A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Reference Method: Manual Classification
- (1)
- location of the fall: hospital bathroom, hospital room, hallway;
- (2)
- fall-related injuries (any physical harm or damage to the body resulting from the fall, including impacts such as hitting the head or any other body part): yes vs. no.
2.2. GPT-Based Classification
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Study Limitations
4.2. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeLaurin, J.H.; Shorr, R.I. Preventing Falls in Hospitalized Patients: State of the Science. Clin. Geriatr. Med. 2019, 35, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Morello, R.T.; Barker, A.L.; Watts, J.J.; Haines, T.; Zavarsek, S.S.; Hill, K.D.; Brand, C.; Sherrington, C.; Wolfe, R.; Bohensky, M.A.; et al. The Extra Resource Burden of In-Hospital Falls: A Cost of Falls Study. Med. J. Aust. 2015, 203, 367. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Patient Safety Action Plan 2021–2030: Towards Eliminating Avoidable Harm in Health Care; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Appeadu, M.K.; Bordoni, B. Falls and Fall Prevention in the Elderly. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Satoh, M.; Miura, T.; Shimada, T.; Hamazaki, T. Risk Stratification for Early and Late Falls in Acute Care Settings. J. Clin. Nurs. 2023, 32, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Minsitero Della Salute. Dipartimento Della Programmazione e Dell’ordinamento Del Servizio Sanitario Nazionale (SSN) Direzione Generale Della Programmazione, Ex Ufficio III. Raccomandazione per La Prevenzione e La Gestione Della Caduta Del Paziente Nelle Strutture Sanitarie, Raccomandazione n. 13, Novembre 2011 (Aggiornata Al 1 Dicembre 2011). 2007. Available online: https://www.pnes.salute.gov.it/imgs/C_17_pubblicazioni_1639_allegato.pdf (accessed on 21 February 2025).
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e2138911. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Curlewis, K.; Squires, E.; Griffiths, L.J.; Stewart, R.; Jones, K.H. The Potential of Research Drawing on Clinical Free Text to Bring Benefits to Patients in the United Kingdom: A Systematic Review of the Literature. Front. Digit. Health 2021, 3, 606599. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Pillai, A.; Deng, J.; Guo, E.; Gupta, M.; Paget, M.; Naugler, C. Assessing the Research Landscape and Clinical Utility of Large Language Models: A Scoping Review. BMC Med. Inform. Decis. Mak. 2024, 24, 72. [Google Scholar] [CrossRef] [PubMed]
- Ghim, J.-L.; Ahn, S. Transforming Clinical Trials: The Emerging Roles of Large Language Models. Transl. Clin. Pharmacol. 2023, 31, 131. [Google Scholar] [CrossRef] [PubMed]
- Van Veen, D.; Van Uden, C.; Blankemeier, L.; Delbrouck, J.-B.; Aali, A.; Bluethgen, C.; Pareek, A.; Polacin, M.; Reis, E.P.; Seehofnerová, A.; et al. Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization. Nat. Med. 2024, 30, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in Medicine: An Overview of Its Applications, Advantages, Limitations, Future Prospects, and Ethical Considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Godeiro Coelho, L.M.; Donahue, M.A.; Rice, H.J.; Blacker, D.; Hsu, J.; Newhouse, J.P.; Hernandez-Diaz, S.; Haneuse, S.; Westover, B.; et al. Automated Identification of Fall-Related Injuries in Unstructured Clinical Notes. Am. J. Epidemiol. 2024, kwae240. [Google Scholar] [CrossRef] [PubMed]
- Trinh, V.Q.-N.; Zhang, S.; Kovoor, J.; Gupta, A.; Chan, W.O.; Gilbert, T.; Bacchi, S. The Use of Natural Language Processing in Detecting and Predicting Falls within the Healthcare Setting: A Systematic Review. Int. J. Qual. Health Care 2023, 35, mzad077. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, G.; Gregori, D.; Bressan, S.; Ocagli, H.; Azzolina, D.; Da Dalt, L.; Berchialla, P. Use of a Large Language Model to Identify and Classify Injuries With Free-Text Emergency Department Data. JAMA Netw. Open 2024, 7, e2413208. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Kim, Y.; Choi, S.W.; Kim, K.H.; Choi, Y.; Do Shin, S. Using Large Language Models to Extract Core Injury Information From Emergency Department Notes. J. Korean Med. Sci. 2024, 39, e291. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, G.; Rampazzo, R.; Buratin, A.; Berchialla, P.; Gregori, D. Does the Integration of Pre-Coded Information with Narratives Improve in-Hospital Falls’ Surveillance? Appl. Sci. 2021, 11, 4406. [Google Scholar] [CrossRef]
- Rudnytskyi, I. Openai: R Wrapper for OpenAI API. 2023. Available online: https://irudnyts.github.io/openai/ (accessed on 21 February 2025).
