Ramadan Fasting and Complications of Metabolic Dysfunction-Associated Steatotic Liver Disease: Impacts on Liver Cirrhosis and Heart Failure
Abstract
:1. Introduction
2. Methods
3. Pathophysiology of MASLD
4. Relationship Between MASLD and Heart Failure
5. MASLD as an Independent Risk Factor for Heart Failure
6. Ramadan Intermittent Fasting
7. Impacts of Ramadan Fasting on Metabolic-Dysfunction-Associated Steatotic Liver Disease
8. Ramadan Fasting and Heart Failure
9. Impacts of Ramadan Fasting on Blood Pressure
10. Ramadan Fasting and Endothelial Dysfunction
11. Ramadan Fasting and Autophagy
12. Ramadan Fasting and Liver Cirrhosis
13. Study Strengths and Limitations
14. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2023 Focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. G. Ital. Cardiol. 2024, 25, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef]
- Sayiner, M.; Koenig, A.; Henry, L.; Younossi, Z.M. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin. Liver Dis. 2016, 20, 205–214. [Google Scholar] [CrossRef]
- Kanwar, P.; Kowdley, K.V. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2016, 20, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, R.; Ortiz-Lopez, C.; Orsak, B.; Webb, A.; Hardies, J.; Darland, C.; Finch, J.; Gastaldelli, A.; Harrison, S.; Tio, F.; et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012, 55, 1389–1397. [Google Scholar] [CrossRef]
- Pagano, G.; Pacini, G.; Musso, G.; Gambino, R.; Mecca, F.; Depetris, N.; Cassader, M.; David, E.; Cavallo-Perin, P.; Rizzetto, M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: Further evidence for an etiologic association. Hepatology 2002, 35, 367–372. [Google Scholar] [CrossRef]
- Dumas, M.E.; Kinross, J.; Nicholson, J.K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 2014, 146, 46–62. [Google Scholar] [CrossRef]
- Le, M.H.; Le, D.M.; Baez, T.C.; Wu, Y.; Ito, T.; Lee, E.Y.; Lee, K.; Stave, C.D.; Henry, L.; Barnett, S.D.; et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1,201,807 persons. J. Hepatol. 2023, 79, 287–295. [Google Scholar] [CrossRef]
- Harrison, S.A.; Taub, R. A Phase 3 Trial of Resmetirom in NASH with Liver Fibrosis. Reply. N. Engl. J. Med. 2024, 390, 1632–1633. [Google Scholar] [CrossRef]
- Li, B.; Zhang, C.; Zhan, Y.T. Nonalcoholic Fatty Liver Disease Cirrhosis: A Review of Its Epidemiology, Risk Factors, Clinical Presentation, Diagnosis, Management, and Prognosis. Can. J. Gastroenterol. Hepatol. 2018, 2018, 2784537. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, H.; Weng, H.; Xu, X.; Yu, X.; Tu, H.; Gong, K.; Yao, J.; Ye, S.; Shi, Y.; et al. The burden of liver cirrhosis and underlying etiologies: Results from the Global Burden of Disease Study 2019. Hepatol. Commun. 2023, 7, e0026. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Scorletti, E.; Mosca, A.; Alisi, A.; Byrne, C.D.; Targher, G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020, 111S, 154170. [Google Scholar] [CrossRef]
- Mantovani, A.; Csermely, A.; Petracca, G.; Beatrice, G.; Corey, K.E.; Simon, T.G.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Mantovani, A.; Tilg, H.; Targher, G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 425–439. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Martin-Rodriguez, A.; Redondo-Florez, L.; Lopez-Mora, C.; Yanez-Sepulveda, R.; Tornero-Aguilera, J.F. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 10672. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Gong, Y.; Qi, Y.J.; Shao, Z.M.; Jiang, Y.Z. Effects of dietary intervention on human diseases: Molecular mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef]
