Bone Regeneration: A Review of Current Treatment Strategies
Abstract
:1. Introduction
2. Autologous Bone Graft
3. Allogenic Bone Graft
4. Xenogenic Bone Graft
5. Naturally Derived Biomaterials
5.1. Col, Gel, and Alg-Based Materials
5.2. SF, HA, CS, and PHA-Based Materials
5.3. Natural-Based Hydrogels, Nanofibers, and Composite Materials
6. Synthetic Bone Grafts
6.1. Bioceramics
6.2. Bioactive Glass
6.3. Metallic Materials
6.4. Polymer Organic Synthetic Materials
7. Composite Materials
Commercial Name | Material Type | Description and Application |
---|---|---|
CANCELLO-PURE® | Xenograft (Bovine) | It is a xenogeneic bone graft derived from bovine, processed through decellularization to reduce the risk of immune rejection. It has been used in foot and ankle reconstruction procedures, such as Cotton osteotomy and Evans osteotomy [44]. However, some studies have reported high rates of graft non-union and failure to integrate, leading to its discontinuation in certain institutions. |
Kiel-Surgibone® | Xenograft (Bovine) | It is a bovine bone graft treated with specific methods to remove antigenic components while preserving the bone’s mineral structure. It has been used in spinal fusion surgeries, such as anterior cervical discectomy and fusion (ACDF), showing fusion rates comparable to autografts in various clinical studies [44]. |
BIO-GEN® | Xenograft (Equine) | It is a heterologous bone substitute obtained from equine bone, processed through deproteinization and sterilization to remove antigenic components. It is used in oral and maxillofacial surgery for guided bone regeneration, supporting new bone formation thanks to its porous structure and biocompatibility [47]. |
Apaceram® | Bioceramic (HAp) | It is primarily used in orthopaedics and maxillofacial surgery for bone regeneration. It is employed to treat bone defects, facilitating the formation of new bone tissue and improving integration with the surrounding bone [96,97]. |
Straumann® BoneCeramic™ | Bioceramic (HAp) | It is applied in orthopaedics, especially for the replacement of bone portions damaged by trauma or degenerative diseases. Its use promotes bone growth and integration with natural bone tissue [98]. |
Cerament® Bone Void Filler | Bioceramic (HAp) | It is used to fill bone defects and promote bone regeneration. It is employed to treat fractures and bone defects caused by malformations or infections, with mechanical resistance that increases over time as the new bone replaces the material [99,100]. |
Nanostim® | Bioceramic (Nanocrystalline HAp) | It is a form of nanocrystalline HAp. It is used in the medical field for bone regeneration, implant osseointegration, the treatment of osteoporosis, and, in some cases, in aesthetic medicine for soft tissue filler treatments [101]. |
KeraOs® | Bioceramic (β-TCP) | It is used in orthopaedics for bone regeneration, particularly in cases of bone defects and fractures. This material promotes osteointegration and bone recovery, supporting the consolidation of fractures and bone growth in orthopaedic procedures, such as the reconstruction of compromised bone areas or the treatment of complex fractures [101]. |
Vitoss® | Bioceramic (β-TCP) | It is used in orthopaedics to stimulate bone growth in complex fractures or significant bone defects, such as those caused by trauma or pathology. It is also employed to fill damaged or compromised areas, providing biologically active support during the regeneration process [108]. |
SynthoGraft™ | Bioceramic (β-TCP) | Promotes bone regeneration and controlled resorption, making it useful for treating bone defects or fractures where a material capable of gradually integrating with surrounding bone tissue is needed. It is utilized in orthopaedic surgical procedures requiring safe and gradual regeneration of compromised bone tissue [109,110]. |
Maxresorb® | Bioceramic (BCP) | Features a porous structure that enhances cell adhesion and bone regeneration, making it suitable for addressing bone defects in orthopaedic contexts. It promotes bone repair in areas where regeneration is required and supports the healing process by providing a favorable scaffold for new tissue formation [111]. |
MBCP+ (Micro-Macroporous Biphasic Calcium Phosphate) | Bioceramic (BCP) | It is used in implantology to stabilize implants and promote osteointegration. It is utilized in orthopaedics for stabilizing implants and encouraging osteointegration in cases of bone defects. It responds to different clinical needs, including the filling of bone defects and other surgical applications that demand regenerative support [112]. |
Ceraform® | Bioceramic (BCP) | It is used in implantology, periodontology, and maxillofacial surgery to regenerate bone and fill defects. Its bioactive structure promotes osseointegration and new tissue formation, making it an effective material for procedures requiring defect repair or bone stabilization [113]. |
Bondbone® | Calcium Sulfate | In orthopaedics, it is used to treat bone defects, including peri-implant defects, and to support the healing of compromised bone structures. The controlled resorption of Bondbone® allows for a gradual release of calcium, which stimulates new bone growth, this makes it especially useful for filling bone defects and preparing surgical sites while encouraging integration with native bone tissue [114]. |
EthOss® | Calcium Sulfate + β-TCP | It is particularly effective in preserving bone volume following trauma or surgical interventions, preventing bone loss, and maintaining the stability of the surrounding skeletal structure. In orthopaedic contexts, EthOss® is frequently used to reconstruct complex bone defects, providing temporary mechanical support while stimulating bone growth. Its ability to maintain structural integrity during the healing process makes it ideal for preparing affected areas for subsequent interventions, such as implants or prosthetics [115]. |
NovaBone® | Bioactive Glass | FDA-approved and in Europe for orthopaedic use in 2000, is a particulate BG used in non-weight-bearing defects. It showed promising results compared to iliac crest autografts [122]. |
Medpor®-Plus | Bioactive Glass | Plus is the first BG composite for ocular bone grafts, developed to stimulate fibrovascular growth and vascularization, FDA-approved in 2002 [123]. |
BoneAlive® | Bioactive Glass | Uses S53P4, a silicate-based composition, with a slower dissolution rate compared to 45S5. It has been effective in bone infections and spinal fusions [124]. |
Glassbone® | Bioactive Glass | FDA-approved in 2008 for orthopaedic applications, showed 90% recovery in one year with a 60% reduction in pain [125]. |
Cortoss® | Bioactive Glass | FDA-approved in 2009, uses a polymer matrix to stimulate osteointegration. Clinical studies showed it provides greater pain relief than PMMA cements [126]. |
StronBone™ | Bioactive Glass + Strontium | A strontium-doped bioactive glass, is approved in Europe but not the U.S. It inhibits osteoclast activity and stimulates osteogenesis [127]. |
GlaceTM | Bioactive Glass | A fiber-glass composite for cranial and maxillofacial implants developed in 2014, weaves fibers into resin for enhanced mechanical properties [128]. |
OssiMend® Bioactive | Bioactive Glass + Col 1 + apatite | It is a combination of 45S5 bioactive glass, type 1 Col, and carbonated apatite for bone defect repair, was FDA-approved in 2019. It promotes remineralization and dissolves faster than pure 45S5 glass [129]. It is still undergoing trials with 120 patients [130] |
Signafuse® | Bioactive Glass + biphasic mineral | Is a composite of bifasic minerals and BG for bone grafting, was FDA-approved in 2020 and shows higher bone fusion rates than traditional materials [131]. |
LactoSorb® | Polymer (PLA) | It is widely used in osteosynthesis for maxillofacial surgery. This device consists of resorbable plates and screws, employed for the stabilization of mandibular and craniofacial fractures, as well as in orthognathic surgery. The degradation process of LactoSorb® occurs within 12–18 months, eliminating the need for surgical removal once bone healing is complete [189]. |
Neoveil® | Polymer (PGA) | It is a 100% PGA membrane, used for GBR, in oral surgery and implantology. Its primary function is to protect and guide the growth of new bone tissue, making it particularly useful in post-tooth extraction procedures or sinus lift surgeries, where it promotes effective osseointegration [190]. |
Ethisorb® | Polymer (PLGA) | It is as a fixation device for maxillofacial and orthopaedic surgery. Composed of resorbable plates and screws, it is used to stabilize mandibular and zygomatic fractures, providing adequate mechanical support for approximately 6–12 months, after which the material is completely resorbed [191]. |
RapidSorb® | Polymer (PLGA) | Employed in cranio-maxillofacial fixation, with a particular application in post-surgical stabilization for pediatric procedures and reconstructive surgery. This device provides temporary support, essential for ensuring proper bone healing without requiring removal [192]. |
SmartBone® ORTHO | Composite (Bovine Xenograft + Bioabsorbable Polymers + Col Fragments) | It is an innovative bone substitute developed for bone regeneration in orthopaedic, trauma, oncological, and spinal surgery. This hybrid structure promotes rapid growth of bone cells within the material, ensuring optimal integration and complete replacement with natural bone within 1–2 years. It is indicated for various orthopaedic applications, including: filling or reconstruction of acetabular bone during arthroplasty and revisions, after wedge osteotomies, filling of cavities post-curettage, reconstructions after bone tumor resections, and vertebral body replacement in spinal surgery [22,221,222,223]. |
Hypro-Oss® ORTHO | Composite (Bovine Xenograft + HAp + Col) | It is a natural bovine bone material. Each granule consists of 30% Atelo-Col Type I and 70% HAp. Hypro-Oss® is produced by using atelopeptidation and lyophilization processes. It is used for the permanent filling or reconstruction of antiseptic bone defects [224]. |
Tutobone® | Composite (Bovine Xenograft + Col) | It is a solvent-preserved cancellous bovine bone material. The production process involves the use of biochemical solvents that remove lipids, proteins and prions from the graft, but preserve Col and mineral compound. In this way the bone is sterilized and preserved for implantation, however, the biomechanical and structural integrity of the graft is maintained. The function of this graft is temporary structural support, integration in the surrounding bone, bioresorption and replacement with vital bone [225]. |
8. Specific Applications
8.1. Biomaterials for Reconstructive and Regenerative Surgery
8.2. Biomaterials for Drugs Delivery
8.3. Biomaterials for PRP and BMAC Delivery
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.-Y.; Bi, Q.; Zhao, C.; Chen, J.-Y.; Cai, M.-H.; Chen, X.-Y. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020, 16, 113–125. [Google Scholar] [CrossRef]
- Senn on the Healing of Aseptic Bone Cavities by Implantation of Antiseptic Decalcified Bone. Ann. Surg. 1889, 10, 352–368. [CrossRef] [PubMed]
- American Association of Orthopaedic Surgeons (AAOS). 2010 Annual Meeting. Available online: https://www.medscape.com/viewcollection/30706 (accessed on 25 January 2025).
- Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. A Review of Biomaterials in Bone Defect Healing, Remaining Shortcomings and Future Opportunities for Bone Tissue Engineering: The Unsolved Challenge. Bone Jt. Res. 2018, 7, 232–243. [Google Scholar] [CrossRef]
- Fernandez De Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.-M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef]
- Gitelis, S.; Brebach, G.T. The Treatment of Chronic Osteomyelitis with a Biodegradable Antibiotic-Impregnated Implant. J. Orthop. Surg. 2002, 10, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, C.; Sama, D.; Toro, J.B.; Peterson, M.; Helfet, D.L. Plate Fixation of Ununited Humeral Shaft Fractures: Effect of Type of Bone Graft on Healing. J. Bone Jt. Surg. 2006, 88, 1442–1447. [Google Scholar] [CrossRef]
- Brown, K.L.; Cruess, R.L. Bone and Cartilage Transplantation in Orthopaedic Surgery. A Review. J. Bone Jt. Surg. 1982, 64, 270. [Google Scholar] [CrossRef]
- Enneking, W.F.; Spanier, S.S.; Goodman, M.A. A System for the Surgical Staging of Musculoskeletal Sarcoma. Clin. Orthop. Relat. Res. 1980, 153, 106–120. [Google Scholar] [CrossRef]
- Capanna, R.; Piccioli, A.; Di Martino, A.; Daolio, P.A.; Ippolito, V.; Maccauro, G.; Piana, R.; Ruggieri, P.; Gasbarrini, A.; Spinelli, M.S.; et al. Management of Long Bone Metastases: Recommendations from the Italian Orthopaedic Society Bone Metastasis Study Group. Expert. Rev. Anticancer Ther. 2014, 14, 1127–1134. [Google Scholar] [CrossRef]
- Hannink, G.; Arts, J.J.C. Bioresorbability, Porosity and Mechanical Strength of Bone Substitutes: What Is Optimal for Bone Regeneration? Injury 2011, 42, S22–S25. [Google Scholar] [CrossRef]
- Mistry, A.S.; Mikos, A.G. Tissue Engineering Strategies for Bone Regeneration. In Regenerative Medicine II: Clinical and Preclinical Applications; Yannas, I.V., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 94, pp. 1–22. ISBN 978-3-540-22868-4. [Google Scholar]
- Motameni, A.; Çardaklı, İ.S.; Gürbüz, R.; Alshemary, A.Z.; Razavi, M.; Farukoğlu, Ö.C. Bioglass-Polymer Composite Scaffolds for Bone Tissue Regeneration: A Review of Current Trends. Int. J. Polym. Mater. Polym. Biomater. 2024, 73, 600–619. [Google Scholar] [CrossRef]
- Vyas, A.; Kumawat, V.S.; Ghosh, S.B.; Bandyopadhyay-Ghosh, S. Microstructural Analysis and Bioactive Response of Selectively Engineered Glass-Ceramics in Simulated Body Fluid. Mater. Technol. 2021, 36, 451–459. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, T.; Zhang, M.; Wang, D.; Wang, X.; Huang, G.; Wang, S.; Zhang, M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front. Bioeng. Biotechnol. 2021, 9, 761302. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Santoro, M.; Perale, G. Polymeric Scaffolds as Stem Cell Carriers in Bone Repair: Polymeric Scaffolds as Stem Cell Carriers in Bone Repair. J. Tissue Eng. Regen. Med. 2015, 9, 1093–1119. [Google Scholar] [CrossRef]
- Gillman, C.E.; Jayasuriya, A.C. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 130, 112466. [Google Scholar] [CrossRef]
- Schmidt, A.H. Autologous Bone Graft: Is It Still the Gold Standard? Injury 2021, 52, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, R.S.; Koval, K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma 2019, 33, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Masquelet, A.C. Muscle Reconstruction in Reconstructive Surgery: Soft Tissue Repair and Long Bone Reconstruction. Langenbeck’s Arch. Surg. 2003, 388, 344–346. [Google Scholar] [CrossRef]
- Lana, J.F.S.D.; Da Fonseca, L.F.; Macedo, R.D.R.; Mosaner, T.; Murrell, W.; Kumar, A.; Purita, J.; De Andrade, M.A.P. Platelet-Rich Plasma vs. Bone Marrow Aspirate Concentrate: An Overview of Mechanisms of Action and Orthobiologic Synergistic Effects. World J. Stem Cells 2021, 13, 155–167. [Google Scholar] [CrossRef]
- Govoni, M.; Vivarelli, L.; Mazzotta, A.; Stagni, C.; Maso, A.; Dallari, D. Commercial Bone Grafts Claimed as an Alternative to Autografts: Current Trends for Clinical Applications in Orthopaedics. Materials 2021, 14, 3290. [Google Scholar] [CrossRef]
- Harrison, L.M.; Hallac, R.R.; Seaward, J.; Kane, A.A.; Park, Y.-J. Autogenous Bilateral Cleft Alveolar Bone Grafting with rhBMP-2 and Cellular Bone Matrix. Cleft Palate Craniofac. J. 2024, 33, 203–213. [Google Scholar] [CrossRef]
- Choi, W.; Kim, B.-S.; Cho, W.-T.; Lim, E.J.; Choi, J.S.; Ryu, Y.K.; Cho, J.-W.; Sakong, S.; Oh, J.-K. Efficacy and Safety of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Combined with Autologous Bone for the Treatment of Long Bone Nonunion: A Report of a Prospective Case Series. Injury 2024, 55, 111711. [Google Scholar] [CrossRef]
- Xie, C.; Ye, J.; Liang, R.; Yao, X.; Wu, X.; Koh, Y.; Wei, W.; Zhang, X.; Ouyang, H. Advanced Strategies of Biomimetic Tissue-Engineered Grafts for Bone Regeneration. Adv. Healthc. Mater. 2021, 10, 2100408. [Google Scholar] [CrossRef]
- Qi, J.; Yu, T.; Hu, B.; Wu, H.; Ouyang, H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int. J. Mol. Sci. 2021, 22, 10233. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J. Optimized Bone Grafting. Periodontology 2000 2024, 94, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Berkes, M.B.; Little, M.T.M.; Schottel, P.C.; Pardee, N.C.; Zuiderbaan, A.; Lazaro, L.E.; Helfet, D.L.; Lorich, D.G. Outcomes of Schatzker II Tibial Plateau Fracture Open Reduction Internal Fixation Using Structural Bone Allograft. J. Orthop. Trauma 2014, 28, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Kawano, S.; Ueno, M.; Sonohata, M.; Kitajima, M.; Tanaka, S.; Mawatari, D.; Mawatari, M. Clinical Results of Periacetabular Osteotomy with Structural Bone Allograft for the Treatment of Severe Hip Dysplasia. Bone Jt. J. 2023, 105-B, 743–750. [Google Scholar] [CrossRef]
- Medina, G.; Görtz, S. Osteochondral Techniques: Where Are We Now? J. Cartil. Jt. Preserv. 2023, 3, 100105. [Google Scholar] [CrossRef]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone Regeneration: Current Concepts and Future Directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef]
- Moraschini, V.; de Almeida, D.C.F.; Calasans-Maia, M.D.; Kischinhevsky, I.C.C.; Louro, R.S.; Granjeiro, J.M. Immunological Response of Allogeneic Bone Grafting: A Systematic Review of Prospective Studies. J. Oral Pathol. Med. 2020, 49, 395–403. [Google Scholar] [CrossRef]
- Shang, F.; Yu, Y.; Liu, S.; Ming, L.; Zhang, Y.; Zhou, Z.; Zhao, J.; Jin, Y. Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration. Bioact. Mater. 2021, 6, 666–683. [Google Scholar] [CrossRef]
- Pereira, H.F.; Cengiz, I.F.; Silva, F.S.; Reis, R.L.; Oliveira, J.M. Scaffolds and Coatings for Bone Regeneration. J. Mater. Sci. Mater. Med. 2020, 31, 27. [Google Scholar] [CrossRef]
- Clark, R.P.; Pham, P.M.; Ciminello, F.S.; Hagge, R.J.; Drobny, S.; Wong, G.B. Nasal Dorsal Augmentation with Freeze-Dried Allograft Bone: 10-Year Comprehensive Review. Plast. Reconstr. Surg. 2019, 143, 49e–61e. [Google Scholar] [CrossRef] [PubMed]
- Tresguerres, F.G.F.; Cortes, A.R.G.; Hernandez Vallejo, G.; Cabrejos-Azama, J.; Tamimi, F.; Torres, J. Clinical and Radiographic Outcomes of Allogeneic Block Grafts for Maxillary Lateral Ridge Augmentation: A Randomized Clinical Trial. Clin. Implant Dent. Rel. Res. 2019, 21, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front. Cell Dev. Biol. 2021, 9, 665813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, L.; Yang, X.-G.; Wang, F.; Feng, J.-T.; Hua, K.-C.; Li, Q.; Hu, Y.-C. Demineralized Bone Matrix Carriers and Their Clinical Applications: An Overview. Orthop. Surg. 2019, 11, 725–737. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Liu, W.; Fan, Y.; Qi, L.; Li, S.; Kong, C.; Zou, H.; Liu, Z. Demineralized Bone Matrix for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. J. Dent. 2024, 143, 104899. [Google Scholar] [CrossRef]
- Manawar, S.; Myrick, E.; Awad, P.; Hung, V.; Hinton, C.; Kenter, K.; Bovid, K.; Li, Y. Use of Allograft Bone Matrix in Clinical Orthopedics. Regen. Med. 2024, 19, 247–256. [Google Scholar] [CrossRef]
- Plantz, M.A.; Hsu, W.K. Recent Research Advances in Biologic Bone Graft Materials for Spine Surgery. Curr. Rev. Musculoskelet. Med. 2020, 13, 318–325. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Herford, A.S.; Stoffella, E.; Stanford, C.M. Bone Grafts and Bone Substitute Materials. In Principles and Practice of Single Implant and Restorations; Elsevier: Amsterdam, The Netherlands, 2014; pp. 75–86. ISBN 978-1-4557-4476-3. [Google Scholar]
- Bracey, D.N.; Cignetti, N.E.; Jinnah, A.H.; Stone, A.V.; Gyr, B.M.; Whitlock, P.W.; Scott, A.T. Bone Xenotransplantation: A Review of the History, Orthopedic Clinical Literature, and a Single-center Case Series. Xenotransplantation 2020, 27, e12600. [Google Scholar] [CrossRef]
- Kawecki, M.; Łabuś, W.; Klama-Baryla, A.; Kitala, D.; Kraut, M.; Glik, J.; Misiuga, M.; Nowak, M.; Bielecki, T.; Kasperczyk, A. A Review of Decellurization Methods Caused by an Urgent Need for Quality Control of Cell-free Extracellular Matrix’ Scaffolds and Their Role in Regenerative Medicine. J. Biomed. Mater. Res. 2018, 106, 909–923. [Google Scholar] [CrossRef]
