Long-Term Clinical Relevance of Hyponatremia Identified During Acute Phase of Myocardial Infarction
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Angiography and Revascularization Strategy
3.3. Long-Term Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tazmini, K.; Nymo, S.H.; Louch, W.E.; Ranhoff, A.H.; Øie, E. Electrolyte imbalances in an unselected population in an emergency department: A retrospective cohort study. PLoS ONE 2019, 14, e0215673. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Jaber, B.L.; Madias, N.E. Epidemiology of hyponatremia. Semin. Nephrol. 2009, 29, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Choi, D.J.; Yoon, C.H.; Oh, I.Y.; Jeon, E.S.; Kim, J.J.; Cho, M.C.; Chae, S.C.; Ryu, K.H.; Oh, B.H. Improvement of hyponatraemia during hospitalisation for acute heart failure is not associated with improvement of prognosis: An analysis from the Korean Heart Failure (KorHF) registry. Heart 2012, 98, 1798–1804. [Google Scholar] [CrossRef]
- Kapłon-Cieślicka, A.; Ozierański, K.; Balsam, P.; Tymińska, A.; Peller, M.; Galas, M.; Wyzgał, M.; Marchel, M.; Drożdż, J.; Opolski, G. Clinical characteristics and 1-year outcome of hyponatremic patients hospitalized for heart failure. Pol. Arch. Intern. Med. 2015, 125, 120–131. [Google Scholar] [CrossRef]
- Rywik, T.M.; Wiśniewska, A.; Cegłowska, U.; Drohomirecka, A.; Topór-Mądry, R.; Łazarczyk, H.; Połaska, P.; Zieliński, T.; Doryńska, A. Heart failure with reduced, mildly reduced, and preserved ejection fraction: Outcomes and predictors of prognosis. Pol. Arch. Intern. Med. 2023, 133, 16522. [Google Scholar] [CrossRef]
- Huang, W.Y.; Weng, W.C.; Peng, T.I.; Chien, Y.Y.; Wu, C.L.; Lee, M.; Hung, C.C.; Chen, K.H. Association of hyponatremia in acute stroke stage with three-year mortality in patients with first-ever ischemic stroke. Cerebrovasc. Dis. 2012, 34, 55–62. [Google Scholar] [CrossRef]
- Waikar, S.S.; Curhan, G.C.; Brunelli, S.M. Mortality associated with low serum sodium concentration in maintenance hemodialysis. Am. J. Med. 2011, 124, 77–84. [Google Scholar] [CrossRef]
- Funk, G.C.; Lindner, G.; Druml, W.; Metni, B.; Schwarz, C.; Bauer, P.; Metni, P.G. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010, 36, 304–311. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Fan, X.D.; Li, T.; Hao, Y.Y.; Ma, F. Short- and long-term prognostic value of hyponatremia in patients with acute coronary syndrome: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0193857. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Commi ee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Orzechowski, P.; Kowalik, I.; Piotrowicz, E. Feasibility of hybrid telerehabilitation as a component of the Managed Care after Acute Myocardial Infarction (MC-AMI) program in a 12-month follow-up: Experience from a single center. Pol. Arch. Intern. Med. 2023, 133, 16456. [Google Scholar] [CrossRef] [PubMed]