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients 2022, 14, 631. [Google Scholar] [CrossRef]
- Mandal, S.; Simmons, N.; Awan, S.; Chamari, K.; Ahmed, I. Intermittent fasting: Eating by the clock for health and exercise performance. BMJ Open Sport. Exerc. Med. 2022, 8, e001206. [Google Scholar] [CrossRef]
- Lin, X.; Wu, G.; Huang, J. The impacts of Ramadan fasting for patients with non-alcoholic fatty liver disease (NAFLD): A systematic review. Front. Nutr. 2023, 10, 1315408. [Google Scholar] [CrossRef]
- Townsend, S.A.; Newsome, P.N. Non-alcoholic fatty liver disease in 2016. Br. Med. Bull. 2016, 119, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Moscatiello, S.; Ciaravella, M.F.; Marchesini, G. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 2010, 16, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef]
- Cusi, K. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin. Liver Dis. 2009, 13, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Dallio, M.; Godos, J.; Loguercio, C.; Salomone, F. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: Translational and clinical evidence. Transl. Res. 2016, 167, 116–124. [Google Scholar] [CrossRef]
- Watt, K.D.; Pedersen, R.A.; Kremers, W.K.; Heimbach, J.K.; Charlton, M.R. Evolution of causes and risk factors for mortality post-liver transplant: Results of the NIDDK long-term follow-up study. Am. J. Transplant. 2010, 10, 1420–1427. [Google Scholar] [CrossRef]
- Bhagat, V.; Mindikoglu, A.L.; Nudo, C.G.; Schiff, E.R.; Tzakis, A.; Regev, A. Outcomes of liver transplantation in patients with cirrhosis due to nonalcoholic steatohepatitis versus patients with cirrhosis due to alcoholic liver disease. Liver Transpl. 2009, 15, 1814–1820. [Google Scholar] [CrossRef]
- Richards, J.; Gunson, B.; Johnson, J.; Neuberger, J. Weight gain and obesity after liver transplantation. Transpl. Int. 2005, 18, 461–466. [Google Scholar] [CrossRef]
- Gitto, S.; Villa, E. Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome after Liver Transplant. Int. J. Mol. Sci. 2016, 17, 490. [Google Scholar] [CrossRef]
- Sprinzl, M.F.; Weinmann, A.; Lohse, N.; Tonissen, H.; Koch, S.; Schattenberg, J.; Hoppe-Lotichius, M.; Zimmermann, T.; Galle, P.R.; Hansen, T.; et al. Metabolic syndrome and its association with fatty liver disease after orthotopic liver transplantation. Transpl. Int. 2013, 26, 67–74. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Orlic, L.; Hrstic, I.; Milic, S. Metabolic syndrome and non-alcoholic fatty liver disease after liver or kidney transplantation. Hepatol. Res. 2016, 46, 841–852. [Google Scholar] [CrossRef]
- Danford, C.J.; Lai, M. NAFLD: A multisystem disease that requires a multidisciplinary approach. Frontline Gastroenterol. 2019, 10, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Blond, E.; Disse, E.; Cuerq, C.; Drai, J.; Valette, P.J.; Laville, M.; Thivolet, C.; Simon, C.; Caussy, C. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease in severely obese people: Do they lead to over-referral? Diabetologia 2017, 60, 1218–1222. [Google Scholar] [CrossRef]
- Kim, T.E.; Kim, H.; Sung, J.; Kim, D.K.; Lee, M.S.; Han, S.W.; Kim, H.J.; Kim, S.H.; Ryu, K.H. The association between metabolic syndrome and heart failure in middle-aged male and female: Korean population-based study of 2 million individuals. Epidemiol. Health 2022, 44, e2022078. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease is a risk factor for cardiovascular and cardiac diseases: Further evidence that a holistic approach to treatment is needed. Gut 2022, 71, 1695–1696. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Yuan, X.; Liu, J.; Zhang, Q.; Ye, X. Predictors of High Cardiovascular Risk Among Nonobese Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease in a Chinese Population. Diabetes Metab. Syndr. Obes. 2024, 17, 493–506. [Google Scholar] [CrossRef]