- Amini, Z.; Lari, R. A Systematic Review of Decellularized Allograft and Xenograft–Derived Scaffolds in Bone Tissue Regeneration. Tissue Cell 2021, 69, 101494. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, P.; Danciu, M.; Pascu, A.; Gardikiotis, I.; Forna, N.; Sirbu, M.T.; Calistru, A.-E.; Puha, B.; Veliceasa, B.; Sirbu, P.-D. Experimental Study on Rats with Critical-Size Bone Defects Comparing Effects of Autologous Bone Graft, Equine Bone Substitute Bio-Gen® Alone or in Association with Platelet-Rich Fibrin (PRF). Polymers 2024, 16, 1502. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone Regenerative Medicine: Classic Options, Novel Strategies, and Future Directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef]
- Fan, L.; Ren, Y.; Emmert, S.; Vučković, I.; Stojanovic, S.; Najman, S.; Schnettler, R.; Barbeck, M.; Schenke-Layland, K.; Xiong, X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 3744. [Google Scholar] [CrossRef]
- Almazrooa, S.A.; Noonan, V.; Woo, S.-B. Resorbable Collagen Membranes: Histopathologic Features. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 236–240. [Google Scholar] [CrossRef]
- Briquez, P.S.; Tsai, H.-M.; Watkins, E.A.; Hubbell, J.A. Engineered Bridge Protein with Dual Affinity for Bone Morphogenetic Protein-2 and Collagen Enhances Bone Regeneration for Spinal Fusion. Sci. Adv. 2021, 7, eabh4302. [Google Scholar] [CrossRef]
- Acri, T.M.; Laird, N.Z.; Jaidev, L.R.; Meyerholz, D.K.; Salem, A.K.; Shin, K. Nonviral Gene Delivery Embedded in Biomimetically Mineralized Matrices for Bone Tissue Engineering. Tissue Eng. Part A 2021, 27, 1074–1083. [Google Scholar] [CrossRef]
- Zeimaran, E.; Pourshahrestani, S.; Fathi, A.; Razak, N.A.B.A.; Kadri, N.A.; Sheikhi, A.; Baino, F. Advances in Bioactive Glass-Containing Injectable Hydrogel Biomaterials for Tissue Regeneration. Acta Biomater. 2021, 136, 1–36. [Google Scholar] [CrossRef]
- Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2009432. [Google Scholar] [CrossRef]
- Yin, B.; Yang, H.; Yang, M. Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation. J. Compos. Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Sathiya, K.; Ganesamoorthi, S.; Mohan, S.; Shanmugavadivu, A.; Selvamurugan, N. Natural Polymers-Based Surface Engineering of Bone Scaffolds—A Review. Int. J. Biol. Macromol. 2024, 282, 136840. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-T.; Shalumon, K.T.; Chang, K.-H.; Sheu, C.; Chen, J.-P. Investigation of Synergistic Effects of Inductive and Conductive Factors in Gelatin-Based Cryogels for Bone Tissue Engineering. J. Mater. Chem. B 2016, 4, 1827–1841. [Google Scholar] [CrossRef]
- Loyo, C.; Cordoba, A.; Palza, H.; Canales, D.; Melo, F.; Vivanco, J.F.; Baier, R.V.; Millán, C.; Corrales, T.; Zapata, P.A. Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers 2023, 16, 129. [Google Scholar] [CrossRef]
- Farshidfar, N.; Iravani, S.; Varma, R.S. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine. Mar. Drugs 2023, 21, 189. [Google Scholar] [CrossRef]
- Chen, X.; Wu, T.; Bu, Y.; Yan, H.; Lin, Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int. J. Mol. Sci. 2024, 25, 7810. [Google Scholar] [CrossRef]
- Preethi Soundarya, S.; Haritha Menon, A.; Viji Chandran, S.; Selvamurugan, N. Bone Tissue Engineering: Scaffold Preparation Using Chitosan and Other Biomaterials with Different Design and Fabrication Techniques. Int. J. Biol. Macromol. 2018, 119, 1228–1239. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Hu, Y.; Fei, Y.; Liu, H.; Huang, Z.; Wang, C.; Ruan, D.; Heng, B.C.; Chen, W.; et al. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater. Sci. Eng. 2021, 7, 817–840. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, R.; Zhang, C.; Xia, Y.; Jin, L. Advances in Hyaluronic Acid: Bioactivity, Complexed Biomaterials and Biological Application: A Review. Asian J. Surg. 2025, 48, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Faruq, O.; Kim, B.; Padalhin, A.R.; Lee, G.H.; Lee, B.-T. A Hybrid Composite System of Biphasic Calcium Phosphate Granules Loaded with Hyaluronic Acid–Gelatin Hydrogel for Bone Regeneration. J. Biomater. Appl. 2017, 32, 433–445. [Google Scholar] [CrossRef]
- Arjama, M.; Mehnath, S.; Rajan, M.; Jeyaraj, M. Injectable Cuttlefish HAP and Macromolecular Fibroin Protein Hydrogel for Natural Bone Mimicking Matrix for Enhancement of Osteoinduction Progression. React. Funct. Polym. 2021, 160, 104841. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, C.-S. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels 2023, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Purohit, S.D.; Singh, H.; Dinda, A.K.; Potdar, P.D.; Sharma, C.; Chou, C.-F.; Mishra, N.C. Surface Modification of PCL-Gelatin-Chitosan Electrospun Scaffold by Nano-Hydroxyapatite for Bone Tissue Engineering. Mater. Today Commun. 2023, 34, 105237. [Google Scholar] [CrossRef]
- Lu, H.-T.; Huang, G.-Y.; Chang, W.-J.; Lu, T.-W.; Huang, T.-W.; Ho, M.-H.; Mi, F.-L. Modification of Chitosan Nanofibers with CuS and Fucoidan for Antibacterial and Bone Tissue Engineering Applications. Carbohydr. Polym. 2022, 281, 119035. [Google Scholar] [CrossRef]
- Purohit, S.D.; Bhaskar, R.; Singh, H.; Priyadarshi, R.; Kim, H.; Son, Y.; Gautam, S.; Han, S.S. Chitosan-Based Electrospun Fibers for Bone-Tissue Engineering: Recent Research Advancements. Int. J. Biol. Macromol. 2024, 281, 136530. [Google Scholar] [CrossRef]
- Bharathi, R.; Ganesh, S.S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-Based Scaffolds as Drug Delivery Systems in Bone Tissue Engineering. Int. J. Biol. Macromol. 2022, 222, 132–153. [Google Scholar] [CrossRef]
- Dwivedi, R.; Pandey, R.; Kumar, S.; Mehrotra, D. Poly Hydroxyalkanoates (PHA): Role in Bone Scaffolds. J. Oral Biol. Craniofac. Res. 2020, 10, 389–392. [Google Scholar] [CrossRef]
- Pryadko, A.; Surmeneva, M.A.; Surmenev, R.A. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers 2021, 13, 1738. [Google Scholar] [CrossRef]
- Guillén-Carvajal, K.; Valdez-Salas, B.; Beltrán-Partida, E.; Salomón-Carlos, J.; Cheng, N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers 2023, 15, 2762. [Google Scholar] [CrossRef]
- Gharati, G.; Shirian, S.; Sharifi, S.; Mirzaei, E.; Bakhtirimoghadam, B.; Karimi, I.; Nazari, H. Comparison Capacity of Collagen Hydrogel and Collagen/Strontium Bioglass Nanocomposite Scaffolds With and Without Mesenchymal Stem Cells in Regeneration of Critical Sized Bone Defect in a Rabbit Animal Model. Biol. Trace Elem. Res. 2022, 200, 3176–3186. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, M.H.; Salehi, M.; Ehterami, A.; Bastami, F.; Semyari, H.; Tehranchi, M.; Nabavi, M.A.; Semyari, H. A Collagen-Based Hydrogel Containing Tacrolimus for Bone Tissue Engineering. Drug Deliv. Transl. Res. 2020, 10, 108–121. [Google Scholar] [CrossRef]
- Han, X.; He, J.; Wang, Z.; Bai, Z.; Qu, P.; Song, Z.; Wang, W. Fabrication of Silver Nanoparticles/Gelatin Hydrogel System for Bone Regeneration and Fracture Treatment. Drug Deliv. 2021, 28, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Paiva, S.S.; Caffrey, D.; Cavanagh, B.L.; Murphy, C.M. Injectable Chitosan/Collagen Hydrogels Nano-Engineered with Functionalized Single Wall Carbon Nanotubes for Minimally Invasive Applications in Bone. Mater. Sci. Eng. C 2021, 128, 112340. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, P.R.; Nicholls, F.; Kruse, A.; Zwahlen, R.A.; Weber, F.E. Evaluation of Moldable, in Situ Hardening Calcium Phosphate Bone Graft Substitutes. Clin. Oral Implant. Res. 2013, 24, 149–157. [Google Scholar] [CrossRef]
- Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone Substitutes in Orthopaedic Surgery: From Basic Science to Clinical Practice. J. Mater. Sci. Mater. Med. 2014, 25, 2445–2461. [Google Scholar] [CrossRef]
- Raucci, M.G.; D’Amora, U.; Ronca, A.; Ambrosio, L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv. Healthc. Mater. 2020, 9, 2000349. [Google Scholar] [CrossRef]
- Xu, H.H.K.; Weir, M.D.; Burguera, E.F.; Fraser, A.M. Injectable and Macroporous Calcium Phosphate Cement Scaffold. Biomaterials 2006, 27, 4279–4287. [Google Scholar] [CrossRef]
- Mirshafiei, M.; Rashedi, H.; Yazdian, F.; Rahdar, A.; Baino, F. Advancements in Tissue and Organ 3D Bioprinting: Current Techniques, Applications, and Future Perspectives. Mater. Des. 2024, 240, 112853. [Google Scholar] [CrossRef]
- Chung, J.J.; Im, H.; Kim, S.H.; Park, J.W.; Jung, Y. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 586406. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Jakus, A.E.; Jordan, S.W.; Dumanian, Z.; Parker, K.; Zhao, L.; Patel, P.K.; Shah, R.N. Three-Dimensionally Printed Hyperelastic Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial Bone Defects. Plast. Reconstr. Surg. 2019, 143, 1397–1407. [Google Scholar] [CrossRef]
- Belvedere, C.; Siegler, S.; Fortunato, A.; Caravaggi, P.; Liverani, E.; Durante, S.; Ensini, A.; Konow, T.; Leardini, A. New Comprehensive Procedure for Custom-made Total Ankle Replacements: Medical Imaging, Joint Modeling, Prosthesis Design, and 3D Printing. J. Orthop. Res. 2019, 37, 760–768. [Google Scholar] [CrossRef]
- Jakus, A.E.; Rutz, A.L.; Shah, R.N. Advancing the Field of 3D Biomaterial Printing. Biomed. Mater. 2016, 11, 014102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Ma, X.; Gou, M.; Mei, D.; Zhang, K.; Chen, S. 3D Printing of Functional Biomaterials for Tissue Engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112. [Google Scholar] [CrossRef]
- Dec, P.; Modrzejewski, A.; Pawlik, A. Existing and Novel Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2022, 24, 529. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Zhang, J.; Zhang, C.; Barbieri, D.; Yuan, H.; Moroni, L.; Feng, G. The Role of Calcium Phosphate Surface Structure in Osteogenesis and the Mechanisms Involved. Acta Biomater. 2020, 106, 22–33. [Google Scholar] [CrossRef]