- Kaziród-Wolski, K.; Sielski, J.; Gąsior, M.; Bujak, K.; Hawranek, M.; Pyka, Ł.; Gierlotka, M.; Pawłowski, T.; Siudak, Z. Factors affecting short- and long-term survival of patients with acute coronary syndrome treated invasively using intravascular ultrasound and fractional flow reserve: Analysis of data from the Polish Registry of Acute Coronary Syndromes 2017–2020. Kardiol. Pol. 2023, 81, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Pruc, M.; Kubica, J.; Banach, M.; Swieczkowski, D.; Rafique, Z.; Peacock, W.F.; Siudak, Z.; Kurek, K.; Nanayakkara, P.; Szarpak, Ł. Diagnostic and prognostic performance of the neutrophil-to-lymphocyte ratio in acute coronary syndromes: A meta-analysis of 90 studies including 45,990 patients. Kardiol. Pol. 2024, 82, 276–284. [Google Scholar] [CrossRef]
- Kolarczyk-Haczyk, A.; Konopko, M.; Mazur, M.; Żurakowski, A.; Gąsior, M.; Rogala, M.; Jankowski, P.; Kaźmierczak, P.; Milewski, K.P.; Buszman, P.E.; et al. Long-term outcomes of the Coordinated Care Program in Patients after Myocardial Infarction (KOS-MI). Kardiol. Pol. 2023, 81, 587–596. [Google Scholar] [CrossRef]
- Cordova Sanchez, A.; Bhuta, K.; Shmorgon, G.; Angeloni, N.; Murphy, R.; Chaudhuri, D. The association of hyponatremia and clinical outcomes in patients with acute myocardial infarction: A cross-sectional study. BMC Cardiovasc. Disord. 2022, 22, 276. [Google Scholar] [CrossRef]
- Tada, Y.; Nakamura, T.; Funayama, H.; Sugawara, Y.; Ako, J.; Ishikawa, S.E.; Momomura, S. Early development of hyponatremia implicates short- and long-term outcomes in ST-elevation acute myocardial infarction. Circ. J. 2011, 75, 1927–1933. [Google Scholar] [CrossRef]
- Singla, I.; Zahid, M.; Good, C.B.; Macioce, A.; Sonel, A.F. Effect of hyponatremia (<135 mEq/L) on outcome in patients with non-ST-elevation acute coronary syndrome. Am. J. Cardiol. 2007, 100, 406–408. [Google Scholar] [CrossRef]
- Stępień, K.; Nowak, K.; Kachnic, N.; Karcińska, A.; Del Carmen Yika, A.; Furczyński, J.; Platschek, M.; Skorupa, M.; Wyleciał, Z.; Zalewski, J.; et al. Clinical characteristics and long-term outcomes of patients with heart failure with improved ejection fraction. First Polish experience from LECRA-HF registry. Adv. Med. Sci. 2024, 69, 132–138. [Google Scholar] [CrossRef]
- Stepien, K.; Nowak, K.; Szlosarczyk, B.; Nessler, J.; Zalewski, J. Clinical Characteristics and Long-Term Outcomes of MINOCA Accompanied by Active Cancer: A Retrospective Insight Into a Cardio-Oncology Center Registry. Front. Cardiovasc. Med. 2022, 9, 785246. [Google Scholar] [CrossRef]
- Krawczyk, K.; Stepien, K.; Nowak, K.; Nessler, J.; Zalewski, J. ST-segment re-elevation following primary angioplasty in acute myocardial infarction with patent infarct-related artery: Impact on left ventricular function recovery and remodeling. Adv. Interv. Cardiol. 2019, 15, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Gu, S.; Parikh, A.; Radhakrishnan, J. Prevalence of hyponatremia and association with mortality: Results from NHANES. Am. J. Med. 2013, 126, 1127–1137.e1. [Google Scholar] [CrossRef] [PubMed]