- Ou, H.; Fu, Y.; Liao, W.; Zheng, C.; Wu, X. Association between Smoking and Liver Fibrosis among Patients with Nonalcoholic Fatty Liver Disease. Can. J. Gastroenterol. Hepatol. 2019, 2019, 6028952. [Google Scholar] [CrossRef]
- Almomani, A.; Kumar, P.; Onwuzo, S.; Boustany, A.; Krishtopaytis, E.; Hitawala, A.; Alshaikh, D.; Albakri, A.; Hussein, L.; Hussein, E.; et al. Epidemiology and prevalence of lean nonalcoholic fatty liver disease and associated cirrhosis, hepatocellular carcinoma, and cardiovascular outcomes in the United States: A population-based study and review of literature. J. Gastroenterol. Hepatol. 2023, 38, 269–273. [Google Scholar] [CrossRef]
- Mantovani, A.; Csermely, A.; Tilg, H.; Byrne, C.D.; Targher, G. Comparative effects of non-alcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease on risk of incident cardiovascular events: A meta-analysis of about 13 million individuals. Gut 2023, 72, 1433–1436. [Google Scholar] [CrossRef]
- Mantovani, A.; Petracca, G.; Csermely, A.; Beatrice, G.; Bonapace, S.; Rossi, A.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of new-onset heart failure: An updated meta-analysis of about 11 million individuals. Gut 2022, 72, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Vieira Barbosa, J.; Milligan, S.; Frick, A.; Broestl, J.; Younossi, Z.; Afdhal, N.; Lai, M. Fibrosis-4 Index Can Independently Predict Major Adverse Cardiovascular Events in Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2022, 117, 453–461. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.H.; Kim, S.U.; Kim, H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147.e10. [Google Scholar] [CrossRef]
- Simon, T.G.; Roelstraete, B.; Hagstrom, H.; Sundstrom, J.; Ludvigsson, J.F. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: Results from a nationwide histology cohort. Gut 2022, 71, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.G.; Roelstraete, B.; Alkhouri, N.; Hagstrom, H.; Sundstrom, J.; Ludvigsson, J.F. Cardiovascular disease risk in paediatric and young adult non-alcoholic fatty liver disease. Gut 2023, 72, 573–580. [Google Scholar] [CrossRef]
- Emara, M.H.; Soliman, H.; Said, E.M.; Elbatae, H.; Elazab, M.; Elhefnawy, S.; Zaher, T.I.; Abdel-Razik, A.; Elnadry, M. Intermittent fasting and the liver: Focus on the Ramadan model. World J. Hepatol. 2024, 16, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Badi, S.; Elidrisi, A.; Husain, N.E.; Zainudin, S.B.; Mahmood, A.; Abubaker, N.E.; Alghamdi, A.S.; Ahmed, M.H. Safety and effectiveness of newer antidiabetic medications during Ramadan fasting and safety of Ramadan fasting after bariatric surgery. J. Diabetes Metab. Disord. 2022, 21, 1991–2004. [Google Scholar] [CrossRef]
- Noor, S.K.; Alutol, M.T.; FadAllah, F.S.A.; Ahmed, A.A.; Osman, S.A.; Badi, S.; Fathelrahman, A.I.; Ahmed, M.; Ahmed, M.H. Risk factors associated with fasting during Ramadan among individuals with diabetes according to IDF-DAR risk score in Atbara city, Sudan: Cross-sectional hospital-based study. Diabetes Metab. Syndr. 2023, 17, 102743. [Google Scholar] [CrossRef]
- Hassanein, M.; Afandi, B.; Yakoob Ahmedani, M.; Mohammad Alamoudi, R.; Alawadi, F.; Bajaj, H.S.; Basit, A.; Bennakhi, A.; El Sayed, A.A.; Hamdy, O.; et al. Diabetes and Ramadan: Practical guidelines 2021. Diabetes Res. Clin. Pr. 2022, 185, 109185. [Google Scholar] [CrossRef]