- Available online: https://Platform.Openai.Com/Docs/Guides/Prompt-Engineering/Strategy-Split-Complex-Tasks-into-Simpler-Subtasks (accessed on 21 February 2025).
- Denecke, K.; May, R.; LLMHealthGroup; Rivera Romero, O. Potential of Large Language Models in Health Care: Delphi Study. J. Med. Internet Res. 2024, 26, e52399. [Google Scholar] [CrossRef] [PubMed]
- Sushil, M.; Kennedy, V.E.; Mandair, D.; Miao, B.Y.; Zack, T.; Butte, A.J. CORAL: Expert-Curated Oncology Reports to Advance Language Model Inference. NEJM AI 2024, 1, AIdbp2300110. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance; World Health Organization;: Geneva, Switzerland, 2021. [Google Scholar]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Szolovits, P. Large Language Models Seem Miraculous, but Science Abhors Miracles. NEJM AI 2024, 1, AIp2300103. [Google Scholar] [CrossRef]
- Chan, B. Black-Box Assisted Medical Decisions: AI Power vs. Ethical Physician Care. Med. Health Care Philos. 2023, 26, 285–292. [Google Scholar] [CrossRef] [PubMed]
- London, A.J. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Cent. Rep. 2019, 49, 15–21. [Google Scholar] [CrossRef] [PubMed]
Completion Sequence | GPT Prompt Text |
---|---|
System | “This is a dataframe containing records of accidental falls in healthcare facilities. Each record corresponds to a fall that may have occurred in a specific location within the hospital”. |
System | “In the first column is reported the id of the accidental fall. In the second column is reported the description of the fall”. |
System | “The text is in Italian, however, responses must be provided strictly in English using the specified category terms”. |
User | Location “Where did the fall occur? You must choose only one of the following options: ‘hospital bathroom’, ‘hospital room’, ‘hallway’. Use only the words corresponding to these categories and use only lowercase. Do not write any other output or comments. Do not deviate from the provided options”. Fall-related physical harm “Classify any event where the patient sustained physical harm, such as injuries or noticeable impacts, regardless of severity. Examples include hitting a body part or any other physical trauma. Did the patient sustain any injuries, either immediately or as a result of the fall? You must choose only one of the following options: ‘Yes’, ‘No’. Use only the words corresponding to these categories and use only lowercase. Do not write any other output or comments. Do not deviate from the provided options”. |
Characteristic | N = 187 |
---|---|
Witnesses of the fall | |
No | 91 (49%) |
Yes | 95 (51%) |
Fall risk management plan available | |
No | 34 (19%) |
Yes | 142 (81%) |
Previous in-hospital falls (same hospitalization) | |
No | 164 (90%) |
Yes | 18 (10%) |
Potential causes (patient) | |
Walking barefoot | 42 (34%) |
Open slippers | 45 (37%) |
Walking aids | 7 (6%) |
Type of clothing | 4 (3%) |
Medical devices (e.g., drainages) | 6 (5%) |
More than one | 19 (15%) |
Location (gold standard) | |
Bathroom | 56 (30%) |
Hospital bedroom | 126 (67%) |
Hallway | 5 (3%) |
Hospital Room | Bathroom | |
---|---|---|
Temperature: 0.2, Frequency/Presence penalty: 0.2 | ||
Accuracy | 0.925 (0.888, 0.963) | 0.925 (0.888, 0.963) |
Sensitivity | 0.913 (0.861, 0.961) | 0.946 (0.885, 1.000) |
Specificity | 0.951 (0.894, 1.000) | 0.916 (0.867, 0.962) |
Temperature: 0.2, Frequency/Presence penalty: 0.7 | ||
Accuracy | 0.925 (0.888, 0.963) | 0.925 (0.888, 0.963) |
Sensitivity | 0.913 (0.862, 0.960) | 0.946 (0.883, 1.000) |
Specificity | 0.951 (0.895, 1.000) | 0.916 (0.866, 0.962) |
Temperature: 0.2, Frequency/Presence penalty: 1.2 | ||
Accuracy | 0.925 (0.882, 0.957) | 0.925 (0.882, 0.957) |
Sensitivity | 0.913 (0.857, 0.957) | 0.946 (0.877, 1.000) |
Specificity | 0.951 (0.885, 1.000) | 0.916 (0.862, 0.959) |
Temperature: 0.7, Frequency/Presence penalty: 0.2 | ||