- Sovova, S.; Abalymov, A.; Pekar, M.; Skirtach, A.G.; Parakhonskiy, B. Calcium Carbonate Particles: Synthesis, Temperature and Time Influence on the Size, Shape, Phase, and Their Impact on Cell Hydroxyapatite Formation. J. Mater. Chem. B 2021, 9, 8308–8320. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, T.; Ju, W.; Chen, X.; Heng, B.C.; Shen, W.; Yin, Z. Biomimetic Strategies for Tendon/Ligament-to-Bone Interface Regeneration. Bioact. Mater. 2021, 6, 2491–2510. [Google Scholar] [CrossRef]
- Siddiqui, H.A.; Pickering, K.L.; Mucalo, M.R. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes. Materials 2018, 11, 1813. [Google Scholar] [CrossRef]
- Shue, L.; Yufeng, Z.; Mony, U. Biomaterials for Periodontal Regeneration: A Review of Ceramics and Polymers. Biomatter 2012, 2, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Tuukkanen, J.; Nakamura, M. Hydroxyapatite as a Nanomaterial for Advanced Tissue Engineering and Drug Therapy. Curr. Pharm. Des. 2017, 23, 3786–3793. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Funayama, T.; Noguchi, H.; Kumagai, H.; Sato, K.; Yoshioka, T.; Yamazaki, M. Unidirectional Porous Beta-Tricalcium Phosphate and Hydroxyapatite Artificial Bone: A Review of Experimental Evaluations and Clinical Applications. J. Artif. Organs 2021, 24, 103–110. [Google Scholar] [CrossRef]
- Fujimoto, A.; Tsuboi, K.; Ishikawa, E.; Nose, H.; Nose, T. Surgery Improves Vision and Cosmetic Appearance of an Adult Patient with Fibrous Dysplasia of the Frontal Bone. J. Clin. Neurosci. 2004, 11, 95–97. [Google Scholar] [CrossRef]
- Kang, J.; Shibasaki, M.; Terauchi, M.; Oshibe, N.; Hyodo, K.; Marukawa, E. Comparative Analysis of the in Vivo Kinetic Properties of Various Bone Substitutes Filled into a Peri-Implant Canine Defect Model. J. Periodontal Implant Sci. 2024, 54, 96. [Google Scholar] [CrossRef]
- Bontá, H.; Galli, F.; Gualtieri, A.; Renou, S.; Caride, F. The Effect of an Alloplastic Bone Substitute and Enamel Matrix Derivative on the Preservation of Single Anterior Extraction Sockets: A Histologic Study in Humans. Int. J. Periodontics Restor. Dent. 2022, 42, 361–368. [Google Scholar] [CrossRef]
- Yeo, Q.Y.; Kee Kwek, E.B. Use of a Biphasic Cement Bone Substitute in the Management of Metaphyseal Fractures. J. Clin. Orthop. Trauma 2019, 10, 789–791. [Google Scholar] [CrossRef]
- Siddiqui, M.M.; Pillai, A. Pathological Distal Tibial and Fibular Fracture in a Paediatric Patient: A Case Report. Cureus 2022, 14, e30235. [Google Scholar] [CrossRef]
- Chappard, D.; Kün-Darbois, J.-D.; Guillaume, B. Computational Fluid Dynamics Simulation from microCT Stacks of Commercial Biomaterials Usable for Bone Grafting. Micron 2020, 133, 102861. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.-S.; Oh, J.-K. Review of Bone Graft and Bone Substitutes with an Emphasis on Fracture Surgeries. Biomater. Res. 2019, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Ercal, P.; Pekozer, G.G. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. In Cell Biology and Translational Medicine, Volume 9; Turksen, K., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1288, pp. 61–85. ISBN 978-3-030-54916-9. [Google Scholar]
- Garimella, A.; Ghosh, S.B.; Bandyopadhyay-Ghosh, S. Biomaterials for Bone Tissue Engineering: Achievements to Date and Future Directions. Biomed. Mater. 2025, 20, 012001. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Han, Y.-H.; Lee, J.H.; Kang, I.-K.; Jang, B.-K.; Kim, S. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering. BioMed Res. Int. 2014, 2014, 352098. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Zhao, X.; Pakvasa, M.; Tucker, A.B.; Luo, H.; Qin, K.H.; Hu, D.A.; Wang, E.J.; Li, A.J.; et al. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 598607. [Google Scholar] [CrossRef]
- Mishchenko, O.; Yanovska, A.; Kosinov, O.; Maksymov, D.; Moskalenko, R.; Ramanavicius, A.; Pogorielov, M. Synthetic Calcium–Phosphate Materials for Bone Grafting. Polymers 2023, 15, 3822. [Google Scholar] [CrossRef]
- Sinha, R.; Menon, P.; Chakranarayan, A. Vitoss Synthetic Cancellous Bone (Void Filler). Med. J. Armed Forces India 2009, 65, 173. [Google Scholar] [CrossRef]
- Karabegović, D.; Zaklan-Kavić, D. Use of synthograft after tooth apicoectomy with extensive bone defect and marginal apical communication to periodontium. Acta Stomatol. Croat. 1990, 24, 175–183. [Google Scholar]
- Detienville, R. Clinical study of bioresorbable ceramic (Synthograft) in the treatment of intrabony lesions. 1: Clinical developments over a year. J. Parodontol. 1985, 4, 9–14. [Google Scholar]
- Čandrlić, M.; Tomas, M.; Karl, M.; Malešić, L.; Včev, A.; Perić Kačarević, Ž.; Matijević, M. Comparison of Injectable Biphasic Calcium Phosphate and a Bovine Xenograft in Socket Preservation: Qualitative and Quantitative Histologic Study in Humans. Int. J. Mol. Sci. 2022, 23, 2539. [Google Scholar] [CrossRef]
- Shiu, S.-T.; Lee, W.-F.; Chen, S.-M.; Hao, L.-T.; Hung, Y.-T.; Lai, P.-C.; Feng, S.-W. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model. Int. J. Mol. Sci. 2021, 22, 8101. [Google Scholar] [CrossRef] [PubMed]
- Botez, P.; Sirbu, P.; Simion, L.; Munteanu, F.; Antoniac, I. Application of a Biphasic Macroporous Synthetic Bone Substitutes CERAFORM®: Clinical and Histological Results. Eur. J. Orthop. Surg. Traumatol. 2009, 19, 387–395. [Google Scholar] [CrossRef]
- Zampara, E.; Alshammari, M.; De Bortoli, J.; Mullings, O.; Gkisakis, I.G.; Benalcázar Jalkh, E.B.; Tovar, N.; Coelho, P.G.; Witek, L. A Histologic and Histomorphometric Evaluation of an Allograft, Xenograft, and Alloplast Graft for Alveolar Ridge Preservation in Humans: A Randomized Controlled Clinical Trial. J. Oral Implantol. 2022, 48, 541–549. [Google Scholar] [CrossRef]
- Cheah, C.W.; Al-Namnam, N.M.; Lau, M.N.; Lim, G.S.; Raman, R.; Fairbairn, P.; Ngeow, W.C. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? Materials 2021, 14, 6123. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L.; Jones, J.R. Bioactive Glasses: Frontiers and Challenges. Front. Bioeng. Biotechnol. 2015, 3, 194. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Pigott, G.H.; Schoen, F.J.; Hench, L.L. Toxicology and Biocompatibility of Bioglasses. J. Biomed. Mater. Res. 1981, 15, 805–817. [Google Scholar] [CrossRef]
- Xynos, I.D.; Hukkanen, M.V.J.; Batten, J.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Bioglass ®45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering. Calcif. Tissue Int. 2000, 67, 321–329. [Google Scholar] [CrossRef]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef]
- Kargozar, S.; Baino, F.; Hamzehlou, S.; Hill, R.G.; Mozafari, M. Bioactive Glasses Entering the Mainstream. Drug Discov. Today 2018, 23, 1700–1704. [Google Scholar] [CrossRef]
- Shearer, A.; Montazerian, M.; Sly, J.J.; Hill, R.G.; Mauro, J.C. Trends and Perspectives on the Commercialization of Bioactive Glasses. Acta Biomater. 2023, 160, 14–31. [Google Scholar] [CrossRef]
- Ilharreborde, B.; Morel, E.; Fitoussi, F.; Presedo, A.; Souchet, P.; Penneçot, G.-F.; Mazda, K. Bioactive Glass as a Bone Substitute for Spinal Fusion in Adolescent Idiopathic Scoliosis: A Comparative Study With Iliac Crest Autograft. J. Pediatr. Orthop. 2008, 28, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.N.; Murthy, R.K.; Honavar, S.G. Comparison of Vascularization of Medpor and Medpor-Plus Orbital Implants: A Prospective, Randomized Study. Ophthalmic Plast. Reconstr. Surg. 2007, 23, 463–467. [Google Scholar] [CrossRef] [PubMed]
- De Giglio, R.; Di Vieste, G.; Mondello, T.; Balduzzi, G.; Masserini, B.; Formenti, I.; Lodigiani, S.; Pallavicini, D.; Pintaudi, B.; Mazzone, A. Efficacy and Safety of Bioactive Glass S53P4 as a Treatment for Diabetic Foot Osteomyelitis. J. Foot Ankle Surg. 2021, 60, 292–296. [Google Scholar] [CrossRef]
- Barrey, C.; Broussolle, T. Clinical and Radiographic Evaluation of Bioactive Glass in Posterior Cervical and Lumbar Spinal Fusion. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 1623–1629. [Google Scholar] [CrossRef]
- Bae, H.; Hatten, H.P.; Linovitz, R.; Tahernia, A.D.; Schaufele, M.K.; McCollom, V.; Gilula, L.; Maurer, P.; Benyamin, R.; Mathis, J.M.; et al. A Prospective Randomized FDA-IDE Trial Comparing Cortoss With PMMA for Vertebroplasty: A Comparative Effectiveness Research Study With 24-Month Follow-Up. Spine 2012, 37, 544–550. [Google Scholar] [CrossRef]
- Kargozar, S.; Montazerian, M.; Fiume, E.; Baino, F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2019, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Aitasalo, K.M.J.; Piitulainen, J.M.; Rekola, J.; Vallittu, P.K. Craniofacial Bone Reconstruction with Bioactive Fiber-Reinforced Composite Implant: Bioactive Fiber-Reinforced Composite Implant. Head Neck 2014, 36, 722–728. [Google Scholar] [CrossRef]
- Ferreira, S.A.; Young, G.; Jones, J.R.; Rankin, S. Bioglass/Carbonate Apatite/Collagen Composite Scaffold Dissolution Products Promote Human Osteoblast Differentiation. Mater. Sci. Eng. C 2021, 118, 111393. [Google Scholar] [CrossRef]
- Collagen Matrix. OssiMend Bioactive Moldable in Posterolateral Instrumented Lumbar Fusion. 2022. Available online: https://clinicaltrials.gov/study/NCT04775537 (accessed on 22 March 2022).
