Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions
Abstract
:1. Introduction
2. T-Lymphocyte Activation and Site of Action of Immunosuppressive Drugs
- Antigen recognition: The first positive signal occurs when an antigen-presenting cell (APC) presents a foreign antigen (donor kidney antigen) to T-cells via major histocompatibility complex (MHC) molecules [10]. This interaction forms a weak bond that primes the T-cell for further activation.
- Co-stimulatory signal: The second signal involves co-stimulatory molecules that fully activate the T-cell. This signal is vital for preventing T-cell tolerance. Without it, a T-cell can enter a state of anergy [11], rendering it unresponsive to future exposure to the same antigen. Co-stimulatory interactions, such as the binding of CD28 on the T-cell to CD80 (B7-1)/CD86 (B7-2) on the APC, are key to this process.
3. Current Maintenance Immunosuppression Regimens
4. Practical Considerations
5. Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACR | Acute cellular rejection |
APC | Antigen-presenting cell |
BPAR | Biopsy-proven acute rejection |
CMV | Cytomegalovirus |
CnI | Calcineurin inhibitor |
dnDSA | De novo donor-specific antibody |
ESKD | End-stage kidney disease |
ESW | Early steroid withdrawal |
GFR | Glomerular filtration rate |
IS | Immunosuppression |
KTR | Kidney transplant recipient |
mTOR | Mammalian target of rapamycin |
mTOR-i | Mammalian target of rapamycin inhibitors |
NFAT | Nuclear factor of activated T-cells |
OPTN | Organ Procurement and Transplantation Network |
PTDM | Post-transplant diabetes mellitus |
PTLD | Post-transplant lymphoproliferative disease |
SRTR | Scientific Registry of Transplant Recipients |
TPMT | Thiopurine S-methyltransferase |
References
- Shi, B.; Ying, T.; Chadban, S.J. Survival after kidney transplantation compared with ongoing dialysis for people over 70 years of age: A matched-pair analysis. Am. J. Transplant. 2023, 23, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- de Boer, S.E.; Knobbe, T.J.; Kremer, D.; van Munster, B.C.; Nieuwenhuijs-Moeke, G.J.; Pol, R.A.; Bakker, S.J.; Berger, S.P.; Sanders, J.S.F. Kidney Transplantation Improves Health-Related Quality of Life in Older Recipients. Transpl. Int. 2024, 37, 12071. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Koo, T.Y.; Ro, H.; Cho, J.-H.; Kim, M.-G.; Huh, K.H.; Park, J.B.; Lee, S.; Han, S.; Kim, J.; et al. Better health-related quality of life in kidney transplant patients compared to chronic kidney disease patients with similar renal function. PLoS ONE 2021, 16, e0257981. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E. The early days of transplantation. JAMA 1994, 272, 1705. [Google Scholar] [CrossRef]
- Jing, L.; Yao, L.; Zhao, M.; Peng, L.-P.; Liu, M. Organ preservation: From the past to the future. Acta Pharmacol. Sin. 2018, 39, 845–857. [Google Scholar] [CrossRef]
- Colombo, D.; Ammirati, E. Cyclosporine in transplantation—A history of converging timelines. J. Boil. Regul. Homeost. Agents 2011, 25, 493–504. [Google Scholar]
- Tedesco, D.; Haragsim, L. Cyclosporine: A Review. J. Transplant. 2012, 2012, 230386. [Google Scholar] [CrossRef]
- Burdmann, E.A.; Andoh, T.F.; Yu, L.; Bennett, W.M. Cyclosporine nephrotoxicity. Semin. Nephrol. 2003, 23, 465–476. [Google Scholar] [CrossRef]
