A Multicenter Investigation on the Incidence and Risk Factors of Wound Dehiscence Following Surgical Treatment of Metastatic Spinal Tumors: The Korean Society of Spinal Tumors Multicenter Study (KSST 2023-01)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic Data
3.2. Incidence of Wound Dehiscence
3.3. Risk Factors Affecting Wound Dehiscence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KSST | Korean Society of Spinal Tumors |
KPS | Karnofsky Performance Scale |
ASA | American Society of Anesthesiologists |
References
- Khan, S.N.; Donthineni, R. Surgical management of metastatic spine tumors. Orthop. Clin. N. Am. 2006, 37, 99–104. [Google Scholar] [CrossRef]
- Perrin, R.G.; Laxton, A.W. Metastatic spine disease: Epidemiology, pathophysiology, and evaluation of patients. Neurosurg. Clin. N. Am. 2004, 15, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Sciubba, D.M.; Pennington, Z.; Colman, M.W.; Goodwin, C.R.; Laufer, I.; Patt, J.C.; Redmond, K.J.; Saylor, P.; Shin, J.H.; Schwab, J.H.; et al. Spinal metastases 2021: A review of the current state of the art and future directions. Spine J. 2021, 21, 1414–1429. [Google Scholar] [CrossRef] [PubMed]
- Jaipanya, P.; Chanplakorn, P. Spinal metastasis: Narrative reviews of the current evidence and treatment modalities. J. Int. Med. Res. 2022, 50, 3000605221091665. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, J.S.; Lee, C.S.; Kang, B.J.; Jung, C.W. Trends in Survival and Surgical Methods in Patients Surgically Treated for Metastatic Spinal Tumors: 25-Year Experience in a Single Institution. Clin. Orthop. Surg. 2023, 15, 109–117. [Google Scholar] [CrossRef]
- Park, S.J.; Ma, C.H.; Lee, C.S.; Jeon, C.Y.; Shin, T.S.; Park, J.S. Survival and Functional Outcomes after Surgical Treatment for Spinal Metastasis in Patients with a Short Life Expectancy. J. Clin. Med. 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Malhotra, R.; Zaw, A.S.; Maharajan, K.; Naresh, N.; Kumar, A.; Vellayappan, B. Evolution in treatment strategy for metastatic spine disease: Presently evolving modalities. Eur. J. Surg. Oncol. 2017, 43, 1784–1801. [Google Scholar] [CrossRef]
- Murotani, K.; Fujibayashi, S.; Otsuki, B.; Shimizu, T.; Sono, T.; Onishi, E.; Kimura, H.; Tamaki, Y.; Tsubouchi, N.; Ota, M.; et al. Prognostic Factors after Surgical Treatment for Spinal Metastases. Asian Spine J. 2024, 18, 390–397. [Google Scholar] [CrossRef]
- Wise, J.J.; Fischgrund, J.S.; Herkowitz, H.N.; Montgomery, D.; Kurz, L.T. Complication, survival rates, and risk factors of surgery for metastatic disease of the spine. Spine 1999, 24, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- Carl, H.M.; Ahmed, A.K.; Abu-Bonsrah, N.; De la Garza Ramos, R.; Sankey, E.W.; Pennington, Z.; Bydon, A.; Witham, T.F.; Wolinsky, J.P.; Gokaslan, Z.L.; et al. Risk factors for wound-related reoperations in patients with metastatic spine tumor. J. Neurosurg. Spine 2018, 28, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Hersh, A.M.; Feghali, J.; Hung, B.; Pennington, Z.; Schilling, A.; Antar, A.; Patel, J.; Ehresman, J.; Cottrill, E.; Lubelski, D.; et al. A Web-Based Calculator for Predicting the Occurrence of Wound Complications, Wound Infection, and Unplanned Reoperation for Wound Complications in Patients Undergoing Surgery for Spinal Metastases. World Neurosurg. 