- Stachenfeld, N.S. Hormonal changes during menopause and the impact on fluid regulation. Reprod. Sci. 2014, 21, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; McDonough, A.A.; Layton, A.T. Sex differences in solute and water handling in the human kidney: Modeling and functional implications. iScience 2021, 24, 102667. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Ahn, Y.K.; Jeong, M.H.; Kim, S.W. Prognostic impact of hyponatremia occurring at various time points during hospitalization on mortality in patients with acute myocardial infarction. Medicine 2017, 96, e7023. [Google Scholar] [CrossRef]
- Goldberg, A.; Hammerman, H.; Petcherski, S.; Nassar, M.; Zdorovyak, A.; Yalonetsky, S.; Kapeliovich, M.; Agmon, Y.; Beyar, R.; Markiewicz, W.; et al. Hyponatremia and long-term mortality in survivors of acute ST-elevation myocardial infarction. Arch. Intern. Med. 2006, 166, 781–786. [Google Scholar] [CrossRef]
- Havránek, Š.; Bělohlávek, J.; Škulec, R.; Kovárník, T.; Dytrych, V.; Linhart, A. Long-term prognostic impact of hyponatremia in the ST-elevation myocardial infarction. Scand. J. Clin. Lab. Investig. 2011, 71, 38–44. [Google Scholar] [CrossRef]
- Burkhardt, K.; Kirchberger, I.; Heier, M.; Zirngibl, A.; Kling, E.; von Scheidt, W.; Kuch, B.; Meisinger, C. Hyponatraemia on admission to hospital is associated with increased long-term risk of mortality in survivors of myocardial infarction. Eur. J. Prev. Cardiol. 2015, 22, 1419–1426. [Google Scholar] [CrossRef]
- Palmer, B.R.; Pilbrow, A.P.; Frampton, C.M.; Yandle, T.G.; Skelton, L.; Nicholls, M.G.; Richards, A.M. Plasma aldosterone levels during hospitalization are predictive of survival post-myocardial infarction. Eur. Heart J. 2008, 29, 2489–2496. [Google Scholar] [CrossRef]
- Correale, M.; Tricarico, L.; Fortunato, M.; Mazzeo, P.; Nodari, S.; Di Biase, M.; Brune, N.D. New Targets in Heart Failure Drug Therapy. Front. Cardiovasc. Med. 2021, 8, 665797. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Mota, K.O.; Elimban, V.; Shah, A.K.; de Vasconcelos, C.M.L.; Bhullar, S.K. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Movafagh, S.; Cleemann, L.; Morad, M. Regulation of cardiac Ca2+ channel by extracellular Na+. Cell Calcium 2011, 49, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Oniki, T.; Teshima, Y.; Nishio, S.; Ishii, Y.; Kira, S.; Abe, I.; Yufu, K.; Takahashi, N. Hyponatraemia aggravates cardiac susceptibility to ischaemia/reperfusion injury. Int. J. Exp. Pathol. 2019, 100, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Kułach, A.; Wilkosz, K.; Wybraniec, M.; Wieczorek, P.; Gąsior, Z.; Mizia-Stec, K.; Wojakowski, W.; Zdrojewski, T.; Wojtyniak, B.; Gąsior, M.; et al. Managed Care after Acute Myocardial Infarction (MC-AMI)—Poland’s nationwide program of comprehensive post-MI care improves prognosis in 2-year follow-up. A single high-volume center intention-to-treat analysis. Kardiol. Pol. 2023, 81, 123–131. [Google Scholar] [CrossRef]