- Fredericks, D.; Petersen, E.B.; Watson, N.; Grosland, N.; Gibson-Corley, K.; Smucker, J. Comparison of Two Synthetic Bone Graft Products in a Rabbit Posterolateral Fusion Model. Iowa Orthop. J. 2016, 36, 167–173. [Google Scholar]
- Cottrill, E.; Pennington, Z.; Lankipalle, N.; Ehresman, J.; Valencia, C.; Schilling, A.; Feghali, J.; Perdomo-Pantoja, A.; Theodore, N.; Sciubba, D.M.; et al. The Effect of Bioactive Glasses on Spinal Fusion: A Cross-Disciplinary Systematic Review and Meta-Analysis of the Preclinical and Clinical Data. J. Clin. Neurosci. 2020, 78, 34–46. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M.; Lassila, L.V.J.; Gandini, P.; Sfondrini, M.F. Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. BioMed Res. Int. 2018, 2018, 1498901. [Google Scholar] [CrossRef] [PubMed]
- Malat, T.A.; Glombitza, M.; Dahmen, J.; Hax, P.-M.; Steinhausen, E. The Use of Bioactive Glass S53P4 as Bone Graft Substitute in the Treatment of Chronic Osteomyelitis and Infected Non-Unions—A Retrospective Study of 50 Patients. Z. Orthop. Unf. 2018, 156, 152–159. [Google Scholar] [CrossRef]
- Stiller, A.; Engblom, M.; Karlström, O.; Lindén, M.; Hupa, L. Impact of Fluid Flow Rate on the Dissolution Behavior of Bioactive Glass S53P4. J. Non-Cryst. Solids 2023, 607, 122219. [Google Scholar] [CrossRef]
- Meskher, H.; Sharifianjazi, F.; Tavamaishvili, K.; Irandoost, M.; Nejadkoorki, D.; Makvandi, P. Limitations, Challenges and Prospective Solutions for Bioactive Glasses-Based Nanocomposites for Dental Applications: A Critical Review. J. Dent. 2024, 150, 105331. [Google Scholar] [CrossRef]
- Phalak, M.O.; Chaudhari, A.K.; Chaudhari, T.; Birajdar, A. Dr. John H. Charnley: An Architect and Pioneer of the Modern Era of Hip Replacement Surgery. Cureus 2024, 16, e68832. [Google Scholar] [CrossRef]
- Fan, L.; Chen, S.; Yang, M.; Liu, Y.; Liu, J. Metallic Materials for Bone Repair. Adv. Healthc. Mater. 2024, 13, 2302132. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone Marrow Mesenchymal Stem Cells: Aging and Tissue Engineering Applications to Enhance Bone Healing. Biomaterials 2019, 203, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, H.; Zeng, Y.; Xie, H.; Ma, D.; Wang, Z.; Liang, H. Recent Advances in Copper-Doped Titanium Implants. Materials 2022, 15, 2342. [Google Scholar] [CrossRef]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef]
- Shuai, C.; Cheng, Y.; Yang, Y.; Peng, S.; Yang, W.; Qi, F. Laser Additive Manufacturing of Zn-2Al Part for Bone Repair: Formability, Microstructure and Properties. J. Alloys Compd. 2019, 798, 606–615. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Fan, L.; Wang, X.; Duan, M.; Wang, H.; Zhu, X.; Liu, J. Injectable Affinity and Remote Magnetothermal Effects of Bi-Based Alloy for Long-Term Bone Defect Repair and Analgesia. Adv. Sci. 2021, 8, 2100719. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zeng, Z.; Peng, S.; Shuai, C. Magnetostrictive Bulk Fe-Ga Alloys Prepared by Selective Laser Melting for Biodegradable Implant Applications. Mater. Des. 2022, 220, 110861. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Yang, S.; Xu, W.; Ye, S.; Xia, T. Effect of a Porous Tantalum Rod on Early and Intermediate Stages of Necrosis of the Femoral Head. Biomed. Mater. 2010, 5, 065003. [Google Scholar] [CrossRef]
- Wallace, N.; Schaffer, N.E.; Aleem, I.S.; Patel, R. 3D-Printed Patient-Specific Spine Implants: A Systematic Review. Clin. Spine Surg. A Spine Publ. 2020, 33, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Thayaparan, G.K.; Owbridge, M.G.; Thompson, R.G.; D’Urso, P.S. Designing Patient-Specific 3D Printed Devices for Posterior Atlantoaxial Transarticular Fixation Surgery. J. Clin. Neurosci. 2018, 56, 192–198. [Google Scholar] [CrossRef]
- Thayaparan, G.K.; Owbridge, M.G.; Thompson, R.G.; D’Urso, P.S. Patient-Specific Processes for Occipitocervical Fixation Using Biomodelling and Additive Manufacturing. J. Clin. Neurosci. 2020, 71, 251–256. [Google Scholar] [CrossRef]
- Mróz, A.; Skalski, K.; Walczyk, W. New Lumbar Disc Endoprosthesis Applied to the Patient’s Anatomic Features. Acta Bioeng. Biomech. 2015, 17, 25–34. [Google Scholar] [CrossRef]
- Meng, M.; Wang, J.; Huang, H.; Liu, X.; Zhang, J.; Li, Z. 3D Printing Metal Implants in Orthopedic Surgery: Methods, Applications and Future Prospects. J. Orthop. Transl. 2023, 42, 94–112. [Google Scholar] [CrossRef]
- Geng, X.; Ding, H.; Wei, K.; Chen, L. Suppression of Multiple Modal Resonances of a Cantilever Beam by an Impact Damper. Appl. Math. Mech. (Engl. Ed.) 2020, 41, 383–400. [Google Scholar] [CrossRef]
- Ao, Y.; Guo, L.; Chen, H.; He, R.; Yang, P.; Fu, D.; Gu, L.; Peng, Y.; Xiong, R.; Yang, L.; et al. Application of Three-Dimensional-Printed Porous Tantalum Cones in Total Knee Arthroplasty Revision to Reconstruct Bone Defects. Front. Bioeng. Biotechnol. 2022, 10, 925339. [Google Scholar] [CrossRef]
- Faldini, C.; Mazzotti, A.; Belvedere, C.; Durastanti, G.; Panciera, A.; Geraci, G.; Leardini, A. A New Ligament-Compatible Patient-Specific 3D-Printed Implant and Instrumentation for Total Ankle Arthroplasty: From Biomechanical Studies to Clinical Cases. J. Orthop. Traumatol. 2020, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, Y.; Yang, L.; Duan, X. 3D Printing-Assisted Supramalleolar Osteotomy for Ankle Osteoarthritis. ACS Omega 2022, 7, 42191–42198. [Google Scholar] [CrossRef]
- Ji, T.; Yang, Y.; Tang, X.; Liang, H.; Yan, T.; Yang, R.; Guo, W. 3D-Printed Modular Hemipelvic Endoprosthetic Reconstruction Following Periacetabular Tumor Resection: Early Results of 80 Consecutive Cases. J. Bone Jt. Surg. 2020, 102, 1530–1541. [Google Scholar] [CrossRef]
- Chen, G.; Muheremu, A.; Yang, L.; Wu, X.; He, P.; Fan, H.; Liu, J.; Chen, C.; Li, Z.; Wang, F. Three-Dimensional Printed Implant for Reconstruction of Pelvic Bone after Removal of Giant Chondrosarcoma: A Case Report. J. Int. Med. Res. 2020, 48, 0300060520917275. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Huang, L.; Liu, H.; Qu, W.; Zhao, X.; Wang, C.; Li, C.; Yu, T.; Han, Q.; Wang, J.; et al. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design. Med. Sci. Monit. 2017, 23, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Tomaževič, M.; Kristan, A.; Kamath, A.F.; Cimerman, M. 3D Printing of Implants for Patient-Specific Acetabular Fracture Fixation: An Experimental Study. Eur. J. Trauma. Emerg. Surg. 2021, 47, 1297–1305. [Google Scholar] [CrossRef]
- Luenam, S.; Kosiyatrakul, A.; Phakdeewisetkul, K.; Puncreobutr, C. The Patient-Specific Implant Created with 3D Printing Technology in Treatment of a Severe Open Distal Humerus Fracture with Complete Loss of the Lateral Column. J. Orthop. Surg. 2020, 28, 2309499020960251. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Sun, R.; Jia, Y.; Chen, X.; Liu, Y.; Oyang, H.; Feng, L. A New 3D Printed Titanium Metal Trabecular Bone Reconstruction System for Early Osteonecrosis of the Femoral Head. Medicine 2018, 97, e11088. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, Z.; Wang, T.; Liu, B. Biocompatible Porous Tantalum Metal Plates in the Treatment of Tibial Fracture. Orthop. Surg. 2019, 11, 325–329. [Google Scholar] [CrossRef]
- Kadakia, R.J.; Wixted, C.M.; Allen, N.B.; Hanselman, A.E.; Adams, S.B. Clinical Applications of Custom 3D Printed Implants in Complex Lower Extremity Reconstruction. 3D Print. Med. 2020, 6, 29. [Google Scholar] [CrossRef]
- Marin, E. Forged to Heal: The Role of Metallic Cellular Solids in Bone Tissue Engineering. Mater. Today Bio 2023, 23, 100777. [Google Scholar] [CrossRef]
- Busch, A.; Jäger, M.; Mayer, C.; Sowislok, A. Functionalization of Synthetic Bone Substitutes. Int. J. Mol. Sci. 2021, 22, 4412. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Banerjee, D.; Bandyopadhyay, A. Introduction to Biomaterials and Devices for Bone Disorders. In Materials for Bone Disorders; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–27. ISBN 978-0-12-802792-9. [Google Scholar]
- Gohil, S.V.; Suhail, S.; Rose, J.; Vella, T.; Nair, L.S. Polymers and Composites for Orthopedic Applications. In Materials for Bone Disorders; Elsevier: Amsterdam, The Netherlands, 2017; pp. 349–403. ISBN 978-0-12-802792-9. [Google Scholar]
- Bistolfi, A.; Ferracini, R.; Albanese, C.; Vernè, E.; Miola, M. PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives. Materials 2019, 12, 4002. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.K.; Kumar, M.; Kumar, R.; Ali, M.F. Bone Cement. Int. J. Orthop. Sci. 2017, 3, 79–82. [Google Scholar] [CrossRef]
- Kawashita, M.; Kawamura, K.; Li, Z. PMMA-Based Bone Cements Containing Magnetite Particles for the Hyperthermia of Cancer. Acta Biomater. 2010, 6, 3187–3192. [Google Scholar] [CrossRef]
- Han, J.; Ma, G.; Nie, J. A Facile Fabrication of Porous PMMA as a Potential Bone Substitute. Mater. Sci. Eng. C 2011, 31, 1278–1284. [Google Scholar] [CrossRef]