- Naesens, M.; Kuypers, D.R.; Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 481–508. [Google Scholar] [CrossRef]
- Clarkson, M.R.; Sayegh, M.H. T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation 2005, 80, 555–563. [Google Scholar] [CrossRef]
- Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 1990, 248, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Hogan, P.G. Calcium–NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 2017, 63, 66–69. [Google Scholar] [CrossRef]
- Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 2012, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.P.; Bagchi, B.; Roy, S. Effects of immunosuppressants on T-cell dynamics: Understanding from a generic coarse-grained immune network model. J. Biosci. 2022, 47, 70. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L.; Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 1992, 13, 136–142. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Fürstenberg, A.; Yang, C.-L.; Roeschel, T.; Paliege, A.; Howie, A.J.; Conley, J.; Bachmann, S.; et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat. Med. 2011, 17, 1304–1309. [Google Scholar] [CrossRef]
- de Mattos, A.M.; Olyaei, A.J.; Bennett, W.M. Nephrotoxicity of immunosuppressive drugs: Long-term consequences and challenges for the future. Am. J. Kidney Dis. 2000, 35, 333–346. [Google Scholar] [CrossRef]
- Schwartz, R.B.; Bravo, S.M.; Klufas, R.A.; Hsu, L.; Barnes, P.D.; Robson, C.D.; Antin, J.H. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. Am. J. Roentgenol. 1995, 165, 627–631. [Google Scholar] [CrossRef]
- European FK506 Multicentre Liver Study Group. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994, 344, 423–428. [Google Scholar] [CrossRef]
- Lauritano, D.; Palmieri, A.; Lucchese, A.; Di Stasio, D.; Moreo, G.; Carinci, F. Role of Cyclosporine in Gingival Hyperplasia: An In Vitro Study on Gingival Fibroblasts. Int. J. Mol. Sci. 2020, 21, 595. [Google Scholar] [CrossRef]
- Takahashi, T.; Kamimura, A. Cyclosporin A promotes hair epithelial cell proliferation and modulates protein kinase C expression and translocation in hair epithelial cells. J. Investig. Dermatol. 2001, 117, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.W.; Bonham, C.A.; Zeevi, A. Mode of action of tacrolimus (FK506): Molecular and cellular mechanisms. Ther. Drug Monit. 1995, 17, 584–591. [Google Scholar] [CrossRef]
- Eidelman, B.H.; Abu-Elmagd, K.; Wilson, J.; Fung, J.J.; Alessiani, M.; Jain, A.; Takaya, S.; Todo, S.N.; Tzakis, A.; Van Thiel, D. Neurologic complications of FK 506. Transplant. Proc. 1991, 23, 3175–3178. [Google Scholar] [PubMed]
- Shapiro, R.; Jordan, M.L.; Scantlebury, V.P.; Vivas, C.; McCauley, J.; Johnston, J.; Fung, J.J.; Starzl, T.E. Alopecia as a consequence of tacrolimus therapy. Transplantation 1998, 65, 1284. [Google Scholar] [CrossRef] [PubMed]
- Jindal, R.M.; Sidner, R.A.; Milgrom, M.L. Post-transplant diabetes mellitus. The role of immunosuppression. Drug Saf. 1997, 16, 242–257. [Google Scholar] [CrossRef]
- Sehgal, S.N. Sirolimus: Its discovery, biological properties, and mechanism of action. Transplant. Proc. 2003, 35, S7–S14. [Google Scholar] [CrossRef]
- Hong, J.C.; Kahan, B.D. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: Risk factors, incidence, progression, and management12. Transplantation 2000, 69, 2085–2090. [Google Scholar] [CrossRef]
