Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Surgical Procedure
2.3. Preparation of the AMHAT
2.4. Customizing the AMHAT Using a 3D Bioprinter
2.5. Postsurgical Management
2.6. Final Scar Appearance and Patient-Reported Outcome Measures Using SCAR-Q
3. Results
3.1. Patient Demographics
3.2. Wound Closure Process and Time to Complete Wound Closure
3.3. Final Scar Appearance and Patient Satisfaction
3.4. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMHAT | autologous minimally manipulated homologous adipose tissue |
3D | three-dimensional |
AI | Artificial Intelligence |
PCL | polycaprolactone |
M | Male |
F | Female |
SCC | Squamous cell carcinoma |
BCC | Basal cell carcinoma |
ND | No data |
References
- Renzi, M., Jr.; Schimmel, J.; Decker, A.; Lawrence, N. Management of skin cancer in the elderly. Dermatol. Clin. 2019, 37, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Kansara, S.; Bell, D.; Weber, R. Surgical management of non-melanoma skin cancer of the head and neck. Oral. Oncol. 2020, 100, 104485. [Google Scholar] [CrossRef] [PubMed]
- Newlands, C.; Currie, R.; Memon, A.; Whitaker, S.; Woolford, T. Non-melanoma skin cancer: United Kingdom national multidisciplinary guidelines. J. Laryngol. Otol. 2016, 130, S125–S132. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, G.; Terenzi, V.; Martellucci, S.; Clemenzi, V.; Stolfa, A.; Gallo, A. Two-stage surgery for the treatment of nonmelanoma skin cancer of the face: Change of surgical strategy during COVID-19 pandemic. Oral. Oncol. 2021, 123, 105622. [Google Scholar] [CrossRef] [PubMed]
- Mojallal, A.; Lequeux, C.; Shipkov, C.; Breton, P.; Foyatier, J.L.; Braye, F.; Damour, O. Improvement of skin quality after fat grafting: Clinical observation and an animal study. Plast. Reconstr. Surg. 2009, 124, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Kolaparthy, L.K.; Sanivarapu, S.; Moogla, S.; Kutcham, R.S. Adipose tissue—Adequate, accessible regenerative material. Int. J. Stem Cells 2015, 8, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Miana, V.V.; Gonzalez, E.A.P. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.J.; Lee, S.; Son, H.; Han, S.; Lim, T. Generating 3D bioprintable patches using wound segmentation and reconstruction to treat diabetic foot ulcers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2539–2549. [Google Scholar]
- Kesavan, R.; Sheela Sasikumar, C.; Narayanamurthy, V.B.; Rajagopalan, A.; Kim, J. Management of diabetic foot ulcer with MA-ECM (minimally manipulated autologous extracellular matrix) using 3D bioprinting technology—An innovative approach. Int. J. Low. Extrem. Wounds 2024, 23, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Harris, S.G.; Rasor, Z.; Zelen, C.M.; Kim, J.; Swerdlow, M.; Isaac, A.L. Autologous minimally manipulated homologous adipose tissue (AMHAT) for treatment of nonhealing diabetic foot ulcers. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4588. [Google Scholar] [CrossRef] [PubMed]
- Namgoong, S.; Yoon, I.J.; Han, S.K.; Son, J.W.; Kim, J. A pilot study comparing a micronized adipose tissue niche versus standard wound care for treatment of neuropathic diabetic foot ulcers. J. Clin. Med. 2022, 11, 5887. [Google Scholar] [CrossRef] [PubMed]
- Yasti, A.; Akgun, A.E.; Surel, A.A.; Kim, J.; Akin, M. Graft of 3D bioprinted autologous minimally manipulated homologous adipose tissue for the treatment of diabetic foot ulcer. Wounds 2023, 35, E22–E28. [Google Scholar] [CrossRef] [PubMed]
- Bajuri, M.Y.; Kim, J.; Yu, Y.; Shahul Hameed, M.S. New paradigm in diabetic foot ulcer grafting techniques using 3D-bioprinted autologous minimally manipulated homologous adipose tissue (3D-AMHAT) with fibrin gel acting as a biodegradable scaffold. Gels 2023, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.M.; Song, W.J. Using 3D Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Limb Salvage in Treating Diabetic Foot Ulcer. Arch. Plast. Surg. 2024, 51, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F. Recent Trends in Bioprinting. Procedia Manuf. 2019, 32, 95–101. [Google Scholar] [CrossRef]
- Bishop, E.S.; Mostafa, S.; Pakvasa, M.; Luu, H.H.; Lee, M.J.; Wolf, J.M.; Ameer, G.A.; He, T.C.; Reid, R.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 2017, 4, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S. ImageJ. U.S. National Institutes of Health: Bethesda, MD, USA, 1997–2012. Available online: https://imagej.nih.gov/ij/ (accessed on 5 January 2025).
