Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marmor, M.T.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Braun, B.J. Use of Wearable Technology to Measure Activity in Orthopaedic Trauma Patients: A Systematic Review. Indian J. Orthop. 2022, 56, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.J.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Marmor, M.T. Wearable technology in orthopedic trauma surgery—An AO trauma survey and review of current and future applications. Injury 2022, 53, 1961–1965. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.J.; Grimm, B.; Hanflik, A.M.; Marmor, M.T.; Richter, P.H.; Sands, A.K.; Sivananthan, S. Finding NEEMO: Towards organizing smart digital solutions in orthopaedic trauma surgery. EFORT Open Rev. 2020, 5, 408–420. [Google Scholar] [CrossRef]
- Braun, B.J.; Histing, T.; Menger, M.M.; Platte, J.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Gueorguiev, B.; et al. “Bring Your Own Device”—A New Approach to Wearable Outcome Assessment in Trauma. Medicina 2023, 59, 403. [Google Scholar] [CrossRef]
- Karas, M.; Marinsek, N.; Goldhahn, J.; Foschini, L.; Ramirez, E.; Clay, I. Predicting subjective recovery from lower limb surgery using consumer wearables. Digit. Biomark. 2020, 4, 73–86. [Google Scholar] [CrossRef]
- Braun, B.J.; Histing, T.; Menger, M.M.; Herath, S.C.; Mueller-Franzes, G.A.; Grimm, B.; Marmor, M.T.; Truhn, D. Wearable activity data can predict functional recovery after musculoskeletal injury: Feasibility of a machine learning approach. Injury 2024, 55, 111254. [Google Scholar] [CrossRef] [PubMed]
- Larose, G.; Roffey, D.M.; Broekhuyse, H.M.; Guy, P.; O’Brien, P.; Lefaivre, K.A. Trajectory of Recovery following ORIF for Distal Radius Fractures. J. Wrist Surg. 2023, 13, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.L.G.; Jayakumar, P.; Laverty, D.; Hill, A.D.; Koenig, K.M. Patient-reported outcome measures and patient activation: What are their roles in orthopedic trauma? J. Orthop. Trauma 2019, 33, S38–S42. [Google Scholar] [CrossRef]
- Gregory, J.J.; Werth, P.M.; Reilly, C.A.; Lucas, A.P.; Bessen, S.Y.; Rode, J.B.; Morrissey, J.A.; Sparks, M.B.; Jevsevar, D.S.; Gitajn, I.L. Trajectory of Recovery in PROMIS Global Physical Health After Surgical Fracture Fixation. JAAOS-J. Am. Acad. Orthop. Surg. 2022, 30, e434–e443. [Google Scholar] [CrossRef]
- Halm-Pozniak, A.; Lohmann, C.H.; Zagra, L.; Braun, B.; Gordon, M.; Grimm, B. Best practice in digital orthopaedics. EFORT Open Rev. 2023, 8, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Youssef, Y.; De Wet, D.; Back, D.A.; Scherer, J. Digitalization in orthopaedics: A narrative review. Front. Surg. 2024, 10, 1325423. [Google Scholar] [CrossRef]
- Constantinescu, D.; Pavlis, W.; Rizzo, M.; Berge, D.V.; Barnhill, S.; Hernandez, V.H. The role of commercially available smartphone apps and wearable devices in monitoring patients after total knee arthroplasty: A systematic review. EFORT Open Rev. 2022, 7, 481–490. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ram, P.R.; Jeyaraman, N.; Ramasubramanian, S.; Shyam, A. The Era of Digital Orthopedics: A Bone or Bane? J. Orthop. Case Rep. 2024, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Chan, D.; Lee, H.; Ng, C.C.; Yeo, A.H.L. Reporting adherence, validity and physical activity measures of wearable activity trackers in medical research: A systematic review. Int. J. Med. Inform. 2022, 160, 104696. [Google Scholar] [CrossRef] [PubMed]
- Framingham, M. IDC Reports Strong Growth in the Worldwide Wearables Market, Led by Holiday Shipments of Smartwatches, Wrist Bands, and Ear-Worn Devices; IDC: Needham, MA, USA, 2019. [Google Scholar]
- Andone, I.; Błaszkiewicz, K.; Eibes, M.; Trendafilov, B.; Montag, C.; Markowetz, A. How age and gender affect smartphone usage. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 9–12. [Google Scholar]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Onyeaka, H.K.; Romero, P.; Healy, B.C.; Celano, C.M. Age Differences in the use of health information technology among adults in the united states: An analysis of the health information national trends survey. J. Aging Health 2021, 33, 147–154. [Google Scholar] [CrossRef]
- Savage, M.; Savage, L.C. Doctors routinely share health data electronically under HIPAA, and sharing with patients and patients’ third-party health apps is consistent: Interoperability and privacy analysis. J. Med. Internet Res. 2020, 22, e19818. [Google Scholar] [CrossRef]