- Fishbane, S.; Cohen, D.J.; Coyne, D.W.; Djamali, A.; Singh, A.K.; Wish, J.B. Posttransplant anemia: The role of sirolimus. Kidney Int. 2009, 76, 376–382. [Google Scholar] [CrossRef]
- Dean, P.G.; Lund, W.J.; Larson, T.S.; Prieto, M.; Nyberg, S.L.; Ishitani, M.B.; Kremers, W.K.; Stegall, M.D. Wound-healing complications after kidney transplantation: A prospective, randomized comparison of sirolimus and tacrolimus1. Transplantation 2004, 77, 1555–1561. [Google Scholar] [CrossRef]
- Mehrabi, A.; Fonouni, H.; Wente, M.; Sadeghi, M.; Eisenbach, C.; Encke, J.; Schmied, B.; Libicher, M.; Zeier, M.; Weitz, J.; et al. Wound complications following kidney and liver transplantation. Clin. Transplant. 2006, 20, 97–110. [Google Scholar] [CrossRef]
- Morrisett, J.D.; Abdel-Fattah, G.; Hoogeveen, R.; Mitchell, E.; Ballantyne, C.M.; Pownall, H.J.; Opekun, A.R.; Jaffe, J.S.; Oppermann, S.; Kahan, B.D. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J. Lipid Res. 2002, 43, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; de Oliveira, M.A.; Wang, Q.; Sonis, S.; Gallottini, M.; George, S.; Treister, N. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013, 49, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J. Everolimus. Clin. Cancer Res. 2010, 16, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chen, L.; Al-Qaisi, A.; Romond, E.; Awasthi, M.; Kadamyan-Melkumyan, V.; Massarweh, S. Everolimus-induced hematologic changes in patients with metastatic breast cancer. Clin. Breast Cancer 2015, 15, 48–53. [Google Scholar] [CrossRef]
- Aarbakke, J.; Janka-Schaub, G.; Elion, G.B. Thiopurine biology and pharmacology. Trends Pharmacol. Sci. 1997, 18, 3–7. [Google Scholar] [CrossRef]
- Weinshilboum, R.; Sladek, S. Mercaptopurine pharmacogenetics—Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 1980, 32, 651–662. [Google Scholar]
- Varma, P.; Prasher, P.; Madan, H.; Yashpal, B. Azathioprine induced bone marrow suppression in live related renal allograft recipients. Med. J. Armed. Forces India 1996, 52, 45–47. [Google Scholar] [CrossRef]
- Connell, W.R.; Kamm, M.A.; Ritchie, J.K.; Lennard-Jones, J.E. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993, 34, 1081–1085. [Google Scholar] [CrossRef]
- Allison, A.C.; Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000, 47, 85–118. [Google Scholar] [CrossRef]
- Davies, N.M.; Grinyó, J.; Heading, R.; Maes, B.; Meier-Kriesche, H.-U.; Oellerich, M. Gastrointestinal side effects of mycophenolic acid in renal transplant patients: A reappraisal. Nephrol. Dial. Transplant. 2007, 22, 2440–2448. [Google Scholar] [CrossRef]
- Bernabeu-Wittel, M.; Naranjo, M.; Cisneros, J.; Cañas, E.; Gentil, M.; Algarra, G.; Pereira, P.; González-Roncero, F.; de Alarcón, A.; Pachón, J. Infections in renal transplant recipients receiving mycophenolate versus azathioprine-based immunosuppression. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 173–180. [Google Scholar] [CrossRef]
- Datrino, L.N.; Boccuzzi, M.L.; Silva, R.M.; Castilho, P.H.B.T.; Riva, W.J.; Rocha, J.S.; Tustumi, F. Safety and Efficacy of Mycophenolate Mofetil Associated With Tacrolimus for Kidney-pancreas and Kidney Transplantation: A Systematic Review and Meta-Analysis of Randomized Studies. Transplant. Proc. 2024, 56, 1066–1076. [Google Scholar] [CrossRef]
- Belatacept. Available online: https://go.drugbank.com/drugs/DB06681 (accessed on 5 February 2025).