- Haraj, N.E.; Harouna Malam Brah, N.A.; Elaziz, S.; Chadli, A. Evaluation of Glycemic Control in Patients With Diabetes by a Continuous Glucose Monitoring System During the Month of Ramadan. Cureus 2024, 16, e72710. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmed, M.H. Ramadan Fasting in Individuals with Metabolic Dysfunction-Associated Steatotic Liver Disease, Liver Transplant, and Bariatric Surgery: A Narrative Review. J. Clin. Med. 2024, 13, 3893. [Google Scholar] [CrossRef] [PubMed]
- Alasmari, A.A.; Al-Khalifah, A.S.; BaHammam, A.S.; Alshiban, N.M.S.; Almnaizel, A.T.; Alodah, H.S.; Alhussain, M.H. Ramadan fasting model exerts hepatoprotective, anti-obesity, and anti-hyperlipidemic effects in an experimentally-induced nonalcoholic fatty liver in rats. Saudi J. Gastroenterol. 2024, 30, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Khoury, T.; Baker, M.; Said Ahmad, H.; Abu Baker, F.; Mahamid, M. The Impact of Ramadan Fasting on Fatty Liver Disease Severity: A Retrospective Case Control Study from Israel. Isr. Med. Assoc. J. 2021, 23, 94–98. [Google Scholar] [PubMed]
- Ebrahimi, S.; Gargari, B.P.; Aliasghari, F.; Asjodi, F.; Izadi, A. Ramadan fasting improves liver function and total cholesterol in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res. 2020, 90, 95–102. [Google Scholar] [CrossRef]
- Badran, H.; Elsabaawy, M.; Sakr, A.; Eltahawy, M.; Elsayed, M.; Elsabaawy, D.M.; Abdelkreem, M. Impact of intermittent fasting on laboratory, radiological, and anthropometric parameters in NAFLD patients. Clin. Exp. Hepatol. 2022, 8, 118–124. [Google Scholar] [CrossRef]
- Aliasghari, F.; Izadi, A.; Gargari, B.P.; Ebrahimi, S. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial. J. Am. Coll. Nutr. 2017, 36, 640–645. [Google Scholar] [CrossRef]
- Alam, S.; Jahid Hasan, M.; Khan, M.A.S.; Alam, M.; Hasan, N. Effect of Weight Reduction on Histological Activity and Fibrosis of Lean Nonalcoholic Steatohepatitis Patient. J. Transl. Int. Med. 2019, 7, 106–114. [Google Scholar] [CrossRef]
- Salam, A.M.; Sulaiman, K.; Alsheikh-Ali, A.A.; Singh, R.; Asaad, N.; Al-Qahtani, A.; Salim, I.; AlHabib, K.F.; Al-Zakwani, I.; Al-Jarallah, M.; et al. Acute heart failure presentations and outcomes during the fasting month of Ramadan: An observational report from seven Middle Eastern countries. Curr. Med. Res. Opin. 2018, 34, 237–245. [Google Scholar] [CrossRef]
- Abazid, R.M.; Khalaf, H.H.; Sakr, H.I.; Altorbak, N.A.; Alenzi, H.S.; Awad, Z.M.; Smettei, O.A.; Elsanan, M.A.; Widyan, A.M.; Azazy, A.S.; et al. Effects of Ramadan fasting on the symptoms of chronic heart failure. Saudi Med. J. 2018, 39, 395–400. [Google Scholar] [CrossRef]
- Alam, S.; Hussain, S.; Abbas, J.; Raza, M.H.; Rasool, W.A.; Alsubai, A.K.; Al-Mousawi, R.; Aldhaheri, K.S.O.; Malik, J.; Almas, T. Clinical outcomes of fasting in patients with chronic heart failure with preserved ejection fraction: A prospective analysis. Ann. Med. Surg. 2022, 81, 104373. [Google Scholar] [CrossRef]
- Al Suwaidi, J.; Bener, A.; Hajar, H.A.; Numan, M.T. Does hospitalization for congestive heart failure occur more frequently in Ramadan: A population-based study (1991–2001). Int. J. Cardiol. 2004, 96, 217–221. [Google Scholar] [CrossRef]
- Al Suwaidi, J.; Zubaid, M.; Al-Mahmeed, W.A.; Al-Rashdan, I.; Amin, H.; Bener, A.; Hadi, H.R.; Helmy, A.; Hanifah, M.; Al-Binali, H.A. Impact of fasting in Ramadan in patients with cardiac disease. Saudi Med. J. 2005, 26, 1579–1583. [Google Scholar]
