The Role of Untraceable Sentinel Lymph Nodes in Prostate Cancer Patients Undergoing Radical Prostatectomy and Pelvic Lymph Node Dissection: Insights from an Ongoing Prospective Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tilki, D.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Part II—2024 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2024, 86, 164–182. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, A.; Pfister, D.; Thüer, D.; Brehmer, B. Percentage of positive biopsies predicts lymph node involvement in men with low-risk prostate cancer undergoing radical prostatectomy and extended pelvic lymphadenectomy. BJU Int. 2011, 107, 220–225. [Google Scholar] [CrossRef]
- Venclovas, Z.; Jievaltas, M.; Milonas, D. Significance of Time Until PSA Recurrence After Radical Prostatectomy Without Neo- or Adjuvant Treatment to Clinical Progression and Cancer-Related Death in High-Risk Prostate Cancer Patients. Front. Oncol. 2019, 9, 1286. [Google Scholar] [CrossRef]
- Briganti, A.; Larcher, A.; Abdollah, F.; Capitanio, U.; Gallina, A.; Suardi, N.; Bianchi, M.; Sun, M.; Freschi, M.; Salonia, A.; et al. Updated Nomogram Predicting Lymph Node Invasion in Patients with Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection: The Essential Importance of Percentage of Positive Cores. Eur. Urol. 2012, 61, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Wawroschek, F.; Vogt, H.; Wengenmair, H.; Weckermann, D.; Hamm, M.; Keil, M.; Graf, G.; Heidenreich, P.; Harzmann, R. Prostate Lymphoscintigraphy and Radio-Guided Surgery for Sentinel Lymph Node Identification in Prostate Cancer. Urol. Int. 2003, 70, 303–310. [Google Scholar] [CrossRef]
- Wawroschek, F.; Vogt, H.; Weckermann, D.; Wagner, T.; Harzmann, R. The Sentinel Lymph Node Concept in Prostate Cancer —First Results of Gamma Probe-Guided Sentinel Lymph Node Identification. Eur. Urol. 1999, 36, 595–600. [Google Scholar] [CrossRef]
- Milonas, D.; Giesen, A.; Muilwijk, T.; Soenens, C.; Devos, G.; Venclovas, Z.; Briganti, A.; Gontero, P.; Karnes, R.J.; Chlosta, P.; et al. Risk of Cancer-related Death for Men with Biopsy Grade Group 1 Prostate Cancer and High-risk Features: A European Multi-institutional Study. Eur. Urol. Open Sci. 2024, 66, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Bitting, R.; Chapin, B.; Cheng, H.H.; D’aMico, A.V.; Desai, N.; Dorff, T.; et al. Prostate Cancer, Version 3.2024. J. Natl. Compr. Cancer Netw. 2024, 22, 140–150. [Google Scholar] [CrossRef]
- Musch, M.; Klevecka, V.; Roggenbuck, U.; Kroepfl, D. Complications of Pelvic Lymphadenectomy in 1380 Patients Undergoing Radical Retropubic Prostatectomy Between 1993 and 2006. J. Urol. 2008, 179, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Cornford, P.; Tilki, D. Oncological Benefits of Extended Pelvic Lymph Node Dissection: More Fog or Clarity to the Debate? Eur. Urol. 2025, 87, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Ah-Thiane, L.; Rousseau, C.; Aumont, M.; Cailleteau, A.; Doré, M.; Mervoyer, A.; Vaugier, L.; Supiot, S. The Sentinel Lymph Node in Treatment Planning: A Narrative Review of Lymph-Flow-Guided Radiotherapy. Cancers 2023, 15, 2736. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Huber, P.M.; Metzger, T.A.; Genitsch, V.; Schudel, H.H.; Thalmann, G.N. A Specific Mapping Study Using Fluorescence Sentinel Lymph Node Detection in Patients with Intermediate- and High-risk Prostate Cancer Undergoing Extended Pelvic Lymph Node Dissection. Eur. Urol. 2016, 70, 734–737. [Google Scholar] [CrossRef]
- Memorial Sloan Kettering Cancer Center. Pre-Radical Prostatectomy. Available online: https://www.mskcc.org/nomograms/prostate/pre_op (accessed on 18 September 2025).