2021, 155, e218–e228. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, N.A.; Rajabian, A.; Spencer, A.; Arealis, G.; Mehdian, H.; Boszczyk, B.M.; Edwards, K.L. Reoperation rates in the surgical treatment of spinal metastases. Spine J. 2015, 15, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Paulino Pereira, N.R.; Ogink, P.T.; Groot, O.Q.; Ferrone, M.L.; Hornicek, F.J.; van Dijk, C.N.; Bramer, J.A.M.; Schwab, J.H. Complications and reoperations after surgery for 647 patients with spine metastatic disease. Spine J. 2019, 19, 144–156. [Google Scholar] [CrossRef]
- McPhee, I.B.; Williams, R.P.; Swanson, C.E. Factors influencing wound healing after surgery for metastatic disease of the spine. Spine 1998, 23, 726–732, discussion 732–723. [Google Scholar] [CrossRef]
- Tavares-Junior, M.C.M.; Cabrera, G.E.D.; Teixeira, W.G.J.; Narazaki, D.K.; Ghilardi, C.S.; Marcon, R.M.; Cristante, A.F.; Barros-Filho, T.E.P. Risk Factors Associated with Postoperative Infection in Cancer Patients Undergoing Spine Surgery. Clinics 2021, 76, e2741. [Google Scholar] [CrossRef]
- Kumar, N.; Madhu, S.; Bohra, H.; Pandita, N.; Wang, S.S.Y.; Lopez, K.G.; Tan, J.H.; Vellayappan, B.A. Is there an optimal timing between radiotherapy and surgery to reduce wound complications in metastatic spine disease? A systematic review. Eur. Spine J. 2020, 29, 3080–3115. [Google Scholar] [CrossRef] [PubMed]
- Lakomkin, N.; Zuckerman, S.L.; Stannard, B.; Montejo, J.; Sussman, E.S.; Virojanapa, J.; Kuzmik, G.; Goz, V.; Hadjipanayis, C.G.; Cheng, J.S. Preoperative Risk Stratification in Spine Tumor Surgery: A Comparison of the Modified Charlson Index, Frailty Index, and ASA Score. Spine 2019, 44, E782–E787. [Google Scholar] [CrossRef] [PubMed]
- Ghogawala, Z.; Mansfield, F.L.; Borges, L.F. Spinal radiation before surgical decompression adversely affects outcomes of surgery for symptomatic metastatic spinal cord compression. Spine 2001, 26, 818–824. [Google Scholar] [CrossRef]
- Vargas, E.; Mummaneni, P.V.; Rivera, J.; Huang, J.; Berven, S.H.; Braunstein, S.E.; Chou, D. Wound complications in metastatic spine tumor patients with and without preoperative radiation. J. Neurosurg. Spine 2023, 38, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.D.; Jang, H.D.; Park, J.S.; Chung, N.S.; Chung, H.W.; Jun, J.Y.; Han, K.; Hong, J.Y. Incidence and Risk Factors for Wound Revision after Surgical Treatment of Spinal Metastasis: A National Population-Based Study in South Korea. Healthcare 2023, 11, 2962. [Google Scholar] [CrossRef]