- Chamsi-Pasha, H.; Ahmed, W.H. The effect of fasting in Ramadan on patients with heart disease. Saudi Med. J. 2004, 25, 47–51. [Google Scholar]
- Alaarag, A.F.; Elkhalek Abou-Omar, M.A.; Amin, O.A. The Safety of Ramadan Fasting in Chronic Heart Failure Patients With Reduced Ejection Fraction. J. Saudi Heart Assoc. 2025, 37, 3. [Google Scholar] [CrossRef] [PubMed]
- Nematy, M.; Alinezhad-Namaghi, M.; Rashed, M.M.; Mozhdehifard, M.; Sajjadi, S.S.; Akhlaghi, S.; Sabery, M.; Mohajeri, S.A.; Shalaey, N.; Moohebati, M.; et al. Effects of Ramadan fasting on cardiovascular risk factors: A prospective observational study. Nutr. J. 2012, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Farag, H.A.M.; Baqi, H.R.; Qadir, S.A.; El Bilbeisi, A.H.; Hamafarj, K.K.; Taleb, M.; El Afifi, A. Effects of Ramadan fasting on anthropometric measures, blood pressure, and lipid profile among hypertensive patients in the Kurdistan region of Iraq. SAGE Open Med. 2020, 8, 2050312120965780. [Google Scholar] [CrossRef]
- Bener, A.; Al-Hamaq, A.O.A.A.; Öztürk, M.; Çatan, F.; Haris, P.I.; Rajput, K.U.; Ömer, A. Effect of ramadan fasting on glycemic control and other essential variables in diabetic patients. Ann. Afr. Med. 2018, 17, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, I.; Kardi, A.; Boukhayatia, F.; Hammami, B.; Cheikh, M.; Romdhane, N.B.; Feki, M.; Yazidi, M.; Chihaoui, M. Impact of Ramadan intermittent fasting on metabolic and inflammatory profiles in type 2 diabetic patients. J. Diabetes Metab. Disord. 2022, 21, 751–758. [Google Scholar] [CrossRef]
- Zairi, I.; Bejar, M.A.; Ben Mrad, I.; Mzoughi, K.; Kraiem, S. Effects of Ramadan fasting on blood pressure in hypertensive patients. Tunis. Med. 2021, 99, 727–733. [Google Scholar]
- Norouzy, A.; Hasanzade Daloee, M.; Khoshnasab, A.H.; Khoshnasab, A.; Farrokhi, J.; Nematy, M.; Safarian, M.; Nezafati, P.; Alinezhad-Namaghi, M. Trend of blood pressure in hypertensive and normotensive volunteers during Ramadan fasting. Blood Press. Monit. 2017, 22, 253–257. [Google Scholar] [CrossRef]
- Malinowski, B.; Zalewska, K.; Wesierska, A.; Sokolowska, M.M.; Socha, M.; Liczner, G.; Pawlak-Osinska, K.; Wicinski, M. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients 2019, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Fezai, M.; Uzcategui, N.L.; Hosseinzadeh, Z.; Lang, F. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5). Cell Physiol. Biochem. 2016, 38, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Almilaji, A.; Munoz, C.; Elvira, B.; Shumilina, E.; Bock, C.T.; Kandolf, R.; Lang, F. Down-regulation of K(+) channels by human parvovirus B19 capsid protein VP1. Biochem. Biophys. Res. Commun. 2014, 450, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Climent, B.; Simonsen, U.; Rivera, L. Effects of obesity on vascular potassium channels. Curr. Vasc. Pharmacol. 2014, 12, 438–452. [Google Scholar] [CrossRef]
- Tsigkou, V.; Oikonomou, E.; Anastasiou, A.; Lampsas, S.; Zakynthinos, G.E.; Kalogeras, K.; Katsioupa, M.; Kapsali, M.; Kourampi, I.; Pesiridis, T.; et al. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int. J. Mol. Sci. 2023, 24, 4321. [Google Scholar] [CrossRef]
- Demirci, E.; Ozkan, E. Improvement in endothelial function in hypertensive patients after Ramadan fasting: Effects of cortisol. Turk. J. Med. Sci. 2023, 53, 439–445. [Google Scholar] [CrossRef]
- Tahapary, D.L.; Rizqa, T.; Syarira, C.V.; Lusiani, L.; Rizka, A.; Wafa, S.; Wisnu, W.; Edi Tarigan, T.J.; Harbuwono, D.S. Differential effect of ramadan fasting on intercellular adhesion molecule-1 (ICAM-1) in diabetes mellitus and non-diabetes mellitus patients. Heliyon 2023, 9, e17273. [Google Scholar] [CrossRef]