- Marvin, J.E.; Azar, M.M.; Belfield, K.D.; Do, V.; Formica, R.; Cohen, E.A. Overall Infectious Complications Related to Belatacept Conversion in Comparison to Tacrolimus in Kidney Transplant Recipients. Prog. Transplant. 2022, 32, 351–356. [Google Scholar] [CrossRef]
- Terrec, F.; Jouve, T.; Malvezzi, P.; Janbon, B.; Bennani, H.N.; Rostaing, L.; Noble, J. Belatacept Use after Kidney Transplantation and Its Effects on Risk of Infection and COVID-19 Vaccine Response. J. Clin. Med. 2021, 10, 5159. [Google Scholar] [CrossRef] [PubMed]
- Cherikh, W.S.; Kou, T.D.; Foutz, J.; Baker, T.J.; Gomez-Caminero, A. Patterns of belatacept use and risk of post-transplant lymphoproliferative disorder in US kidney transplant recipients: An analysis of the Organ Procurement and Transplantation Network database. PLoS ONE 2025, 20, e0311935. [Google Scholar] [CrossRef] [PubMed]
- FR104/VEL-101. Available online: https://www.ose-immuno.com/en/our-products/fr104-modular/ (accessed on 5 February 2025).
- Lentine, K.L.; Smith, J.M.; Hart, A.; Miller, J.; Skeans, M.A.; Larkin, L.; Robinson, A.; Gauntt, K.; Israni, A.K.; Hirose, R.; et al. OPTN/SRTR 2020 Annual Data Report: Kidney. Am. J. Transplant. 2022, 22 (Suppl. S2), 21–136. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, Š.; Nashan, B.; Gürkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef]
- Davis, S.; Gralla, J.; Klem, P.; Tong, S.; Wedermyer, G.; Freed, B.; Wiseman, A.; Cooper, J.E. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am. J. Transplant. 2018, 18, 907–915. [Google Scholar] [CrossRef]
- Wiebe, C.; Gibson, I.W.; Blydt-Hansen, T.D.; Pochinco, D.; Birk, P.E.; Ho, J.; Karpinski, M.; Goldberg, A.; Storsley, L.; Rush, D.N.; et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific Antibody. Am. J. Transplant. 2015, 15, 2921–2930. [Google Scholar] [CrossRef]
- Wojciechowski, D.; Wiseman, A. Long-Term Immunosuppression Management: Opportunities and Uncertainties. Clin. J. Am. Soc. Nephrol. 2021, 16, 1264–1271. [Google Scholar] [CrossRef]
- Knight, S.R.; Russell, N.K.; Barcena, L.; Morris, P.J. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: A systematic review. Transplantation 2009, 87, 785–794. [Google Scholar] [CrossRef]
- Gaston, R.S.; Kaplan, B.; Shah, T.; Cibrik, D.; Shaw, L.M.; Angelis, M.; Mulgaonkar, S.; Meier-Kriesche, H.-U.; Patel, D.; Bloom, R.D. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: The Opticept trial. Am. J. Transplant. 2009, 9, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Smith, J.M.; Miller, J.M.; Bradbrook, K.; Larkin, L.; Weiss, S.; Handarova, D.K.; Temple, K.; Israni, A.K.; Snyder, J.J. OPTN/SRTR 2021 Annual Data Report: Kidney. Am. J. Transplant. 2023, 23, S21–S120. [Google Scholar] [CrossRef]
- Woodle, E.S.; First, M.R.; Pirsch, J.; Shihab, F.; Gaber, A.O.; Van Veldhuisen, P.; Corticosteroid Withdrawal Study Group. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann. Surg. 2008, 248, 564–577. [Google Scholar] [CrossRef]
- Serrano, O.K.; Kandaswamy, R.; Gillingham, K.; Chinnakotla, S.; Dunn, T.B.; Finger, E.; Payne, W.; Ibrahim, H.; Kukla, A.; Spong, R.; et al. Rapid Discontinuation of Prednisone in Kidney Transplant Recipients: 15-Year Outcomes From the University of Minnesota. Transplantation 2017, 101, 2590–2598. [Google Scholar] [CrossRef] [PubMed]