- Jarvers, J.S.; Lange, M.; Schiemann, S.; Pfranger, J.; Heyde, C.E.; Osterhoff, G. Risk factors for wound-related complications after surgical stabilization of spinal metastases with a special focus on the effect of postoperative radiation therapy. BMC Surg. 2021, 21, 423. [Google Scholar] [CrossRef]
- Povoa, P.; Souza-Dantas, V.C.; Soares, M.; Salluh, J.F. C-reactive protein in critically ill cancer patients with sepsis: Influence of neutropenia. Crit. Care 2011, 15, R129. [Google Scholar] [CrossRef] [PubMed]
- Switlyk, M.D.; Kongsgaard, U.; Skjeldal, S.; Hald, J.K.; Hole, K.H.; Knutstad, K.; Zaikova, O. Prognostic factors in patients with symptomatic spinal metastases and normal neurological function. Clin. Oncol. 2015, 27, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, J.S.; Park, S.J.; Kang, D.H.; Lee, C.S. Survival and Prognostic Factors After Surgery in Single Spinal Metastasis: Comparison of Isolated-Single Spinal Metastasis and Single Spinal Metastasis With Other Metastasis. Glob. Spine J. 2024, 21925682241295666. [Google Scholar] [CrossRef] [PubMed]
- Santipas, B.; Veerakanjana, K.; Ittichaiwong, P.; Chavalparit, P.; Wilartratsami, S.; Luksanapruksa, P. Development and internal validation of machine-learning models for predicting survival in patients who underwent surgery for spinal metastases. Asian Spine J. 2024, 18, 325–335. [Google Scholar] [CrossRef]
- Kalemci, S.; Ergun, K.E.; Kizilay, F.; Yildiz, B.; Simsir, A. Analysis of risk factors of abdominal wound dehiscence after radical cystectomy. Rev. Assoc. Med. Bras. 2022, 68, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Gundlach, B.K.; Robbins, C.B.; Lawton, J.N.; Lien, J.R. Wound Healing Complications in Diabetic Patients Undergoing Carpal Tunnel and Trigger Finger Releases: A Retrospective Cohort Study. J. Hand Surg. Am. 2021, 46, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Uhl, R.L.; Rosenbaum, A.J.; Dipreta, J.A.; Desemone, J.; Mulligan, M. Diabetes mellitus: Musculoskeletal manifestations and perioperative considerations for the orthopaedic surgeon. J. Am. Acad. Orthop. Surg. 2014, 22, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.G. Wound healing and diabetes mellitus. Clin. Plast. Surg. 2003, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 2012, 7, 162. [Google Scholar] [CrossRef]
- Park, H.J.; Griffin, R.J.; Hui, S.; Levitt, S.H.; Song, C.W. Radiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat. Res. 2012, 177, 311–327. [Google Scholar] [CrossRef]
- Roesch, J.; Cho, J.B.C.; Fahim, D.K.; Gerszten, P.C.; Flickinger, J.C.; Grills, I.S.; Jawad, M.; Kersh, R.; Letourneau, D.; Mantel, F.; et al. Risk for surgical complications after previous stereotactic body radiotherapy of the spine. Radiat. Oncol. 2017, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Slonimska, P.; Sachadyn, P.; Zielinski, J.; Skrzypski, M.; Pikula, M. Chemotherapy-Mediated Complications of Wound Healing: An Understudied Side Effect. Adv. Wound Care 2024, 13, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Saka, N.; Yamada, K.; Ono, K.; Iwata, E.; Mihara, T.; Uchiyama, K.; Watanabe, Y.; Matsushita, K. Effect of topical vancomycin powder on surgical site infection prevention in major orthopaedic surgery: A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis. J. Hosp. Infect. 2024, 150, 105–113. [Google Scholar] [CrossRef] [PubMed]
