Comparative Analysis of Two-Lead DX-Based CRT Versus Conventional Three-Lead CRT-D: Results from a Single-Center Prospective Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Screening and Enrollment
3.2. Clinical and Echocardiographic Results
3.3. Device Data and Leads Performance
4. Discussion
4.1. Feasibility and Applicability of the DX Technology in CRT Recipients
4.2. Clinical Endpoints
4.3. CRT Delivery
4.4. Ecocardiographic Response
4.5. Arrhythmic Events
4.6. Leads’ Performance
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3L | Traditional three leads CRT |
| A | Atrial |
| ACEi | Angiotensin converting enzyme inhibitor |
| AF | Atrial fibrillation |
| ARB | Angiotensin receptor blocker |
| ARNI | Angiotensin Receptor–Neprilysin Inhibitor |
| AVB | Atrioventricular block |
| BMI | Body mass index |
| CKD | Chronic kidney disease |
| CMP | Cardiomyopathy |
| COPD | Chronic obstructive pulmonary disease |
| CRT (-D) | Cardiac Resynchronization Therapy (with defibrillator) |
| CI | Confidence interval |
| DX | Two Leads CRT with DX system |
| EF | Ejection fraction |
| FFRWO | Far-field-R-wave oversensing |
| GUCH | Grown Up Congenital Heart |
| HD | Heart disease |
| HF | Heart failure |
| HFrEF | HF with reduced ejection fraction |
| HR | Heart rate/Hazard ratio |
| IVCD | Intraventricular conduction delay |
| LAFB | Left anterior fascicular block |
| LBBB | Left bundle branch block |
| LV | Left ventricle |
| LVAD | Left Ventricular Assist Device |
| LVEDV | Left ventricular end diastolic volume |
| LVEF | Left ventricular ejection fraction |
| LVESV | Left ventricular end-systolic volume |
| LVESV(i) | Left ventricular end-systolic volume (indexed) |
| MRA | Mineralocorticoid receptor inhibitors |
| OR | Odds ratio |
| PAD | Peripheral artery disease |
| Q-LV | QRS–LV sensing time interval |
| RBBB | Right bundle branch block |
| RV | Right ventricle |
| RV-LV | Right ventricle–Left ventricle sensing interval |
| SSS | Sick sinus syndrome |
| SVT | Supraventricular tachycardia |
| TIA | Transient ischemic attack |
| Tx | Transplant |
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Abraham, W.T.; Fisher, W.G.; Smith, A.L.; Delurgio, D.B.; Leon, A.R.; Loh, E.; Kocovic, D.Z.; Packer, M.; Clavell, A.L.; Hayes, D.L.; et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 2002, 346, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Bristow, M.R.; Saxon, L.A.; Boehmer, J.; Krueger, S.; Kass, D.A.; De Marco, T.; Carson, P.; DiCarlo, L.; DeMets, D.; White, B.G.; et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 2004, 350, 2140–2150. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.F.; Daubert, J.-C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Tavazzi, L.; Poole-Wilson, P.A.; Rydén, L.; Wedel, H.; et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A., III; Foster, E.; Greenberg, H.M.; Higgins, S.L.; et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009, 361, 1329–1338. [Google Scholar] [CrossRef]
- Tang, A.S.L.; Wells, G.A.; Talajic, M.; Arnold, M.O.; Sheldon, R.; Connolly, S.; Hohnloser, S.H.; Nichol, G.; Birnie, D.H.; Sapp, J.L.; et al. Cardiac-Resynchronization Therapy for Mild-to-Moderate Heart Failure. N. Engl. J. Med. 2010, 363, 2385–2395. [Google Scholar] [CrossRef]
- Koneru, J.N.; Jones, P.W.; Hammill, E.F.; Wold, N.; Ellenbogen, K.A. Risk Factors and Temporal Trends of Complications Associated With Transvenous Implantable Cardiac Defibrillator Leads. J. Am. Heart Assoc. 2018, 7, e007691. [Google Scholar] [CrossRef]