- Teo, A.J.T.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- Robo, C.; Hulsart-Billström, G.; Nilsson, M.; Persson, C. In Vivo Response to a Low-Modulus PMMA Bone Cement in an Ovine Model. Acta Biomater. 2018, 72, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Elakkiya, K.; Bargavi, P.; Balakumar, S. 3D Interconnected Porous PMMA Scaffold Integrating with Advanced Nanostructured CaP-Based Biomaterials for Rapid Bone Repair and Regeneration. J. Mech. Behav. Biomed. Mater. 2023, 147, 106106. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Y.; Wang, Y.; Zhang, X.; Gao, X.; Zhou, T.; Zhang, Z.; Li, Z.; Lin, Y.; Wang, B.; et al. High-Purity Butoxydibutylborane Catalysts Enable the Low-Exothermic Polymerization of PMMA Bone Cement with Enhanced Biocompatibility and Osseointegration. J. Mater. Chem. B 2024, 12, 8911–8918. [Google Scholar] [CrossRef]
- Xu, T.-G.; Shi, J.; Qi, H.; Chen, S.; Li, B.; Zhang, F.; He, J.-H. Radiopaque and Biocompatible PMMA Bone Cement Triggered by Nano Tantalum Carbide and Its Osteogenic Performance. ACS Biomater. Sci. Eng. 2024, 10, 5624–5631. [Google Scholar] [CrossRef] [PubMed]
- Bickels, J.; Campanacci, D.A. Local Adjuvant Substances Following Curettage of Bone Tumors. J. Bone Jt. Surg. 2020, 102, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Velasco, M.A.; Narváez-Tovar, C.A.; Garzón-Alvarado, D.A. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering. BioMed Res. Int. 2015, 2015, 729076. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, S.; Chen, X.; Shahabi, S.; Nasiri, N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS Mater. Au 2023, 3, 394–417. [Google Scholar] [CrossRef]
- Low, Y.J.; Andriyana, A.; Ang, B.C.; Zainal Abidin, N.I. Bioresorbable and Degradable Behaviors of PGA: Current State and Future Prospects. Polym. Eng. Sci. 2020, 60, 2657–2675. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chiu, J.-Y. Glycerol-Modified γ-PGA and Gellan Composite Hydrogel Materials with Tunable Physicochemical and Thermal Properties for Soft Tissue Engineering Application. Polymer 2021, 230, 124049. [Google Scholar] [CrossRef]
- Dubinenko, G.; Zinoviev, A.; Bolbasov, E.; Kozelskaya, A.; Shesterikov, E.; Novikov, V.; Tverdokhlebov, S. Highly Filled Poly(l -lactic Acid)/Hydroxyapatite Composite for 3D Printing of Personalized Bone Tissue Engineering Scaffolds. J. Appl. Polym. Sci. 2021, 138, 49662. [Google Scholar] [CrossRef]
- Kharbikar, B.N.; Chendke, G.S.; Desai, T.A. Modulating the Foreign Body Response of Implants for Diabetes Treatment. Adv. Drug Deliv. Rev. 2021, 174, 87–113. [Google Scholar] [CrossRef]
- Hwang, C.; Park, S.; Kang, I.-G.; Kim, H.-E.; Han, C.-M. Tantalum-Coated Polylactic Acid Fibrous Membranes for Guided Bone Regeneration. Mater. Sci. Eng. C 2020, 115, 111112. [Google Scholar] [CrossRef]
- Babilotte, J.; Martin, B.; Guduric, V.; Bareille, R.; Agniel, R.; Roques, S.; Héroguez, V.; Dussauze, M.; Gaudon, M.; Le Nihouannen, D.; et al. Development and Characterization of a PLGA-HA Composite Material to Fabricate 3D-Printed Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C 2021, 118, 111334. [Google Scholar] [CrossRef]
- Rocha, C.V.; Gonçalves, V.; Da Silva, M.C.; Bañobre-López, M.; Gallo, J. PLGA-Based Composites for Various Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 2034. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.A.; Ju, H.W.; Moon, B.M.; Lee, O.J.; Kim, J.-H.; Park, H.J.; Kim, D.W.; Kim, D.-K.; Jang, J.E.; Khang, G.; et al. Hybrid Scaffolds Based on PLGA and Silk for Bone Tissue Engineering: Hybrid Scaffolds Based on PLGA and Silk for Bone Tissue Engineering. J. Tissue Eng. Regen. Med. 2016, 10, 209–221. [Google Scholar] [CrossRef]
- Selvaraju, S.; Ramalingam, S.; Rao, J.R. Inorganic Apatite Nanomaterial: Modified Surface Phenomena and Its Role in Developing Collagen Based Polymeric Bio-Composite (Coll-PLGA/HAp) for Biological Applications. Colloids Surf. B Biointerfaces 2018, 172, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Pelaseyed, S.S.; Madaah Hosseini, H.R.; Samadikuchaksaraei, A. A Novel Pathway to Produce Biodegradable and Bioactive PLGA/TiO2 Nanocomposite Scaffolds for Tissue Engineering: Air–Liquid Foaming. J. Biomed. Mater. Res. 2020, 108, 1390–1407. [Google Scholar] [CrossRef] [PubMed]
- Wiltfang, J.; Merten, H.-A.; Schultze-Mosgau, S.; Schrell, U.; Wénzel, D.; Keler, P. Biodegradable Miniplates (LactoSorb): Long-Term Results in Infant Minipigs and Clinical Results. J. Craniofac. Surg. 2000, 11, 239–243. [Google Scholar] [CrossRef]
- Do, J.; Han, J.J.; Kwon, I.-J. Application of Double Layer with Collagen-Elastin Matrix (Matriderm®) and Polyglycolic Acid Sheet (Neoveil®) for Oroantral and Oronasal Fistula Closure after Maxillectomy: A Retrospective Single Center Experience. J. Stomatol. Oral. Maxillofac. Surg. 2024, 125, 101648. [Google Scholar] [CrossRef]
- Nitsch, A.; Verheggen, R.; Holste, J.; Merten, H.-A. Reconstruction of the anterior wall of frontal sinus with biopolymers. Schweiz. Monatsschr Zahnmed. 2008, 118, 12–21. [Google Scholar]
- Cho, D.Y.; Blum, J.D.; Villavisanis, D.F.; Ng, J.J.; Swanson, J.; Bartlett, S.P.; Taylor, J.A. Use of Resorbable Fixation for Posterior Cranial Vault Distraction Osteogenesis. Plast. Reconstr. Surg. 2025, 155, 399e–401e. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Sarrion, P.; Nakatsuka, N.; Young, T.D.; Taghdiri, N.; Ansari, S.; Aghaloo, T.; Li, S.; Khademhosseini, A.; Weiss, P.S.; et al. Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS Nano 2019, 13, 3830–3838. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ramezani Dana, H. Poly Lactic Acid (PLA) Polymers: From Properties to Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 1117–1130. [Google Scholar] [CrossRef]
- Bavaliya, K.J.; Vala, N.S.; Raj, M.; Raj, L. A Review on Biodegradable Composites Based on Poly (Lactic Acid) with Various Bio Fibers. Chem. Pap. 2024, 78, 2695–2728. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Zhao, Y.; Liu, Y.; Yang, X.; Li, K.; Zhao, W.; Han, J.; Li, J.; Ge, S. A Multifunctional Metal–Phenolic Nanocoating on Bone Implants for Enhanced Osseointegration via Early Immunomodulation. Adv. Sci. 2024, 11, 2307269. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Yun, W.-S.; Shim, J.-H.; Park, K.-H.; Choi, D.; Park, M.I.; Hwang, S.H.; Kim, S.W. Clinical application of 3-dimensional printing technology for patients with nasal septal deformities: A multicenter study. JAMA Otolaryngol.–Head Neck Surg. 2018, 144, 1145–1152. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Bao, S.; Huang, H.; Tang, Z.; Dong, H.; Liu, J.; Chen, S.; Wang, N.; Wu, Z.; et al. Clinical Application of 3D-printed Biodegradable Lumbar Interbody Cage (Polycaprolactone/Β-tricalcium Phosphate) for Posterior Lumbar Interbody Fusion. J. Biomed. Mater. Res. 2023, 111, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Gharibshahian, M.; Salehi, M.; Beheshtizadeh, N.; Kamalabadi-Farahani, M.; Atashi, A.; Nourbakhsh, M.-S.; Alizadeh, M. Recent Advances on 3D-Printed PCL-Based Composite Scaffolds for Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2023, 11, 1168504. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofac. Res. 2020, 10, 381–388. [Google Scholar] [CrossRef]
- Ahn, S.H.; Lee, H.J.; Kim, G.H. Polycaprolactone Scaffolds Fabricated with an Advanced Electrohydrodynamic Direct-Printing Method for Bone Tissue Regeneration. Biomacromolecules 2011, 12, 4256–4263. [Google Scholar] [CrossRef]
- Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; Ma, X.; Song, V.; Zhu, Z.; Tran, S.D. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021, 26, 7043. [Google Scholar] [CrossRef]
- Young, C.S.; Terada, S.; Vacanti, J.P.; Honda, M.; Bartlett, J.D.; Yelick, P.C. Tissue Engineering of Complex Tooth Structures on Biodegradable Polymer Scaffolds. J. Dent. Res. 2002, 81, 695–700. [Google Scholar] [CrossRef]
- Luo, Y.; Kim, J. Achieving the Ideal Balance between Biological and Mechanical Requirements in Composite Bone Scaffolds through a Voxel-Based Approach. Comput. Methods Biomech. Biomed. Eng. 2024, 1–14. [Google Scholar] [CrossRef]
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold Design for Bone Regeneration. J. Nanosci. Nanotech. 2014, 14, 15–56. [Google Scholar] [CrossRef] [PubMed]
- Sallent, I.; Capella-Monsonís, H.; Procter, P.; Bozo, I.Y.; Deev, R.V.; Zubov, D.; Vasyliev, R.; Perale, G.; Pertici, G.; Baker, J.; et al. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front. Bioeng. Biotechnol. 2020, 8, 952. [Google Scholar] [CrossRef]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone Grafts: Which Is the Ideal. Biomaterial? J. Clin. Periodontol. 2019, 46, 92–102. [Google Scholar] [CrossRef]