Variables | Number of Patients (n = 277) |
---|---|
Age at spinal surgery (years) | 60.0 ± 10.6 |
Sex | |
Male | 175 (63.2) |
Female | 102 (36.8) |
Primary malignancy site factor † | |
Lung | 81 (29.2) |
Liver | 59 (21.3) |
Kidney | 24 (8.7) |
Breast | 21 (7.6) |
Colorectal | 14 (5.1) |
Prostate | 11 (4.0) |
Other | 67 (24.1) |
Preoperative KPS | |
10–40 | 58 (21.0) |
50–70 | 125 (45.1) |
80–100 | 94 (33.9) |
Modified Tokuhashi score | 6.2 ± 2.7 |
Surgical procedure type ‡ | |
1 | 34 (12.3) |
2 | 156 (56.3) |
3 | 66 (23.8) |
4 | 21 (7.6) |
Adjuvant therapy | |
Chemotherapy | |
Before surgery | 128 (46.2) |
After surgery | 147 (53.1) |
Radiotherapy | |
Before surgery | 127 (45.8) |
After surgery | 152 (54.9) |
Overall survival (mean, months) | 19.9 ± 1.3 |
90-day mortality | 49 (17.7) |
Wound dehiscence | 32 (11.6) |
Infection | 11 (4.0) |
Variables | Dehiscence (32) | No Dehiscence (245) | p-Value |
---|---|---|---|
Mortality < 90 days | 6 (18.8) | 43 (17.6) | 0.867 |
Overall survival (months) Mean (95% CI) | 19.9 ± 2.8 (14.4 to 25.3) | 19.4 ± 1.4 (16.7 to 22.1) | 0.286 |
Variables | Dehiscence (N = 32) | No Dehiscence (N = 245) | p-Value |
---|---|---|---|
Age (yrs) | 61.4 ± 11.4 | 59.8 ± 10.5 | 0.428 |
Male sex | 19 (59.4) | 156 (63.7) | 0.635 |
BMI | 23.8 ± 3.4 | 22.9 ± 3.5 | 0.155 |
Smoking | 7 (21.9) | 54 (22.0) | 0.983 |
Comorbidity | |||
DM | 11 (34.4) | 32 (13.1) | 0.002 |
HTN | 11 (34.3) | 69 (28.2) | 0.466 |
Coronary artery disease | 2 (6.3) | 10 (4.1) | 0.571 |
Renal disease | 0 (0) | 6 (2.4) | 0.371 |
Thromboembolic event | 1 (3.1) | 5 (2.0) | 0.692 |
COPD | 1(3.1) | 3 (1.2) | 0.397 |
Hyperlipidemia | 5 (15.6) | 13 (5.3) | 0.026 |
General condition | |||
KPS | 60.6 ± 17.0 | 58.6 ± 17.6 | 0.541 |
ASA grade | 2.2 ± 0.4 | 2.3 ± 0.5 | 0.331 |
Preop. Ambulation | 18 (56.3) | 154 (62.9) | 0.469 |
Postop. Ambulation | 21 (65.6) | 165 (67.3) | 0.845 |
Primary malignancy site * | 0.717 | ||
Group A (slow growth) | 22 (68.8) | 154 (62.9) | |
Group B (moderate growth) | 3 (9.4) | 35 (14.3) | |
Group C (rapid growth) | 7 (21.9) | 56 (22.9) | |
Modified Tokuhashi score | 6.9 ± 2.7 | 6.2 ± 2.6 | 0.117 |
Variables | Dehiscence (32) | No Dehiscence (245) | p-Value |
---|---|---|---|
Laboratory factor (immediately before surgery) | |||
WBC | 8.5 ± 5.9 | 8.0 ± 9.9 | 0.803 |
Hb | 12.4 ± 2.1 | 12.3 ± 2.0 | 0.795 |
HCT | 37.2 ± 6.0 | 38.3 ± 20.3 | 0.755 |
PLT | 237.9 ± 106.7 | 216.4 ± 87.6 | 0.206 |
Albumin | 3.9 ± 0.7 | 4.0 ± 0.6 | 0.229 |
CRP | 2.9 ± 4.4 | 2.1 ± 3.5 | 0.517 |
Cr | 0.7 ± 0.2 | 0.8 ± 0.6 | 0.448 |
PT | 1.1 ± 0.2 | 1.0 ± 0.1 | 0.299 |
aPTT | 35.5 ± 4.7 | 34.1 ± 4.6 | 0.351 |
Surgical factors | |||