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Joniau, S.; Van den Bergh, L.; Lerut, E.; Deroose, C.M.; Haustermans, K.; Oyen, R.; Budiharto, T.; Ameye, F.; Bogaerts, K.; Van Poppel, H. Mapping of Pelvic Lymph Node Metastases in Prostate Cancer. Eur. Urol. 2013, 63, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, W.; Valdés Olmos, R.A.; Van Der Poel, H.G.; Bex, A.; Horenblas, S. Laparoscopic sentinel node dissection for prostate carcinoma: Technical and anatomical observations. BJU Int. 2008, 102, 714–717. [Google Scholar] [CrossRef]
- Rousseau, C.; Rousseau, T.; Bridji, B.; Pallardy, A.; Lacoste, J.; Campion, L.; Testard, A.; Aillet, G.; Mouaden, A.; Curtet, C.; et al. Laparoscopic sentinel lymph node (SLN) versus extensive pelvic dissection for clinically localized prostate carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 291–299. [Google Scholar] [CrossRef]
- Muteganya, R.; Goldman, S.; Aoun, F.; Roumeguère, T.; Albisinni, S. Current Imaging Techniques for Lymph Node Staging in Prostate Cancer: A Review. Front. Surg. 2018, 5, 74. [Google Scholar] [CrossRef]
- Fumadó, L.; Abascal, J.M.; Mestre-Fusco, A.; Vidal-Sicart, S.; Aguilar, G.; Juanpere, N.; Cecchini, L. Sentinel Lymph Node Biopsy in Prostate Cancer Patients: Results from an Injection Technique Targeting the Index Lesion in the Prostate Gland. Front. Med. 2022, 9, 931867. [Google Scholar] [CrossRef] [PubMed]
- Brenot-Rossi, I.; Rossi, D.; Esterni, B.; Brunelle, S.; Chuto, G.; Bastide, C. Radioguided sentinel lymph node dissection in patients with localised prostate carcinoma: Influence of the dose of radiolabelled colloid to avoid failure of the procedure. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 32–38. [Google Scholar] [CrossRef]
- Daigle, R.; Staff, I.; Tortora, J.; Proto, T.M.; Pinto, K.; Negron, R.; Earle, J.; Wagner, J. Robotic-assisted super-extended pelvic lymph node dissection for prostate cancer: Safety and pathologic findings. Can. J. Urol. 2025, 32, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Ingvar, J.; Hvittfeldt, E.; Trägårdh, E.; Simoulis, A.; Bjartell, A. Assessing the accuracy of [18F]PSMA-1007 PET/CT for primary staging of lymph node metastases in intermediate- and high-risk prostate cancer patients. EJNMMI Res. 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Quan, Z.; Zhang, J.; Wen, W.; Qin, J.; Yang, L.; Meng, P.; Jing, Y.; Ma, S.; Wu, P.; et al. The Establishment of New Thresholds for PLND-Validated Clinical Nomograms to Predict Non-Regional Lymph Node Metastases: Using 68Ga-PSMA PET/CT as References. Front. Oncol. 2021, 11, 658669. [Google Scholar] [CrossRef]