- Hanaway, M.J.; Woodle, E.S.; Mulgaonkar, S.; Peddi, V.R.; Kaufman, D.B.; First, M.R.; Croy, R.; Holman, J. Alemtuzumab induction in renal transplantation. N. Engl. J. Med. 2011, 364, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Thomusch, O.; Wiesener, M.; Opgenoorth, M.; Pascher, A.; Woitas, R.P.; Witzke, O.; Jaenigen, B.; Rentsch, M.; Wolters, H.; Rath, T.; et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): An open-label, multicentre, randomised controlled trial. Lancet 2016, 388, 3006–3016. [Google Scholar] [CrossRef]
- Vincenti, F.; Schena, F.P.; Paraskevas, S.; Hauser, I.A.; Walker, R.G.; Grinyo, J. A Randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am. J. Transplant. 2008, 8, 307–316. [Google Scholar] [CrossRef]
- Bae, S.; Chen, Y.; Sandal, S.; Lentine, K.L.; Schnitzler, M.; Segev, D.L.; DeMarco, M.A.M. Association of early steroid withdrawal with kidney transplant outcomes in first-transplant and retransplant recipients. Nephrol Dial Transplant. 2024. [Google Scholar] [CrossRef]
- Pascual, J.; Berger, S.P.; Witzke, O.; Tedesco, H.; Mulgaonkar, S.; Qazi, Y.; Chadban, S.; Oppenheimer, F.; Sommerer, C.; Oberbauer, R.; et al. Everolimus with Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J. Am. Soc. Nephrol. 2018, 29, 1979–1991. [Google Scholar] [CrossRef]
- Budde, K.; Becker, T.; Arns, W.; Sommerer, C.; Reinke, P.; Eisenberger, U.; Kramer, S.; Fischer, W.; Gschaidmeier, H.; Pietruck, F. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: An open-label, randomised, controlled trial. Lancet 2011, 377, 837–847. [Google Scholar] [CrossRef]
- Budde, K.; Lehner, F.; Sommerer, C.; Reinke, P.; Arns, W.; Eisenberger, U.; Wüthrich, R.P.; Mühlfeld, A.; Heller, K.; Porstner, M.; et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: The randomized ZEUS study. Am. J. Transplant. 2015, 15, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Pascoe, M.D.; Alberu, J.; Rial, M.d.C.; Oberbauer, R.; Brennan, D.C.; Campistol, J.M.; Racusen, L.; Polinsky, M.S.; Goldberg-Alberts, R.; et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 2009, 87, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Shihab, F.; Qazi, Y.; Mulgaonkar, S.; McCague, K.; Patel, D.; Peddi, V.R.; Shaffer, D. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. Am. J. Transplant. 2017, 17, 2363–2371. [Google Scholar] [CrossRef]
- Qazi, Y.; Shaffer, D.; Kaplan, B.; Kim, D.Y.; Luan, F.L.; Peddi, V.R.; Shihab, F.; Tomlanovich, S.; Yilmaz, S.; McCague, K.; et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. Am. J. Transplant. 2017, 17, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- de Fijter, J.W.; Holdaas, H.; Øyen, O.; Sanders, J.; Sundar, S.; Bemelman, F.J.; Sommerer, C.; Pascual, J.; Avihingsanon, Y.; Pongskul, C.; et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. Am. J. Transplant. 2017, 17, 1853–1867. [Google Scholar] [CrossRef]
- Berger, S.P.; Sommerer, C.; Witzke, O.; Tedesco, H.; Chadban, S.; Mulgaonkar, S.; Qazi, Y.; de Fijter, J.W.; Oppenheimer, F.; Cruzado, J.M.; et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am. J. Transplant. 2019, 19, 3018–3034. [Google Scholar] [CrossRef]