Surgical time (minutes) | 225.2 ± 168.8 | 249.7 ± 155.8 | 0.408 |
Surgical length (segment level) | 4.4 ± 1.2 | 3.7 ± 2.0 | 0.008 |
Surgical procedure type * | 0.691 | ||
1 | 3 (9.4) | 31 (12.7) | |
2 | 20 (62.5) | 136 (55.5) | |
3 | 8 (25.0) | 58 (23.7) | |
4 | 1 (3.1) | 20 (8.2) | |
Blood loss | 687.5 ± 697.9 | 601.8 ± 654.6 | 0.490 |
Transfusion | 0.7 ± 1.4 | 0.9 ± 1.6 | 0.627 |
Variables | Dehiscence (32) | No Dehiscence (245) | p-Value |
---|---|---|---|
Palliative therapy | |||
Preop. CTx (<15 days) | 5 (15.6) | 23 (9.4) | 0.271 |
(<30 days) | 10 (31.3) | 32 (13.1) | 0.007 |
(<90 days) | 14 (43.8) | 82 (33.5) | 0.250 |
Preop. RTx (<15 days) | 1 (3.1) | 27 (11) | 0.163 |
(<30 days) | 4 (12.5) | 39 (15.9) | 0.616 |
(<90 days) | 6 (18.8) | 64 (26.1) | 0.367 |
Postop. CTx (<15 days) | 2 (6.3) | 28 (11.4) | 0.375 |
(<30 days) | 5 (15.6) | 50 (20.4) | 0.524 |
(<90 days) | 10 (31.3) | 101 (41.2) | 0.279 |
Postop. RTx (<15 days) | 3 (9.4) | 23 (9.4) | 0.998 |
(<30 days) | 9 (28.1) | 73 (29.8) | 0.846 |
(<90 days) | 17 (53.1) | 104 (42.4) | 0.252 |
Steroid Treatment | 6 (18.8) | 56 (22.9) | 0.600 |
Variables | OR (95% CI) | p-Value |
---|---|---|
DM | 4.02 (1.66–9.72) | 0.002 |
Hyperlipidemia | 3.11 (0.96–10.12) | 0.059 |
Surgical length (segment levels) | 1.25 (1.02–1.52) | 0.029 |
Preop. CTx < 30 days | 3.75 (1.55–9.10) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-S.; Kang, D.-H.; Cho, J.H.; Kim, Y.-H.; Lee, H.-D.; Chang, S.Y.; Park, S.-M.; Park, S.-J. A Multicenter Investigation on the Incidence and Risk Factors of Wound Dehiscence Following Surgical Treatment of Metastatic Spinal Tumors: The Korean Society of Spinal Tumors Multicenter Study (KSST 2023-01). J. Clin. Med. 2025, 14, 1464. https://doi.org/10.3390/jcm14051464
Park J-S, Kang D-H, Cho JH, Kim Y-H, Lee H-D, Chang SY, Park S-M, Park S-J. A Multicenter Investigation on the Incidence and Risk Factors of Wound Dehiscence Following Surgical Treatment of Metastatic Spinal Tumors: The Korean Society of Spinal Tumors Multicenter Study (KSST 2023-01). Journal of Clinical Medicine. 2025; 14(5):1464. https://doi.org/10.3390/jcm14051464
Chicago/Turabian StylePark, Jin-Sung, Dong-Ho Kang, Jae Hwan Cho, Young-Hoon Kim, Han-Dong Lee, Sam Yeol Chang, Sang-Min Park, and Se-Jun Park. 2025. "A Multicenter Investigation on the Incidence and Risk Factors of Wound Dehiscence Following Surgical Treatment of Metastatic Spinal Tumors: The Korean Society of Spinal Tumors Multicenter Study (KSST 2023-01)" Journal of Clinical Medicine 14, no. 5: 1464. https://doi.org/10.3390/jcm14051464
APA StylePark, J.-S., Kang, D.-H., Cho, J. H., Kim, Y.-H., Lee, H.-D., Chang, S. Y., Park, S.-M., & Park, S.-J. (2025). A Multicenter Investigation on the Incidence and Risk Factors of Wound Dehiscence Following Surgical Treatment of Metastatic Spinal Tumors: The Korean Society of Spinal Tumors Multicenter Study (KSST 2023-01). Journal of Clinical Medicine, 14(5), 1464. https://doi.org/10.3390/jcm14051464