- Hinsenveld, F.J.; Wit, E.M.K.; van Leeuwen, P.J.; Brouwer, O.R.; Donswijk, M.L.; Tillier, C.N.; Vegt, E.; van Muilekom, E.; van Oosterom, M.N.; van Leeuwen, F.W.; et al. Prostate-Specific Membrane Antigen PET/CT Combined with Sentinel Node Biopsy for Primary Lymph Node Staging in Prostate Cancer. J. Nucl. Med. 2020, 61, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Duin, J.J.; de Barros, H.A.; Donswijk, M.L.; Schaake, E.E.; van der Sluis, T.M.; Wit, E.M.K.; van Leeuwen, F.W.; van Leeuwen, P.J.; van der Poel, H.G. The Diagnostic Value of the Sentinel Node Procedure to Detect Occult Lymph Node Metastases in PSMA PET/CT Node–Negative Prostate Cancer Patients. J. Nucl. Med. 2023, 64, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Kiss, S.L.; Stanca, M.; Căpîlna, D.M.; Căpîlna, T.E.; Pop-Suciu, M.; Kiss, B.I.; Căpîlna, M.E. Sentinel Lymph Node Detection in Cer-vical Cancer: Challenges in Resource-Limited Settings with High Prevalence of Large Tumours. J. Clin. Med. 2025, 14, 1381. [Google Scholar] [CrossRef] [PubMed]
- James, T.A.; Coffman, A.R.; Chagpar, A.B.; Boughey, J.C.; Klimberg, V.S.; Morrow, M.; Giuliano, A.E.; Harlow, S.P. Troubleshooting Sentinel Lymph Node Biopsy in Breast Cancer Surgery. Ann. Surg. Oncol. 2016, 23, 3459–3466. [Google Scholar] [CrossRef] [PubMed]

| Parameter | All n = 53 | Gr1 41 (77.4) | Gr2 12 (22.6) | p Value |
|---|---|---|---|---|
| Age (years): median (IQR) | 63 (57–68) | 62 (57–66) | 67.5 (59–69) | 0.07 |
| PSA (ng/mL): median (IQR) | 9.3 (5.7–12.1) | 8.7 (5–11.4) | 11.3 (8.8–13.8) | 0.1 |
| Clinical stage: n, (%) | 0.2 | |||
| cT1 | 3 (5.6) | 3 (7.3) | - | |
| cT2a | 10 (18.9) | 7 (17.1) | 3 (25) | |
| cT2b | 8 (15.1) | 8 (16.5) | - | |
| cT2c | 11 (20.8) | 7 (17.1) | 4 (33.3) | |
| cT3 | 21 (39.6) | 16 (39) | 1 (8.3) | |
| Biopsy ISUP: n, (%) | 0.8 | |||
| 1 | 4 (7.5) | 3 (7.3) | 1 (8.3) | |
| 2 | 31 (58.5) | 24 (58.5) | 7 (58.3) | |
| 3 | 8 (15.1) | 8 (19.5) | - | |
| 4 | 9 (17) | 6 (14.6) | 3 (25) | |
| 5 | 1 (1.9) | - | 1 (8.3) | |
| % of positive biopsy: median (IQR) | 62.5 (39.2–90.8) | 62.5 (38.5–90.1) | 64.6 (42.5–96.1) | 0.7 |
| PSMA PET/CT testing (yes): n, (%) | 7 (13.2) | 5 (12.2) | 2 (16.7) | 0.7 |
| MSKCC preop. nomogram (%): median (IQR) | 15 (9–23) | 13 (9–23) | 20 (9.5–26.8) | 0.4 |
| Pathological ISUP: n, (%) | 0.8 | |||
| 1 | 1 (1.9) | 1 (2.4) | - | |
| 2 | 29 (54.7) | 22 (53.7) | 7 (58.3) | |
| 3 | 10 (18.9) | 7 (17.1) | 3 (25) | |
| 4 | 9 (17) | 7 (17.1) | 2 (16.7) | |
| 5 | 4 (7.5) | 4 (9.8) | - | |
| Pathologic stage: n, (%) | 0.3 | |||
| pT2 | 27 (50.9) | 23 (56.1) | 4 (33.3) | |
| pT3a | 19 (35.8) | 14 (34.1) | 5 (41.7) | |
| pT3b-pT4 | 7 (13.2) | 4 (9.8) | 3 (25) | |
| No. of removed LN: median (IQR) | 18 (13.5–22) | 19 (12.5–22.5) | 18 (16.25–20.5) | 0.8 |
| LNI: n, (%) | 10 (18.9) | 10 (24.4) | - | 0.016 |
| R1: n, (%) | 16 (30.2) | 12 (29.3) | 4 (33.3) | 0.8 |
| Activity of 99mTc-nanocolloid (MBq): median (IQR) | 169 (127.5–303.5) | 159 (125–303.5) | 193 (133.5–303.3) | 0.9 |