- Pertici, G.; Carinci, F.; Carusi, G.; Epistatus, D.; Villa, T.; Crivelli, F.; Rossi, F.; Perale, G. Composite Polymer-Coated Mineral Scaffolds for Bone Regeneration: From Material Characterization to Human Studies. J. Biol. Regul. Homeost. Agents 2015, 29, 136–148. [Google Scholar]
- D’Alessandro, D.; Perale, G.; Milazzo, M.; Moscato, S.; Stefanini, C.; Pertici, G.; Danti, S. Bovine Bone Matrix/Poly(L-lactic-co-ε-caprolactone)/Gelatin Hybrid Scaffold (SmartBone®) for Maxillary Sinus Augmentation: A Histologic Study on Bone Regeneration. Int. J. Pharm. 2017, 523, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wei, P.; Feng, P.; Xiao, T.; Shuai, C.; Peng, S. Nano SiO2 and MgO Improve the Properties of Porous β-TCP Scaffolds via Advanced Manufacturing Technology. Int. J. Mol. Sci. 2015, 16, 6818–6830. [Google Scholar] [CrossRef] [PubMed]
- Fielding, G.A.; Bandyopadhyay, A.; Bose, S. Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds. Dent. Mater. 2012, 28, 113–122. [Google Scholar] [CrossRef]
- Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7, 54. [Google Scholar] [CrossRef]
- Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2018, 3, 278–314. [Google Scholar] [CrossRef]
- Vyas, A.; Bandhu Ghosh, S.; Bandyopadhyay-Ghosh, S.; Agrawal, A.K.; Khare, D.; Dubey, A.K. Digital Light Processing Mediated 3D Printing of Biocomposite Bone Scaffolds: Physico-chemical Interactions and In-vitro Biocompatibility. Polym. Compos. 2022, 43, 3175–3188. [Google Scholar] [CrossRef]
- Cheng, A.; Schwartz, Z.; Kahn, A.; Li, X.; Shao, Z.; Sun, M.; Ao, Y.; Boyan, B.D.; Chen, H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. Tissue Eng. Part B Rev. 2019, 25, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Donate, R.; Monzón, M.; Alemán-Domínguez, M.E. Additive Manufacturing of PLA-Based Scaffolds Intended for Bone Regeneration and Strategies to Improve Their Biological Properties. e-Polymers 2020, 20, 571–599. [Google Scholar] [CrossRef]
- Feng, P.; Jia, J.; Liu, M.; Peng, S.; Zhao, Z.; Shuai, C. Degradation Mechanisms and Acceleration Strategies of Poly (Lactic Acid) Scaffold for Bone Regeneration. Mater. Des. 2021, 210, 110066. [Google Scholar] [CrossRef]
- Teixeira, S.; Eblagon, K.M.; Miranda, F.; Pereira, M.F.R.; Figueiredo, J.L. Towards Controlled Degradation of Poly(Lactic) Acid in Technical Applications. C 2021, 7, 42. [Google Scholar] [CrossRef]
- Codrea, C.I.; Croitoru, A.-M.; Baciu, C.C.; Melinescu, A.; Ficai, D.; Fruth, V.; Ficai, A. Advances in Osteoporotic Bone Tissue Engineering. J. Clin. Med. 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Ferracini, R.; Bistolfi, A.; Garibaldi, R.; Furfaro, V.; Battista, A.; Perale, G. Composite Xenohybrid Bovine Bone-Derived Scaffold as Bone Substitute for the Treatment of Tibial Plateau Fractures. Appl. Sci. 2019, 9, 2675. [Google Scholar] [CrossRef]
- Grottoli, C.F.; Cingolani, A.; Zambon, F.; Ferracini, R.; Villa, T.; Perale, G. Simulated Performance of a Xenohybrid Bone Graft (SmartBone®) in the Treatment of Acetabular Prosthetic Reconstruction. J. Funct. Biomater. 2019, 10, 53. [Google Scholar] [CrossRef]
- Zhu, H.; Blahnová, V.H.; Perale, G.; Xiao, J.; Betge, F.; Boniolo, F.; Filová, E.; Lyngstadaas, S.P.; Haugen, H.J. Xeno-Hybrid Bone Graft Releasing Biomimetic Proteins Promotes Osteogenic Differentiation of hMSCs. Front. Cell Dev. Biol. 2020, 8, 619111. [Google Scholar] [CrossRef]
- Kouba, L.; Bürgin, J.; Born, G.; Perale, G.; Schaefer, D.J.; Scherberich, A.; Pigeot, S.; Martin, I. A Composite, off-the-Shelf Osteoinductive Material for Large, Vascularized Bone Flap Prefabrication. Acta Biomater. 2022, 154, 641–649. [Google Scholar] [CrossRef]
- Bioimplon. Hypro-Oss-Ortho; Bioimplon: Gießen, Germany, 2017. [Google Scholar]
- Stiel, N.; Moritz, M.; Babin, K.; Suling, A.; Rupprecht, M.; Beil, F.T.; Stuecker, R.; Spiro, A.S. The Use of Bovine Xenogeneic Bone Graft for Dega Pelvic Osteotomy in Children with Hip Dysplasia: A Retrospective Study of 147 Treated Hips. J. Clin. Med. 2020, 9, 2241. [Google Scholar] [CrossRef]
- Diniz, P.; Pacheco, J.; Flora, M.; Quintero, D.; Stufkens, S.; Kerkhoffs, G.; Batista, J.; Karlsson, J.; Pereira, H. Clinical Applications of Allografts in Foot and Ankle Surgery. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1847–1872. [Google Scholar] [CrossRef]
- Viola, A.; Appiah, J.; Donnally, C.J.; Kim, Y.H.; Shenoy, K. Bone Graft Options in Spinal Fusion: A Review of Current Options and the Use of Mesenchymal Cellular Bone Matrices. World Neurosurg. 2022, 158, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Goetstouwers, S.; Kempink, D.; The, B.; Eygendaal, D.; Van Oirschot, B.; Van Bergen, C.J. Three-Dimensional Printing in Paediatric Orthopaedic Surgery. World J. Orthop. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- McCullough, M.C.; Arkader, A.; Ariani, R.; Lightdale-Miric, N.; Tolo, V.; Stevanovic, M. Surgical Outcomes, Complications, and Long-Term Functionality for Free Vascularized Fibula Grafts in the Pediatric Population: A 17-Year Experience and Systematic Review of the Literature. J. Reconstr. Microsurg. 2020, 36, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Gaudreau, J.; Mekhail, M.; Hamdy, R.; Villemure, I. Remote-Controlled Internal Lengthening Plate for Distraction Osteogenesis in Pediatric Patients. Expert Rev. Med. Devices 2019, 16, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Bläsius, F.; Delbrück, H.; Hildebrand, F.; Hofmann, U.K. Surgical Treatment of Bone Sarcoma. Cancers 2022, 14, 2694. [Google Scholar] [CrossRef]
- Bigoni, M.; Turati, M.; Zanchi, N.; Lombardo, A.S.; Graci, J.; Omeljaniuk, R.J.; Zatti, G.; Gaddi, D. Clinical Applications of Bioactive Glass S53P4 in Bone Infections: A Systematic Review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 240–251. [Google Scholar] [CrossRef]
- Chow, J.; Imani, S.; Kavisinghe, I.; Mittal, R.; Martin, B. Definitive Single-stage Surgery for Treating Diabetic Foot Osteomyelitis: A Protocolized Pathway Including Antibiotic Bone Graft Substitute Use. ANZ J. Surg. 2024, 94, 1383–1390. [Google Scholar] [CrossRef]
- Hakami, I.A. An Outline on the Advancements in Surgical Management of Osteoporosis-Associated Fractures. Cureus 2024, 16, e63226. [Google Scholar] [CrossRef]
- Camargo, W.A.; Hoekstra, J.W.; Jansen, J.A.; Van Den Beucken, J.J.J.P. Influence of Bisphosphonate Treatment on Bone Substitute Performance in Osteoporotic Conditions. Clin. Implant Dent. Rel. Res. 2023, 25, 490–501. [Google Scholar] [CrossRef]
- Jeong, J.; Shim, J.H.; Heo, C.Y. The Effects of Local Treatment of PTH(1-34) and Whitlockite and Hydroxyapatite Graft to the Calvarial Defect in a Rat Osteoporosis Model. Biomedicines 2024, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Long, H.; Zhang, H.; Bai, J.; Jiang, B.; Wang, J.; Fu, L.; Ming, W.; Zhao, J.; Zeng, B. Bone Scaffolds-Based Localized Drugs Delivery for Osteosarcoma: Current Status and Future Perspective. Drug Deliv. 2024, 31, 2391001. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, F.S.M.; Shams, S.; Silva, E.A.; Stilhano, R.S. PRP and BMAC for Musculoskeletal Conditions via Biomaterial Carriers. Int. J. Mol. Sci. 2019, 20, 5328. [Google Scholar] [CrossRef]
- Han, J.; Gao, F.; Li, Y.; Ma, J.; Sun, W.; Shi, L.; Wu, X.; Li, T. The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review. BioMed Res. Int. 2020, 2020, 2642439. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Palmieri, G.; Di Pede, C.; Latini, G.; Inchingolo, A.D.; Hazballa, D.; De Ruvo, E.; Garofoli, G.; Inchingolo, F.; et al. Maxillary Sinus Augmentation Using Autologous Platelet Concentrates (Platelet-Rich Plasma, Platelet-Rich Fibrin, and Concentrated Growth Factor) Combined with Bone Graft: A Systematic Review. Cells 2023, 12, 1797. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Saha, S.; Rai, A.; Dhinsa, K.; Shadap, N.M.K.S.; Yadav, G. To Analyze the Efficacy of Platelet-Rich Plasma in Contrast to Platelet-Rich Fibrin along with Synthetic Nanocrystalline Hydroxyapatite and β-Tricalcium Phosphate Bone Graft in Regeneration of Bony Defects in Children. Int. J. Clin. Pediatr. Dent. 2024, 16, 842–849. [Google Scholar] [CrossRef]
- Matsubara, T.; Yamada, K.; Kanazawa, T.; Sato, K.; Yokosuka, K.; Shiba, N. Improved Intervertebral Bone Union in ALIF Rat Model with Porous Hydroxyapatite/Collagen Combined with Platelet-Rich Plasma. Spine J. 2023, 23, 325–335. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, M.-S.; Park, W.T.; Lee, G.W. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 3224. [Google Scholar] [CrossRef]
- Bozkurt, M. Lateral Meniscus Allograft Transplantation in Combination with BMAC (Bone Marrow Aspirate Concentrate) Injection: Biologic Augmentation of the Allograft. Arthrosc. Tech. 2022, 11, e767–e773. [Google Scholar] [CrossRef]