Accuracy | 0.925 (0.888, 0.963) | 0.925 (0.889, 0.963) |
Sensitivity | 0.913 (0.862, 0.959) | 0.946 (0.879, 1.000) |
Specificity | 0.951 (0.887, 1.000) | 0.916 (0.867, 0.960) |
Temperature: 0.7, Frequency/Presence penalty: 0.7 | ||
Accuracy | 0.947 (0.914, 0.973) | 0.947 (0.914, 0.973) |
Sensitivity | 0.944 (0.900, 0.978) | 0.946 (0.877, 1.000) |
Specificity | 0.951 (0.886, 1.000) | 0.947 (0.903, 0.978) |
Temperature: 0.7, Frequency/Presence penalty: 1.2 | ||
Accuracy | 0.931 (0.893, 0.963) | 0.931 (0.893, 0.963) |
Sensitivity | 0.921 (0.869, 0.966) | 0.946 (0.887, 1.000) |
Specificity | 0.951 (0.894, 1.000) | 0.925 (0.874, 0.967) |
Temperature: 1.2, Frequency/Presence penalty: 0.2 | ||
Accuracy | 0.931 (0.893, 0.963) | 0.931 (0.893, 0.963) |
Sensitivity | 0.913 (0.862, 0.961) | 0.964 (0.912, 1.000) |
Specificity | 0.967 (0.919, 1.000) | 0.916 (0.867, 0.962) |
Temperature: 1.2, Frequency/Presence penalty: 0.7 | ||
Accuracy | 0.931 (0.893, 0.963) | 0.931 (0.893, 0.963) |
Sensitivity | 0.913 (0.861, 0.961) | 0.964 (0.908, 1.000) |
Specificity | 0.967 (0.915, 1.000) | 0.916 (0.866, 0.962) |
Temperature: 1.2, Frequency/Presence penalty: 1.2 | ||
Accuracy | 0.931 (0.888, 0.963) | 0.931 (0.888, 0.963) |
Sensitivity | 0.921 (0.865, 0.963) | 0.946 (0.878, 1.000) |
Specificity | 0.951 (0.889, 1.000) | 0.924 (0.872, 0.964) |
Temperature: 0.2, Frequency/Presence penalty: 0.2 | |
Accuracy | 0.968 (0.925, 1.000) |
Sensitivity | 0.969 (0.918, 1.000) |
Specificity | 0.966 (0.889, 1.000) |
Temperature: 0.2, Frequency/Presence penalty: 0.7 | |
Accuracy | 0.957 (0.914, 0.989) |
Sensitivity | 0.953 (0.894, 1.000) |
Specificity | 0.966 (0.893, 1.000) |
Temperature: 0.2, Frequency/Presence penalty: 1.2 | |
Accuracy | 0.968 (0.925, 1.000) |
Sensitivity | 0.969 (0.919, 1.000) |
Specificity | 0.966 (0.880, 1.000) |
Temperature: 0.7, Frequency/Presence penalty: 0.2 | |
Accuracy | 0.968 (0.935, 1.000) |
Sensitivity | 0.969 (0.921, 1.000) |
Specificity | 0.969 (0.921, 1.000) |
Temperature: 0.7, Frequency/Presence penalty: 0.7 | |
Accuracy | 0.968 (0.925, 1.000) |
Sensitivity | 0.969 (0.921, 1.000) |
Specificity | 0.966 (0.893, 1.000) |
Temperature: 0.7, Frequency/Presence penalty: 1.2 | |
Accuracy | 0.978 (0.946, 1.000) |
Sensitivity | 0.984 (0.950, 1.000) |
Specificity | 0.966 (0.885, 1.000) |
Temperature: 1.2, Frequency/Presence penalty: 0.2 | |
Accuracy | 0.968 (0.925, 1.000) |
Sensitivity | 0.969 (0.919, 1.000) |
Specificity | 0.966 (0.889, 1.000) |
Temperature: 1.2, Frequency/Presence penalty: 0.7 | |
Accuracy | 0.968 (0.925, 1.000) |
Sensitivity | 0.969 (0.921, 1.000) |
Specificity | 0.966 (0.885, 1.000) |
Temperature: 1.2, Frequency/Presence penalty: 1.2 | |
Accuracy | 0.978 (0.946, 1.000) |
Sensitivity | 0.969 (0.919, 1.000) |
Specificity | 1.000 (1.000, 1.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rango, D.; Lorenzoni, G.; Silva, H.S.D.; Alves, V.P.; Gregori, D. A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management. J. Clin. Med. 2025, 14, 1580. https://doi.org/10.3390/jcm14051580
Rango D, Lorenzoni G, Silva HSD, Alves VP, Gregori D. A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management. Journal of Clinical Medicine. 2025; 14(5):1580. https://doi.org/10.3390/jcm14051580
Chicago/Turabian StyleRango, Davide, Giulia Lorenzoni, Henrique Salmazo Da Silva, Vicente Paulo Alves, and Dario Gregori. 2025. "A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management" Journal of Clinical Medicine 14, no. 5: 1580. https://doi.org/10.3390/jcm14051580
APA StyleRango, D., Lorenzoni, G., Silva, H. S. D., Alves, V. P., & Gregori, D. (2025). A Large Language Model-Based Approach for Coding Information from Free-Text Reported in Fall Risk Surveillance Systems: New Opportunities for In-Hospital Risk Management. Journal of Clinical Medicine, 14(5), 1580. https://doi.org/10.3390/jcm14051580