- Flechner, S.M.; Glyda, M.; Cockfield, S.; Grinyó, J.; Legendre, C.; Russ, G.; Steinberg, S.; Wissing, K.M.; Tai, S.S. The ORION study: Comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am. J. Transplant. 2011, 11, 1633–1644. [Google Scholar] [CrossRef]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.; Agarwal, M.; Di Russo, G.; et al. A Phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (benefit study). Am. J. Transplant. 2010, 10, 535–546. [Google Scholar] [CrossRef]
- Durrbach, A.; Pestana, J.M.; Pearson, T.; Vincenti, F.; Garcia, V.D.; Campistol, J.; del Carmen Rial, M.; Florman, S.; Block, A.; Di Russo, G.; et al. A Phase III Study of Belatacept Versus Cyclosporine in Kidney Transplants from Extended Criteria Donors (BENEFIT-EXT Study). Am. J. Transplant. 2010, 10, 547–557. [Google Scholar] [CrossRef]
- Vincenti, F.; Larsen, C.P.; Alberu, J.; Bresnahan, B.; Garcia, V.D.; Kothari, J.; Lang, P.; Urrea, E.M.; Massari, P.; Mondragon-Ramirez, G.; et al. Three-Year Outcomes from BENEFIT, a Randomized, Active-Controlled, Parallel-Group Study in Adult Kidney Transplant Recipients. Am. J. Transplant. 2012, 12, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Pestana, J.O.M.; Grinyo, J.M.; Vanrenterghem, Y.; Becker, T.; Campistol, J.M.; Florman, S.; Garcia, V.D.; Kamar, N.; Lang, P.; Manfro, R.C.; et al. Three-year outcomes from BENEFIT-EXT: A phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am. J. Transplant. 2012, 12, 630–639. [Google Scholar] [CrossRef]
- Vincenti, F.; Rostaing, L.; Grinyo, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M.C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N. Engl. J. Med. 2016, 374, 333–343. [Google Scholar] [CrossRef]
- Durrbach, A.; Pestana, J.M.; Florman, S.; Del Carmen Rial, M.; Rostaing, L.; Kuypers, D.; Matas, A.; Wekerle, T.; Polinsky, M.; Meier-Kriesche, H.U.; et al. Long-Term Outcomes in Belatacept-Versus Cyclosporine-Treated Recipients of Extended Criteria Donor Kidneys: Final Results From BENEFIT-EXT, a Phase III Randomized Study. Am. J. Transplant. 2016, 16, 3192–3201. [Google Scholar] [CrossRef]
- Woodle, E.S.; Kaufman, D.B.; Shields, A.R.; Leone, J.; Matas, A.; Wiseman, A.; West-Thielke, P.; Sa, T.; King, E.C.; Alloway, R.R. Belatacept-based immunosuppression with simultaneous calcineurin inhibitor avoidance and early corticosteroid withdrawal: A prospective, randomized multicenter trial. Am. J. Transplant. 2020, 20, 1039–1055. [Google Scholar] [CrossRef]
- Adams, A.B.; Goldstein, J.; Garrett, C.; Zhang, R.; Patzer, R.E.; Newell, K.A.; Turgeon, N.A.; Chami, A.S.; Guasch, A.; Kirk, A.D.; et al. Belatacept Combined With Transient Calcineurin Inhibitor Therapy Prevents Rejection and Promotes Improved Long-Term Renal Allograft Function. Am. J. Transplant. 2017, 17, 2922–2936. [Google Scholar] [CrossRef] [PubMed]
- Chavarot, N.; Divard, G.; Scemla, A.; Amrouche, L.; Aubert, O.; Leruez-Ville, M.; Timsit, M.O.; Tinel, C.; Zuber, J.; Legendre, C.; et al. Increased incidence and unusual presentations of CMV disease in kidney transplant recipients after conversion to belatacept. Am. J. Transplant. 2021, 21, 2448–2458. [Google Scholar] [CrossRef] [PubMed]