- Gocer, H.; Gunday, M.; Abusharekh, M.; Unal, M. To show the effect of intermittent fasting during ramadan on endothelial dysfunction via TIMI frame count. Niger. J. Clin. Pract. 2021, 24, 943–947. [Google Scholar] [CrossRef]
- Yousefi, B.; Faghfoori, Z.; Samadi, N.; Karami, H.; Ahmadi, Y.; Badalzadeh, R.; Shafiei-Irannejad, V.; Majidinia, M.; Ghavimi, H.; Jabbarpour, M. The effects of Ramadan fasting on endothelial function in patients with cardiovascular diseases. Eur. J. Clin. Nutr. 2014, 68, 835–839. [Google Scholar] [CrossRef]
- Ozcan, M.; Abdellatif, M.; Javaheri, A.; Sedej, S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can. J. Cardiol. 2024, 40, 1445–1457. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, Y.; Ceylan-Isik, A.F.; Wold, L.E.; Nunn, J.M.; Ren, J. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: Role of autophagy. Basic. Res. Cardiol. 2011, 106, 1173–1191. [Google Scholar] [CrossRef]
- Han, X.; Turdi, S.; Hu, N.; Guo, R.; Zhang, Y.; Ren, J. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J. Nutr. Biochem. 2012, 23, 1592–1599. [Google Scholar] [CrossRef]
- Bou Malhab, L.J.; Madkour, M.I.; Abdelrahim, D.N.; Eldohaji, L.; Saber-Ayad, M.; Eid, N.; Abdel-Rahman, W.M.; Faris, M.E. Dawn-to-dusk intermittent fasting is associated with overexpression of autophagy genes: A prospective study on overweight and obese cohort. Clin. Nutr. ESPEN 2025, 65, 209–217. [Google Scholar] [CrossRef]
- Ismaiel, A.; Ciornolutchii, V.; Herrera, T.E.; Ismaiel, M.; Leucuta, D.C.; Popa, S.L.; Dumitrascu, D.L. Adiponectin as a biomarker in liver cirrhosis-A systematic review and meta-analysis. Eur. J. Clin. Investig. 2025, 55, e14328. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Chen, M.K. Epidemiology of liver cirrhosis and associated complications: Current knowledge and future directions. World J. Gastroenterol. 2022, 28, 5910–5930. [Google Scholar] [CrossRef]
- Elnadry, M.H.; Nigm, I.A.; Abdel Aziz, I.M.; Elshafee, A.M.; Elazhary, S.S.; Abdel Hafeez, M.A.; Mohii, S.M.; Elteeby, D.M. Effect of Ramadan fasting on Muslim patients with chronic liver diseases. J. Egypt. Soc. Parasitol. 2011, 41, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.Y.; Emara, M.H.; Hussien, H.I.; Elsadek, H.M. Changes in portal blood flow and liver functions in cirrhotics during Ramadan fasting in the summer; a pilot study. Gastroenterol. Hepatol. Bed Bench 2016, 9, 180–188. [Google Scholar]
- Emara, M.H.; Soliman, H.H.; Elnadry, M.; Mohamed Said, E.; Abd-Elsalam, S.; Elbatae, H.E.; Zaher, T.I.; Ezzeldin, S.B.S.; Abdel-Razik, A.; Youssef Mohamed, S.; et al. Ramadan fasting and liver diseases: A review with practice advices and recommendations. Liver Int. 2021, 41, 436–448. [Google Scholar] [CrossRef]
- Al-Jafar, R.; Wahyuni, N.S.; Belhaj, K.; Ersi, M.H.; Boroghani, Z.; Alreshidi, A.; Alkhalaf, Z.; Elliott, P.; Tsilidis, K.K.; Dehghan, A. The impact of Ramadan intermittent fasting on anthropometric measurements and body composition: Evidence from LORANS study and a meta-analysis. Front. Nutr. 2023, 10, 1082217. [Google Scholar] [CrossRef]
- Mohamed, S.Y.; Emara, M.H.; Gabballah, B.A.; Mostafa, E.F.; Maaly, M.A. Effects of Ramadan fasting on muslim patients with liver cirrhosis: A comparative study. Govaresh 2018, 23, 47–52. [Google Scholar]
Authors | Main Finding | Reference |
---|---|---|
Alasmari et al. 2024 | Ramadan fasting resulted in a significant decrease in body weight, serum levels of cholesterol, LDL, triglycerides, liver histology, and the enzymes aspartate transaminase and alanine transaminase in experimental animals | [52] |