| BMI kg/m2: median (IQR) | 26.1 (25.4–27.5) | 26.4 (25.5–27.6) | 25.5 (24.9–27.2) | 0.2 |
| BCR: n, (%) | 17 (32.1) | 15 (36.6) | 2 (16.7) | 0.2 |
| Univariable Analysis | ||
|---|---|---|
| Predictors | Odds Ratio (95% CI) | p Value |
| Age | 0.9 (0.8–1.01) | 0.07 |
| PSA ng/mL | ||
| <10 | Reference | |
| 10–20 | 0.29 (0.07–1.18) | 0.084 |
| >20 | 1.15 (0.11–11.8) | 0.9 |
| BMI kg/m2 | ||
| <26 | Reference | |
| ≥26 | 2.4 (0.65–9) | 0.2 |
| 99mTc activation MBq | ||
| <200 | Reference | |
| ≥200 | 0.7 (0.2–2.58) | 0.6 |
| Clinical stage | ||
| T1–T2a | Reference | |
| T2b | 0.65 (0.2–2.5) | 0.9 |
| ≥T2c | 0.76 (0.17–3.44) | 0.72 |
| Biopsy ISUP | ||
| 1 | Reference | |
| 2 | 1.1 (0.1–12.7) | 0.91 |
| 3 | 0.9 (0.3–10.1) | 0.9 |
| 4 | 0.67 (0.05–9.4) | 0.77 |
| 5 | 0.6 (0.2–9.1) | 0.7 |
| % of positive cores | 0.99 (0.97–1.02) | 0.75 |
| PET/PSMA | ||
| No | Reference | 0.7 |
| Yes | 0.7 (0.12–4.13) | |
| MSKCC nomogram | 0.99 (0.95–1.04) | 0.73 |
| Pathological ISUP | ||
| 1 | Reference | |
| 2 | 1.3 (0.3–11.2) | 0.87 |
| 3 | 1.2 (0.4–10.1) | 0.56 |
| 4 | 0.72 (0.3–8.2) | 0.7 |
| 5 | 0.62 (0.31–7.2) | 0.73 |
| Pathological stage | ||
| T2 | Reference | |
| T3a | 0.49 (0.11–2.12) | 0.34 |
| ≥T3b | 0.23 (0.37–1.45) | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venclovas, Z.; Vajauskas, D.; Jarusevicius, P.; Sasnauskas, G.; Ruzgas, T.; Jievaltas, M.; Milonas, D. The Role of Untraceable Sentinel Lymph Nodes in Prostate Cancer Patients Undergoing Radical Prostatectomy and Pelvic Lymph Node Dissection: Insights from an Ongoing Prospective Study. J. Clin. Med. 2025, 14, 8852. https://doi.org/10.3390/jcm14248852
Venclovas Z, Vajauskas D, Jarusevicius P, Sasnauskas G, Ruzgas T, Jievaltas M, Milonas D. The Role of Untraceable Sentinel Lymph Nodes in Prostate Cancer Patients Undergoing Radical Prostatectomy and Pelvic Lymph Node Dissection: Insights from an Ongoing Prospective Study. Journal of Clinical Medicine. 2025; 14(24):8852. https://doi.org/10.3390/jcm14248852
Chicago/Turabian StyleVenclovas, Zilvinas, Donatas Vajauskas, Paulius Jarusevicius, Gustas Sasnauskas, Tomas Ruzgas, Mindaugas Jievaltas, and Daimantas Milonas. 2025. "The Role of Untraceable Sentinel Lymph Nodes in Prostate Cancer Patients Undergoing Radical Prostatectomy and Pelvic Lymph Node Dissection: Insights from an Ongoing Prospective Study" Journal of Clinical Medicine 14, no. 24: 8852. https://doi.org/10.3390/jcm14248852
APA StyleVenclovas, Z., Vajauskas, D., Jarusevicius, P., Sasnauskas, G., Ruzgas, T., Jievaltas, M., & Milonas, D. (2025). The Role of Untraceable Sentinel Lymph Nodes in Prostate Cancer Patients Undergoing Radical Prostatectomy and Pelvic Lymph Node Dissection: Insights from an Ongoing Prospective Study. Journal of Clinical Medicine, 14(24), 8852. https://doi.org/10.3390/jcm14248852