- Budde, K.; Prashar, R.; Haller, H.; Rial, M.C.; Kamar, N.; Agarwal, A.; de Fijter, J.W.; Rostaing, L.; Berger, S.P.; Djamali, A.; et al. Conversion from Calcineurin Inhibitor– to Belatacept-Based Maintenance Immunosuppression in Renal Transplant Recipients: A Randomized Phase 3b Trial. J. Am. Soc. Nephrol. 2021, 32, 3252–3264. [Google Scholar] [CrossRef]
- Bertrand, D.; Cheddani, L.; Etienne, I.; François, A.; Hanoy, M.; Laurent, C.; Lebourg, L.; Le Roy, F.; Lelandais, L.; Loron, M.; et al. Belatacept Rescue Therapy in Kidney Transplant Recipients With Vascular Lesions: A Case Control Study. Am. J. Transplant. 2017, 17, 2937–2944. [Google Scholar] [CrossRef]
- Langone, A.; Steinberg, S.M.; Gedaly, R.; Chan, L.K.; Shah, T.; Sethi, K.D.; Nigro, V.; Morgan, J.C.; STRATO Investigators; Formica, R.N.; et al. Switching STudy of Kidney TRansplant PAtients with Tremor to LCP-TacrO (STRATO): An open-label, multicenter, prospective phase 3b study. Clin. Transplant. 2015, 29, 796–805. [Google Scholar] [CrossRef]
- Andoh, T.F.; Lindsley, J.; Franceschini, N.; Bennett, W.M. Synergistic effects of cyclosporine and rapamycin in a chronic nephrotoxicity model1. Transplantation 1996, 62, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.; McDonald, S.; Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transplant. 2011, 11, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.B.; Walker, R.; Tai, S.S.; Jiang, Q.; Russ, G.R. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am. J. Transplant. 2012, 12, 1146–1156. [Google Scholar] [CrossRef]
- Valente, J.F.; Hricik, D.; Weigel, K.; Seaman, D.; Knauss, T.; Siegel, C.T.; Bodziak, K.; Schulak, J.A. Comparison of sirolimus vs. mycophenolate mofetil on surgical complications and wound healing in adult kidney transplantation. Am. J. Transplant. 2003, 3, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.M.; Kahan, B.D. Incidence, therapy, and consequences of lymphocele after sirolimus-cyclosporine-prednisone immunosuppression in renal transplant recipients1. Transplantation 2002, 74, 804–808. [Google Scholar] [CrossRef]
- Letavernier, E.; Bruneval, P.; Vandermeersch, S.; Perez, J.; Mandet, C.; Belair, M.-F.; Haymann, J.-P.; Legendre, C.; Baud, L. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol. Dial. Transplant. 2009, 24, 630–638. [Google Scholar] [CrossRef]
- Kopp, J.B.; Anders, H.J.; Susztak, K.; Podestà, M.A.; Remuzzi, G.; Hildebrandt, F.; Romagnani, P. Podocytopathies. Nat. Rev. Dis. Primers 2020, 6, 68. [Google Scholar] [CrossRef]
- Grinyó, J.; Charpentier, B.; Pestana, J.M.; Vanrenterghem, Y.; Vincenti, F.; Reyes-Acevedo, R.; Apanovitch, A.M.; Gujrathi, S.; Agarwal, M.; Thomas, D.; et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation 2010, 90, 1521–1527. [Google Scholar] [CrossRef]
- Vincenti, F. Belatacept: The challenges with transformational drugs. Transl. Androl. Urol. 2017, 6, 341–342. [Google Scholar] [CrossRef]
- Krummey, S.M.; Ford, M.L. Braking bad: Novel mechanisms of CTLA-4 inhibition of T cell responses. Am. J. Transplant. 2014, 14, 2685–2690. [Google Scholar] [CrossRef]
- Poirier, N.; Blancho, G.; Hiance, M.; Mary, C.; Van Assche, T.; Lempoels, J.; Ramael, S.; Wang, W.; Thepenier, V.; Braudeau, C.; et al. First-in-Human Study in Healthy Subjects with FR104, a Pegylated Monoclonal Antibody Fragment Antagonist of CD28. J. Immunol. 2016, 197, 4593–4602. [Google Scholar] [CrossRef] [PubMed]