Hyponatremia N = 31 | Non-Hyponatremia N = 831 | p-Value | |
---|---|---|---|
Male gender | 12 (38.7) | 585 (70.4) | <0.001 |
Age, years | 74 (60–81) | 68 (60–78) | 0.10 |
Body mass index, kg/m2 | 27.3 (23.5–31.1) | 27.6 (24.9–30.9) | 0.32 |
Diabetes mellitus | 15 (50.0) | 309 (37.3) | 0.16 |
Hypertension | 24 (80.0) | 731 (88.2) | 0.18 |
Dyslipidemia | 24 (80.0) | 701 (84.6) | 0.50 |
Impaired renal function | 10 (32.3) | 129 (15.5) | 0.013 |
Active smoking | 5 (16.7) | 198 (23.9) | 0.36 |
Chronic heart failure | 11 (36.7) | 276 (33.3) | 0.70 |
Peripheral arterial disease | 4 (13.3) | 84 (10.1) | 0.57 |
Prior stroke | 4 (13.3) | 53 (6.4) | 0.13 |
Prior myocardial infarction | 11 (36.7) | 235 (28.4) | 0.32 |
Prior revascularization | |||
Percutaneous coronary intervention | 7 (23.3) | 150 (18.1) | 0.45 |
Coronary artery bypass surgery | 0 (0.0) | 34 (4.1) | |
Both percutaneous coronary intervention and coronary artery bypass surgery | 0 (0.0) | 27 (3.3) | |
Killip class on admission: | |||
I | 19 (63.3) | 665 (80.0) | 0.024 |
II | 5 (16.7) | 101 (12.2) | |
III | 1 (3.3) | 29 (3.5) | |
IV | 5 (16.7) | 35 (4.2) | |
Left ventricular ejection fraction | 45 (30–55) | 50 (40–55) | 0.14 |
Clinical presentation | |||
NSTEMI | 20 (64.5) | 554 (66.7) | 0.80 |
STEMI | 11 (35.5) | 277 (33.3) | |
Laboratory tests on admission | |||
Troponin T, ng/mL | 0.426 (0.043–1.88) | 0.106 (0.029–0.382) | 0.003 |
Creatine kinase, IU/L | 239 (159–711) | 177 (106–368) | 0.07 |
Isoenzyme MB of creatine kinase, IU/L | 32 (22–92) | 21 (15–40) | 0.006 |
Sodium, mEq/L | 132 (130–133) | 140 (138–142) | <0.001 |
Potassium, mEq/L | 4.2 (3.8–4.8) | 4.1 (3.8–4.5) | 0.89 |
Hemoglobin, g/dL | 12.9 (11.5–14.1) | 14.1 (12.9–15) | 0.001 |
Hematocrit, % | 38 (34–42) | 42 (39–45) | <0.001 |
White blood cells, ×103/µL | 10.7 (8.6–15) | 9.2 (7.4–11.7) | 0.014 |
Platelet count, ×103/µL | 248 (179–286) | 221 (184–270) | 0.46 |
Glucose, mmol/L | 9.9 (5.7–14.9) | 6.8 (5.8–8.9) | 0.012 |
Creatinine, µmol/L | 112 (80–140) | 88 (76–103) | 0.007 |
Glomerular filtration rate, mL/min | 47 (34–79) | 71 (58–86) | <0.001 |
Total cholesterol, mmol/L | 4.1 (3.2–5.6) | 4.4 (3.6–5.3) | 0.31 |
LDL cholesterol, mmol/L | 2.2 (1.6–3.2) | 2.6 (1.7–3.4) | 0.64 |
HDL cholesterol, mmol/L | 1.1 (0.9–1.5) | 1.3 (1–1.7) | 0.23 |
Triglycerides, mmol | 1.2 (0.8–2) | 1.3 (0.9–1.7) | 0.79 |
Medications on discharge | |||
Aspirin | 31 (100.0) | 831 (100.0) | 1.00 |
P2Y12 inhibitor | 30 (96.8) | 828 (99.6) | 0.83 |
ACE-I | 21 (72.4) | 669 (80.6) | 0.28 |
Beta-adrenolytic | 27 (93.1) | 743 (89.5) | 0.53 |
Statin | 27 (90.0) | 775 (93.4) | 0.47 |
Loop diuretic | 9 (29.0) | 194 (23.3) | 0.67 |
Hyponatremia N = 31 | Non-Hyponatremia N = 831 | p-Value | |
---|---|---|---|
Infarct-related artery: | |||
Left main | 3 (9.7) | 31 (3.7) | 0.10 |
Left anterior descending/diagonal branch | 10 (32.3) | 269 (34.4) | |
Left circumflex/marginal branch | 4 (12.9) | 175 (21.1) | |
Right coronary artery | 14 (45.2) | 279 (33.6) | |