- Borleffs, C.J.W.; van Erven, L.; van Bommel, R.J.; van der Velde, E.T.; van der Wall, E.E.; Bax, J.J.; Rosendaal, F.R.; Schalij, M.J. Risk of failure of transvenous implantable cardioverter-defibrillator leads. Circ. Arrhythm. Electrophysiol. 2009, 2, 411–416. [Google Scholar] [CrossRef]
- Barca, L.; Mascia, G.; Di Donna, P.; Sartori, P.; Bianco, D.; Della Bona, R.; Benenati, S.; Merlo, A.C.; Buongiorno, A.L.; Kaufman, N.; et al. Long-Term Outcomes of Transvenous Lead Extraction: A Comparison in Patients with or without Infection from the Italian Region with the Oldest Population. J. Clin. Med. 2023, 12, 4543. [Google Scholar] [CrossRef]
- Biffi, M.; Massaro, G.; Candelora, A.; Angeletti, A.; Valzania, C.; Martignani, C.; Grassini, D.; Diemberger, I.; Ziacchi, M. Less is more: Can we achieve cardiac resynchronization with 2 leads only? Int. J. Cardiol. 2017, 249, 184–190. [Google Scholar] [CrossRef]
- Shaik, N.A.; Drucker, M.; Pierce, C.; Duray, G.Z.; Gillett, S.; Miller, C.; Harrell, C.; Thomas, G. Novel two-lead cardiac resynchronization therapy system provides equivalent CRT responses with less complications than a conventional three-lead system: Results from the QP ExCELs lead registry. J. Cardiovasc. Electrophysiol. 2020, 31, 1784–1792. [Google Scholar] [CrossRef]
- Sticherling, C.; Zabel, M.; Spencker, S.; Meyerfeldt, U.; Eckardt, L.; Behrens, S.; Niehaus, M. Comparison of a novel, single-lead atrial sensing system with a dual-chamber implantable cardioverter-defibrillator system in patients without antibradycardia pacing indications: Results of a randomized study. Circ. Arrhythm. Electrophysiol. 2011, 4, 56–63. [Google Scholar] [CrossRef]
- Thomas, G.; Choi, D.Y.; Doppalapudi, H.; Richards, M.; Iwai, S.; Daoud, E.G.; Houmsse, M.; Kanagasundram, A.N.; Mainigi, S.K.; Lubitz, S.A.; et al. Subclinical atrial fibrillation detection with a floating atrial sensing dipole in single lead implantable cardioverter-defibrillator systems: Results of the SENSE trial. J. Cardiovasc. Electrophysiol. 2019, 30, 1994–2001. [Google Scholar] [CrossRef]
- Biffi, M.; Statuto, G.; Calvi, V.; Iori, M.; De Maria, E.; Bolognesi, M.G.; Golcca, G.; Notarangelo, F.; Carinci, V.; Ammendola, E.; et al. Inappropriate therapies in modern implantable cardioverter-defibrillators: A propensity score-matched comparison between single- and dual-chamber discriminators in single-chamber devices THe sINGle lead Study (THINGS Study). Heart Rhythm. 2025, 22, e141–e148. [Google Scholar] [CrossRef]
- Biffi, M.; Iori, M.; De Maria, E.; Bolognesi, M.G.; Golcca, G.; Notarangelo, F.; Carinci, V.; Ammendola, E.; Biffi, G.; Statuto, G.; et al. The role of atrial sensing for new-onset atrial arrhythmias diagnosis and management in single-chamber implantable cardioverter-defibrillator recipients: Results from the THINGS registry. J. Cardiovasc. Electrophysiol. 2020, 31, 846–853. [Google Scholar] [CrossRef]
- Palmisano, P.; Parlavecchio, A.; Vetta, G.; Crea, P.; Guido, A.; Accogli, M.; Coluccia, G.; Senes, J.; Bartoli, L.; Patti, G.; et al. Spontaneous Sinus Rhythm Restoration in Patients With Refractory, Permanent Atrial Fibrillation Who Underwent Conduction System Pacing and Atrioventricular Junction Ablation. Am. J. Cardiol. 2023, 209, 76–84. [Google Scholar] [CrossRef]
