., Caracò, C., Sestini, S., Valente, M. G., Picciotto, F., Di Raimondo, C., Ferrari, D., Tucceri Cimini, I., Giarrizzo, A., Asero, S., Mascherini, M., De Cian, F., Russano, F., ... Rastrelli, M., on behalf of SICO (Italian Society of Oncological Surgery) Study Group. (2025). Indirect Impact of Pandemic on the Diagnosis of New Primary Melanoma: A Retrospective, Multicenter Study. Journal of Clinical Medicine, 14(6), 2017. https://doi.org/10.3390/jcm14062017