Mari et al. 2021 | Ramadan fasting resulted in improvements in insulin sensitivity, body weight, inflammatory markers, and noninvasive measures for assessing the severity of NASH (the body mass index reduced from 36.7 ± 7.1 to 34.5 ± 6.8 following Ramadan fasting (p < 0.003); the NAFLD fibrosis score decreased from 0.45 ± 0.25 to 0.23 ± 0.21 (p < 0.005); the FIB4 score declined from 1.93 ± 0.76 to 1.34 ± 0.871 (p < 0.005); C-reactive protein reduced from 14.2 ± 7.1 to 7.18 ± 6.45 (p < 0.005)) in 155 patients with NASH. | [53] |
Ebrahimi et al. 2020 | Ramadan fasting resulted in a significant reduction in anthropometric indices total cholesterol (p = 0.02), as well as reductions in the Atherogenic Index of Plasma (AIP) and the Visceral Adiposity Index (VAI) among the patients (p = 0.79 and p = 0.65 for the AIP and the VAI, respectively). It also led to improvements in concentrations of liver enzymes (aspartate aminotransferase (SGOT) and alanine aminotransferase (SGPT)) and the severity of hepatic steatosis (p = 0.03, p = 0.05, and p = 0.02 for SGOT, SGPT, and liver steatosis, respectively) in individuals with NAFLD. | [54] |
Badran et al. 2022 | Ramadan fasting significantly improved body mass index, cholestrol, triglycerides, LDL, HDL (p ≤ 0.01), HbA1c, postprandial, HOMA-IR, and fibrosis markers (FIB-4 and APRI) (p < 0.01) in individuals with MASLD, especially in the initial phases and among those at risk for diabetes | [55] |
Aliasghari et al. 2017 | Ramadan fasting led to improvements in inflammatory cytokines, anthropometric indices, plasma insulin, and fasting plasma glucose in individuals with MASLD. | [56] |
Alam et al. 2019 | Fasting during Ramadan may enhance NAFLD by promoting weight loss. Weight reduction has been shown to enhance all aspects of histological activity in patients with nonalcoholic steatohepatitis in subjects with NASH. | [57] |
Ahmed and Ahmed 2024 | Ramadan fasting decreased body weight and produced improvements in lipid profile, fasting blood glucose, anthropometric indices, plasma insulin, and inflammatory cytokines. Ramadan fasting improved MASLD risk factors and might improve MASLD through reduction in body weight. | [51] |
Lin et al. 2024 | Fasting throughout Ramadan produced improvements in body weight, and composition, cardiometabolic risk factors, glucose levels, inflammation markers, and liver parameters. | [20] |
Effects of Ramadan Fasting | |
---|---|
Heart Failure | Liver Cirrhosis |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M. Ramadan Fasting and Complications of Metabolic Dysfunction-Associated Steatotic Liver Disease: Impacts on Liver Cirrhosis and Heart Failure. J. Clin. Med. 2025, 14, 1841. https://doi.org/10.3390/jcm14061841
Ahmed M. Ramadan Fasting and Complications of Metabolic Dysfunction-Associated Steatotic Liver Disease: Impacts on Liver Cirrhosis and Heart Failure. Journal of Clinical Medicine. 2025; 14(6):1841. https://doi.org/10.3390/jcm14061841
Chicago/Turabian StyleAhmed, Musaab. 2025. "Ramadan Fasting and Complications of Metabolic Dysfunction-Associated Steatotic Liver Disease: Impacts on Liver Cirrhosis and Heart Failure" Journal of Clinical Medicine 14, no. 6: 1841. https://doi.org/10.3390/jcm14061841
APA StyleAhmed, M. (2025). Ramadan Fasting and Complications of Metabolic Dysfunction-Associated Steatotic Liver Disease: Impacts on Liver Cirrhosis and Heart Failure. Journal of Clinical Medicine, 14(6), 1841. https://doi.org/10.3390/jcm14061841