- Suzuki, M.; Komiya, T.; Asai, M.; Ayabe, N.; Hanano, M.; Kawai, Y.; Shimada, K.; Ishikawa, T.; Matsumura, H. Effectiveness of SCAR-Q for assessment of incisional scar after implant-based reconstruction in breast cancer patients: Can it be a tool for incision selection? Int. Wound J. 2024, 21, e14822. [Google Scholar] [CrossRef] [PubMed]
- Lembo, F.; Cecchino, L.R.; Parisi, D.; Portincasa, A. Utility of a new artificial dermis as a successful tool in face and scalp reconstruction for skin cancer: Analysis of the efficacy, safety, and aesthetic outcomes. Dermatol. Res. Pract. 2020, 2020, 4874035. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.K.; Han, S.K.; Yoon, I.J.; Namgoong, S.; Jeong, S.H.; Dhong, E.S.; Kim, J.H.; Lee, M.C. Evaluating micronized adipose tissue niche and artificial dermis grafts following nonmelanoma skin cancer excision: A pilot study. Wounds 2024, 36, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.; Hu, K.G.; Allam, O.; Lewis, K.; Ihnat, J.M.; Rancu, A.L.; Boroumand, S.; Persing, J.A.; Alperovich, M. Using the SCAR-Q to evaluate morbidity of scars in craniosynostosis repair. Cleft Palate Craniofac J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Mirsky, N.; Spielman, A.; Mathew, P.; Yechieli, R.; Tang, J.C.; Thaller, S.R. Evaluating symptomatic and psychosocial well-being after keloid treatment with SCAR-Q. Aesthet. Surg. J. 2022, 42, NP416. [Google Scholar] [CrossRef] [PubMed]
Case No. | Age | Male/Female | Pathological | Location | Initial Wound Area (cm2) |
---|---|---|---|---|---|
Diagnosis | |||||
1 | 78 | M | SCC | Clavicle | 6.22 |
2 | 78 | F | BCC | Nose | 2.28 |
3 | 64 | M | SCC | Nose | 1.6 |
4 | 69 | F | BCC | Nose | 1.77 |
5 | 77 | F | BCC | Nose | 0.5 |
6 | 71 | F | BCC | Nose~cheak | 2.86 |
7 | 61 | M | BCC | Nose | 3.07 |
8 | 83 | F | SCC | Cheak | 2.92 |
9 | 71 | M | SCC | Cheek | 3.03 |
10 | 84 | M | SCC in situ | Forehead | 2.92 |
Average | M:5 | Average | |||
73.6 | F:5 | 2.72 |
Case No. | Week 0 | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 |
---|---|---|---|---|---|---|
1 | 6.22 | 2.95 | 1.67 | ND | 0 | |
2 | 2.28 | 0.92 | 0.47 | 0.37 | 0 | |
3 | 1.6 | 0.79 | 0.41 | 0 | ||
4 | 1.77 | 0.57 | 0.45 | 0.34 | 0.07 | 0 |
5 | 0.5 | 0.21 | 0.17 | 0.13 | 0 | |
6 | 2.86 | 1.18 | 0.4 | 0.06 | 0 | |
7 | 3.07 | 1.79 | 1.31 | 0.72 | 0.21 | 0 |
8 | 2.92 | 2.25 | 0.74 | 0.26 | 0 | |
9 | 3.03 | 1.66 | 1.14 | 0.5 | 0.47 | 0 |
10 | 2.92 | 2.27 | 0.45 | 0.14 | 0 |
Case No. | Wound After Cancer Excision | Scar at 6 months After Surgery | Appearance Scale Symptom Scale Psychosocial Impact | Scar-Q Total Score |
---|---|---|---|---|
1 | 100 100 100 | 300 | ||
2 | 84 89 100 | 273 | ||
3 | 91 100 100 | 291 | ||
4 | 100 100 100 | 300 | ||
5 | 100 100 100 | 300 | ||
6 | 80 77 100 | 257 | ||
7 | 76 82 100 | 258 | ||
8 | 84 82 100 | 266 | ||
9 | 80 82 100 | 262 | ||
10 | 100 100 100 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumura, R.; Matsumura, H.; Kawai, Y.; Kim, J.; Lee, M.-C.; Yu, Y.; Fujii, M.; Shimada, K.; Komiya, T. Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction. J. Clin. Med. 2025, 14, 1795. https://doi.org/10.3390/jcm14061795
Matsumura R, Matsumura H, Kawai Y, Kim J, Lee M-C, Yu Y, Fujii M, Shimada K, Komiya T. Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction. Journal of Clinical Medicine. 2025; 14(6):1795. https://doi.org/10.3390/jcm14061795
Chicago/Turabian StyleMatsumura, Reina, Hajime Matsumura, Yuichiro Kawai, Jeehee Kim, Min-Chae Lee, Yeongseo Yu, Miki Fujii, Kazuki Shimada, and Takako Komiya. 2025. "Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction" Journal of Clinical Medicine 14, no. 6: 1795. https://doi.org/10.3390/jcm14061795
APA StyleMatsumura, R., Matsumura, H., Kawai, Y., Kim, J., Lee, M.-C., Yu, Y., Fujii, M., Shimada, K., & Komiya, T. (2025). Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction. Journal of Clinical Medicine, 14(6), 1795. https://doi.org/10.3390/jcm14061795