- Poirier, N.; Mary, C.; Dilek, N.; Hervouet, J.; Minault, D.; Blancho, G.; Vanhove, B. Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab′ antibody. Am. J. Transplant. 2012, 12, 2630–2640. [Google Scholar] [CrossRef] [PubMed]
- Poirier, N.; Dilek, N.; Mary, C.; Ville, S.; Coulon, F.; Branchereau, J.; Tillou, X.; Charpy, V.; Pengam, S.; Nerriere-Daguin, V.; et al. FR104, an antagonist anti-CD28 monovalent Fab’ antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft. Am. J. Transplant. 2015, 15, 88–100. [Google Scholar] [CrossRef] [PubMed]
- A Phase 1, Randomized, Double Blind, Placebo Controlled, Dose Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VEL-101 Administered Intravenously or Subcutaneously in Healthy Subjects. 2022. Available online: https://adisinsight.springer.com/trials/700348143 (accessed on 10 February 2025).
- Rampersad, C.; Bau, J.T.; Orchanian-Cheff, A.; Kim, S.J. iBox as a Predictor of Kidney Allograft Failure: A Systematic Review. Am. J. Kidney Dis. 2025. [Google Scholar] [CrossRef]
Mechanism of Action | Effect on T-Cell Activation | Adverse Events | |
---|---|---|---|
Cyclosporine A | Calcineurin inhibitor | Prevents NFAT activation, reducing IL-2 production and therefore, T-cell activation and proliferation [15]. | |
Tacrolimus | Calcineurin inhibitor | Prevents NFAT activation and subsequent T-cell activation and proliferation [22]. | |
Sirolimus | mTOR inhibitor | Impedes T-cell progression from G1 to S phase, inhibiting proliferation [26]. | |
Everolimus | mTOR inhibitor | Impedes T-cell progression from G1 to S phase, inhibiting proliferation [33]. | |
Azathioprine | Purine analogue | Impedes DNA replication and T-cell proliferation by inhibiting purine synthesis [35]. |
|
Mycophenolic acid | IMPDH inhibitor | Blocks guanine nucleotide synthesis impairing proliferation of lymphocytes including T-cells [39]. | |
CTLA-4-Ig (Belatacept) | Competes with CD28for CD80/86 binding | Inhibits co-stimulatory signal, preventing full T-cell activation [43]. |
|
VEL-101 | Anti-CD28 monoclonal antibody fragment | Selectively inhibits CD28-mediated effector T-cell co-stimulation while preserving CTLA-4 function [47]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.; Hanna, A.; Sridhara, S.; Chaudhari, H.; Me, H.M.; Attieh, R.M.; Abu Jawdeh, B.G. Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions. J. Clin. Med. 2025, 14, 1821. https://doi.org/10.3390/jcm14061821
Khan MA, Hanna A, Sridhara S, Chaudhari H, Me HM, Attieh RM, Abu Jawdeh BG. Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions. Journal of Clinical Medicine. 2025; 14(6):1821. https://doi.org/10.3390/jcm14061821
Chicago/Turabian StyleKhan, Muhammad Ali, Alessandra Hanna, Srilekha Sridhara, Harshad Chaudhari, Hay Me Me, Rose Mary Attieh, and Bassam G. Abu Jawdeh. 2025. "Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions" Journal of Clinical Medicine 14, no. 6: 1821. https://doi.org/10.3390/jcm14061821
APA StyleKhan, M. A., Hanna, A., Sridhara, S., Chaudhari, H., Me, H. M., Attieh, R. M., & Abu Jawdeh, B. G. (2025). Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions. Journal of Clinical Medicine, 14(6), 1821. https://doi.org/10.3390/jcm14061821