- Forsythe, B.; Chahla, J.; Korrapati, A.; Lavoie-Gagne, O.; Forlenza, E.; Diaz, C.C.; Beletsky, A.; Chung, C.B.; Bae, W.C.; Bach, B.R.; et al. Bone Marrow Aspirate Concentrate Augmentation May Accelerate Allograft Ligamentization in Anterior Cruciate Ligament Reconstruction: A Double-Blinded Randomized Controlled Trial. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 38, 2255–2264. [Google Scholar] [CrossRef]
Material | Main Uses | Advantages | Disadvantages |
---|---|---|---|
Collagen (Col) | Membranes, sponges, hydrogels for bone regeneration, bioactive substance delivery (BMP-2, FGF-2) | Biocompatible and biodegradable | Limited mechanical strength, unpredictable resorption rates, rapid degradation, low stiffness |
Gelatine (Gel) | Used in bone regeneration combined with other materials (Hap, PCL) | Biocompatible, biodegradable, enhanced with other materials | Rapid degradation, poor mechanical strength |
Alginate (Alg) | Hydrogels used for cells and bioactive molecule delivery (BMP, TGF-β), cartilage and bone tissue regeneration | Biocompatible, biodegradable, chemically modifiable, minimally invasive injection | Low mechanical strength, lack of cell-binding sites, structural disintegration, low in vivo degradation |
Silk Fibroin (SF) | Scaffolds for skin, bone, cartilage, blood vessels | Biocompatible, biodegradable, low immunogenicity | Poor cell recruitment capabilities, fragile structures |
Hyaluronic Acid (HA) | Used in bone regeneration combined with other materials (Gel, Col, BCP, SF, HAp) | Biocompatible, biodegradable, interacts with cells and bone-forming growth factors | Poor mechanical properties, low tensile and compressive strength |
Chitosan (CS) | Nanofibers, used in bone regeneration, controlled delivery systems for growth factors and drugs | Biocompatible, biodegradable, antibacterial, high cell adhesion | High degradation rate, low chemical-physical stability |
Polyhydroxyalkanoates (PHA) | Micro-channeled membranes, nanofibers and composite materials with carbon nanotubes used in bone regeneration | Bioactivity, biocompatible, pH stability during degradation ensures immune system tolerance | High batch-to-batch variation, difficulty in large-scale production |
Material | Main Uses | Advantages | Disadvantages |
---|---|---|---|
Hydroxyapatite (HAp) | Porous, pellet, and nanocrystalline forms used for bone tissue replacement | Strong bone bonding, osteoconductive, promotes stable fixation | Low degradability and fragility |
Tricalcium Phosphate (TCP) (β-TCP, α-TCP) | Bone defect treatment caused by trauma and tumor, β-TCP used for filling cavities and for treating congenital or degenerative lesions | Highly osteoconductive, resorbable within weeks, | Low tensile strength, unsuitable for load-bearing areas, rapid degradation can outpace new bone formation |
Biphasic Calcium Phosphate (BCP) (HAp + TCP) | Bone grafting in large defects and weight-bearing areas | Combines stability of HAp with resorption of TCP, tunable degradation rate, osteoconductive | Balancing resorption rates is complex, mechanical properties vary based on composition |
Calcium Sulfate | Bone defect filler, combined with other CaP (β-TCP) to improve mechanical properties | Fastest resorption (4–12 weeks), low cost, easy preparation | Rapid degradation limits bone regeneration, weak mechanical properties, unsuitable for load-bearing applications |
Material | Main Uses | Advantages | Disadvantages |
---|---|---|---|
Stainless Steel | Joint implants, orthopaedic fixation | Strong, cost-effective | High elastic modulus, stress shielding, poor wear resistance, risk of metal ion release |
Titanium (Ti) | Orthopaedic implants, 3D-printed implants used in spinal and hip surgery, bone tumor resection and complex post-traumatic skeletal defects treatment | Good biocompatibility, corrosion resistance, elasticity closer to bone | Biologically inert, requires surface modifications for better osteointegration, require a second surgery for removal after bone healing |
Cobalt-Chromium (Co-Cr) Alloys | Orthopaedic implants, 3D-printed implants used in spinal and ankle surgery | High mechanical strength, excellent wear resistance | High rigidity, potential stress shielding, reduced bone integration |
Magnesium (Mg) Alloys | Used for bone fracture fixation | Good biocompatibility, osteogenic potential, biodegradability, avoid secondary surgical procedures | Requires better mechanical stability and controlled degradation |
Iron (Fe) Alloys | Used for bone fracture fixation | Gradual degradation in vivo, resorbable material, avoid secondary surgical procedures | Oxidation can lead to instability, mechanical strength loss during degradation |
Zinc (Zn) Alloys | Used for bone fracture fixation | Stable mechanical support, gradual dissolution without residues, avoid secondary surgical procedures | Degradation rate may not match bone healing, mechanical strength loss during degradation |
Bismuth (Bi) Alloys | Injectable bone fillers | Low melting point, in situ solidification for better clinical application | Limited studies on long-term safety and mechanical reliability |
Tantalum (Ta) | Orthopaedic implants, 3D-printed implants used in knee and ankle surgery and complex post-traumatic skeletal defects treatment | Corrosion-resistant, elastic modulus similar to bone | High density, complex manufacturing process, slowly bone formation |
Magnetostrictive Iron-Gallium (Fe-Ga) Alloys | Smart implants | Deformable under magnetic fields, potential for intelligent devices | Experimental stage, clinical applications still under study |
Materials | Main Uses | Advantages | Disadvantages |
---|---|---|---|
Polymethyl methacrylate (PMMA) | Spinal vertebroplasty, bone filler in primary tumors or metastatic patients, 3D printing of customized bioimplants for bone reconstruction | Easy to produce and handle Good biocompatibility Adequate mechanical strength and elasticity | Bioinert (not osteoinductive/osteoconductive) Heat sensitive during polymerization Risk of fragmentation and foreign body reaction |
PMMA–CaP | Bone regeneration (studies as trabecular bone substitute on animal model) | Improved biocompatibility Better mechanical stability Promotes osteointegration | Clinical validation required |
PMMA-BODBB | Bone reconstruction (studies on animal model) | Enhanced bioactivity and osteointegration Lower polymerization temperature Reduced toxicity from free radicals and toxic ions | Clinical validation required |
PMMA-TaC | Advanced orthopaedic applications | Improved mechanical strength (>100 MPa) Improved radiopacity Biocompatibility maintained | Clinical validation needed |
Polyglycolide (PGA) | Internal bone fixation, PGA membranes used in Guided bone regeneration (GBR), oral surgery, implantology | Biodegradable and biocompatible High thermal stability and sterilization resistance Supports bone regeneration | Low mechanical strength Rapid degradation with acidic byproducts (inflammation risk) |
Polylactic Acid (PLA) | Guided bone regeneration (GBR) membranes, orthopaedic applications for low mechanically loaded implants, maxillofacial surgery | Biodegradable and biocompatible, good mechanical properties, molecular weight and crystallinity modifiable | Hydrophobic Low impact toughness Slow degradation with acidic byproducts (possible inflammation) |
Polylactic-co-glycolic Acid (PLGA) | Drug delivery, bone fixation in cranio- maxillofacial and orthopaedic surgery, surgical stabilization for pediatric procedures and reconstructive surgery | Controlled degradation rate (by adjusting PLA/PGA ratio) Biocompatible, good cell adhesion and proliferation | Low mechanical strength Hydrophobicity Limited bioactivity Potential release of acidic byproducts |
Polycaprolactone (PCL) | Bone and periodontal tissue engineering, nanofiber used in osteochondral regeneration, repair of caudal septal deviations, lumbar interbody fusion | High mechanical strength, scaffolds favorable for cell growth and bone formation, nanofibers stimulate cell growth and tissue regeneration | Slow degradation rate, hydrophobicity hinders cell adhesion, infiltration, and promotion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pace, R.; Molinari, S.; Mazzoni, E.; Perale, G. Bone Regeneration: A Review of Current Treatment Strategies. J. Clin. Med. 2025, 14, 1838. https://doi.org/10.3390/jcm14061838
De Pace R, Molinari S, Mazzoni E, Perale G. Bone Regeneration: A Review of Current Treatment Strategies. Journal of Clinical Medicine. 2025; 14(6):1838. https://doi.org/10.3390/jcm14061838
Chicago/Turabian StyleDe Pace, Raffaella, Silvia Molinari, Elisa Mazzoni, and Giuseppe Perale. 2025. "Bone Regeneration: A Review of Current Treatment Strategies" Journal of Clinical Medicine 14, no. 6: 1838. https://doi.org/10.3390/jcm14061838
APA StyleDe Pace, R., Molinari, S., Mazzoni, E., & Perale, G. (2025). Bone Regeneration: A Review of Current Treatment Strategies. Journal of Clinical Medicine, 14(6), 1838. https://doi.org/10.3390/jcm14061838