- Rochester, L.; Mazzà, C.; Mueller, A.; Caulfield, B.; McCarthy, M.; Becker, C.; Miller, R.; Piraino, P.; Viceconti, M.; Dartee, W.P.; et al. A roadmap to inform development, validation and approval of digital mobility outcomes: The Mobilise-D approach. Digit. Biomark. 2020, 4, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Mikolaizak, A.S.; Rochester, L.; Maetzler, W.; Sharrack, B.; Demeyer, H.; Mazzà, C.; Caulfield, B.; Garcia-Aymerich, J.; Vereijken, B.; Arnera, V.; et al. Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–The Mobilise-D study protocol. PLoS ONE 2022, 17, e0269615. [Google Scholar] [CrossRef] [PubMed]
- Brittain, G.; Buckley, E.; Costa, G.D.; Martinis, M.; Chakraborty, S.; Stuerner, K.H.; Rothhammer, V.; Gassner, H.; Leocani, L.; Comi, G.; et al. Mobilise-D: The largest observational trial of digital mobility outcome measures in multiple sclerosis. J. Neurol. Sci. 2023, 455, 121059. [Google Scholar] [CrossRef]
- Natarajan, P.; Fonseka, R.D.; Maharaj, M.M.; Koinis, L.; Mobbs, R.J. Continuous data capture of gait and mobility metrics using wearable devices for postoperative monitoring in common elective orthopaedic procedures of the hip, knee, and spine: A scoping review. J. Orthop. Surg. Res. 2023, 18, 812. [Google Scholar] [CrossRef]
- Grimm, B.; Bolink, S. Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Rev. 2016, 1, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Schrøder, C.K.; Tønning, L.U.; Tjur, M.; Kristensen, P.K.; Mechlenburg, I. Reference Values for Daily Physical Activity Measured with Accelerometers in a Danish Background Population between 18 and 80 Years of Age. Appl. Sci. 2023, 13, 1443. [Google Scholar] [CrossRef]
- Zini, M.L.L.; Banfi, G. A narrative literature review of bias in collecting patient reported outcomes measures (PROMs). Int. J. Environ. Res. Public Health 2021, 18, 12445. [Google Scholar] [CrossRef]
- Patterson, J.T.; Duong, A.; Becerra, J.A.; Nakata, H. Feasibility of Capturing Orthopaedic Trauma Research Outcomes Using Personal Mobile Devices. JAAOS-J. Am. Acad. Orthop. Surg. 2023, 31, 212–217. [Google Scholar] [CrossRef] [PubMed]
Reason to Decline | Frequency (%) | Potentially Addressed By |
---|---|---|
Uninterested to participate in study | 21 | Continued patient education |
No smartphone/wearable available | 19 | Switch to dedicated device |
Technical difficulties to follow data transmission protocol | 15 | Low-maintenance workflow/minimal input data harvesting Continued patient education |
Does not know how to use own smartphone/wearable | 12 | Switch to dedicated device Continued patient education |
Unable to understand German language informed consent | 8 | Adaptation of study setup (i.e., translation service) |
Too many worries to focus on study | 7 | Continued patient education |
Data safety concerns | 6 | Patient education/data safety protocol |
Use of smartphone too rare/does not carry phone enough | 5 | Continued patient education Switch to dedicated device |
Unable to use wearable due to injury | 3 | Switch to dedicated device (outside zone of injury) |
Feels too old to participate | 2 | Continued patient education Switch to dedicated device |
Participation in another study | 1 | Adaptation of study setup (i.e., wearable study as adjunct) |
Does not want to spent unnecessary time on phone | 1 | Low-maintenance workflow/minimal input data harvesting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, B.J.; Hofmann, K.; Meierhofer, C.N.; Menger, M.M.; Maisenbacher, T.C.; Vogel, C.; Haas, D.; Marmor, M.T.; Histing, T.; Braun, E.-M.; et al. Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. J. Clin. Med. 2025, 14, 805. https://doi.org/10.3390/jcm14030805
Braun BJ, Hofmann K, Meierhofer CN, Menger MM, Maisenbacher TC, Vogel C, Haas D, Marmor MT, Histing T, Braun E-M, et al. Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. Journal of Clinical Medicine. 2025; 14(3):805. https://doi.org/10.3390/jcm14030805
Chicago/Turabian StyleBraun, Benedikt J., Kira Hofmann, Chiara N. Meierhofer, Maximilian M. Menger, Tanja C. Maisenbacher, Carolina Vogel, Dannik Haas, Meir T. Marmor, Tina Histing, Eva-Marie Braun, and et al. 2025. "Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery" Journal of Clinical Medicine 14, no. 3: 805. https://doi.org/10.3390/jcm14030805
APA StyleBraun, B. J., Hofmann, K., Meierhofer, C. N., Menger, M. M., Maisenbacher, T. C., Vogel, C., Haas, D., Marmor, M. T., Histing, T., Braun, E.-M., & The AO Smart Digital Solutions Task Force. (2025). Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. Journal of Clinical Medicine, 14(3), 805. https://doi.org/10.3390/jcm14030805