Undetermined | 0 (0.0) | 77 (9.3) | |
Diagnosis of MINOCA | 0 (0.0) | 66 (7.9) | 0.10 |
Treatment: | |||
Primary percutaneous coronary intervention | 27 (87.1) | 674 (81.1) | 0.56 |
Coronary artery bypass surgery | 0 (0.0) | 22 (2.7) | |
Conservative | 4 (12.9) | 135 (16.3) |
Independent Variable | Univariable Model | Multivariable Model | ||||
---|---|---|---|---|---|---|
Beta | 95% CI for Beta | p-Value | Beta | 95% CI for Beta | p-Value | |
Sex, female vs. male | 0.094 | 0.028–0.160 | 0.006 | 0.061 | −0.014–0.124 | 0.117 |
Hematocrit, per 1% | 0.181 | 0.116–0.248 | <0.001 | 0.138 | 0.070–0.206 | <0.001 |
Creatinine, per 1 µmol/L | −0.129 | −0.204–−0.074 | <0.001 | −0.104 | −0.173–−0.035 | 0.002 |
Isoenzyme MB of creatine kinase, per 1 IU/L | −0.147 | −0.208–−0.083 | <0.001 | −0.111 | −0.178–−0.044 | <0.001 |
Glucose, per 1 mmol/L | −0.289 | −0.354–−0.223 | <0.001 | −0.248 | −0.314–−0.181 | <0.001 |
Independent Variable | Univariable Model | Multivariable Model | ||||
---|---|---|---|---|---|---|
HR | 95% CI for HR | p-Value | HR | 95% CI for HR | p-Value | |
Age, per 1 year | 1.058 | 1.046–1.071 | <0.001 | 1.046 | 1.033–1.059 | <0.001 |
Impaired renal function, no vs. yes | 2.616 | 2.006–3.412 | <0.001 | 1.307 | 0.974–1.752 | 0.074 |
LVEF, per 1% | 0.948 | 0.939–0.957 | <0.001 | 0.967 | 0.956–0.977 | <0.001 |
Killip class, per 1 class | 2.271 | 2.019–2.555 | <0.001 | 1.677 | 1.426–1.971 | <0.001 |
Hyponatremia, no vs. yes | 2.734 | 1.693–4.415 | <0.001 | 2.222 | 1.309–3.773 | 0.003 |
Hemoglobin, per 1 g/dL | 0.787 | 0.751–0.826 | <0.001 | 0.825 | 0.778–0.876 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliasz, K.; Stępień, K.; Wojtylak, M.; Andrasz, O.; Majka, K.; Mazurek, G.; Horosin, G.; Plizga, J.; Nowak, K.; Krawczyk, K.; et al. Long-Term Clinical Relevance of Hyponatremia Identified During Acute Phase of Myocardial Infarction. J. Clin. Med. 2025, 14, 962. https://doi.org/10.3390/jcm14030962
Eliasz K, Stępień K, Wojtylak M, Andrasz O, Majka K, Mazurek G, Horosin G, Plizga J, Nowak K, Krawczyk K, et al. Long-Term Clinical Relevance of Hyponatremia Identified During Acute Phase of Myocardial Infarction. Journal of Clinical Medicine. 2025; 14(3):962. https://doi.org/10.3390/jcm14030962
Chicago/Turabian StyleEliasz, Karolina, Konrad Stępień, Maja Wojtylak, Oliwia Andrasz, Katarzyna Majka, Gabriela Mazurek, Grzegorz Horosin, Jakub Plizga, Karol Nowak, Krzysztof Krawczyk, and et al. 2025. "Long-Term Clinical Relevance of Hyponatremia Identified During Acute Phase of Myocardial Infarction" Journal of Clinical Medicine 14, no. 3: 962. https://doi.org/10.3390/jcm14030962
APA StyleEliasz, K., Stępień, K., Wojtylak, M., Andrasz, O., Majka, K., Mazurek, G., Horosin, G., Plizga, J., Nowak, K., Krawczyk, K., Podolec, M., Nessler, J., & Zalewski, J. (2025). Long-Term Clinical Relevance of Hyponatremia Identified During Acute Phase of Myocardial Infarction. Journal of Clinical Medicine, 14(3), 962. https://doi.org/10.3390/jcm14030962