- Singh, J.P.; Rinaldi, C.A.; Sanders, P.; Kubo, S.H.; James, S.; Niazi, I.K.; Betts, T.; Butter, C.; Okabe, T.; Cunnane, R.; et al. Leadless Ultrasound-Based Cardiac Resynchronization System in Heart Failure. JAMA Cardiol. 2024, 9, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Ypenburg, C.; van Bommel, R.J.; Borleffs, C.J.W.; Bleeker, G.B.; Boersma, E.; Schalij, M.J.; Bax, J.J. Long-Term Prognosis After Cardiac Resynchronization Therapy Is Related to the Extent of Left Ventricular Reverse Remodeling at Midterm Follow-Up. JACC 2009, 53, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Bax, J.J.; Gorcsan, J. Echocardiography and Noninvasive Imaging in Cardiac Resynchronization Therapy. JACC 2009, 53, 1933–1943. [Google Scholar] [CrossRef]
- Biffi, M.; de Zan, G.; Massaro, G.; Angeletti, A.; Martignani, C.; Boriani, G. Is ventricular sensing always right, when it is left? Clin. Cardiol. 2018, 41, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Sticherling, C.; Ellenbogen, K.A.; Burri, H. Stepping back for good reasons: A reappraisal of the DF-1 connector for defibrillator leads. Europace 2024, 26, euae057. [Google Scholar] [CrossRef]
- Kolb, C.; Zima, E.; Arnold, M.; Fedorco, M.; Bonnemeier, H.; Deneke, T.; Schumacher, B.; Nordbeck, P.; Steinwender, C.; Storz, T.; et al. Biventricular Cardiac Resynchronization Therapy with Atrial Sensing but No Atrial Lead: A Prospective Registry of Patients, Complications, and Therapy Responses. J. Clin. Med. 2025, 14, 5009. [Google Scholar] [CrossRef]
- Wilkoff, B.L.; Filippatos, G.; Leclercq, C.; Gold, M.R.; Hersi, A.S.; Kusano, K.; Mullens, W.; Gerritse, B.; van Wel, J.; Gerasimos, F.; et al. Adaptive versus conventional cardiac resynchronisation therapy in patients with heart failure (AdaptResponse): A global, prospective, randomised controlled trial. Lancet 2023, 402, 1147–1157. [Google Scholar] [CrossRef]
- Sieniewicz, B.J.; Gould, J.; Porter, B.; Sidhu, B.S.; Teall, T.; Webb, J.; Carr-White, G.; Rinaldi, C.A. Understanding non-response to cardiac resynchronisation therapy: Common problems and potential solutions. Heart Fail Rev. 2019, 24, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Biffi, M.; D’Onofrio, A.; Pignalberi, C.; Pisanò, E.C.; Iacopino, S.; Curnis, A.; Senatore, G.; Capucci, A.; Della Bella, P.; Calvi, V.; et al. Rate-responsive pacing and atrial high rate episodes in cardiac resynchronization therapy patients: Is low heart rate the key? Clin. Cardiol. 2019, 42, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Deferm, S.; Bertrand, P.B.; Verbrugge, F.H.; Ramaekers, J.; Verhaert, D.; Dupont, M.; Vandervoort, P.M.; Mullens, W. The Detrimental Effect of RA Pacing on LA Function and Clinical Outcome in Cardiac Resynchronization Therapy. JACC Cardiovasc. Imaging 2020, 13, 895–906. [Google Scholar] [CrossRef]
- Kronborg, M.B.; Frausing, M.H.J.P.; Malczynski, J.; Riahi, S.; Haarbo, J.; Fiedler Holm, K.; Larroudé, C.E.; Albertsen, A.E.; Svendstrup, L.; Hintze, U.; et al. Atrial pacing minimization in sinus node dysfunction and risk of incident atrial fibrillation: A randomized trial. Eur. Heart J. 2023, 44, 4246–4255. [Google Scholar] [CrossRef] [PubMed]
- Dichtl, W.; De Sousa, J.; Rubin Lopez, J.M.; Garcia Campo, E.; Gutleben, K.-J.; Poezevara, Y.; Probst, V. Low rates of inappropriate shocks in contemporary real-world implantable cardioverter defibrillator patients: The CARAT observational study. Europace 2023, 25, euad186. [Google Scholar] [CrossRef]
- Bongiorni, M.G.; Kennergren, C.; Butter, C.; Deharo, J.C.; Kutarski, A.; Rinaldi, C.A.; Romano, S.L.; Maggioni, A.P.; Andarala, M.; Auricchio, A.; et al. The European Lead Extraction ConTRolled (ELECTRa) study: A European Heart Rhythm Association (EHRA) Registry of Transvenous Lead Extraction Outcomes. Eur. Heart J. 2017, 38, 2995–3005. [Google Scholar] [CrossRef]
- Knops, R.E.; Nordkamp, L.R.A.O.; Delnoy, P.-P.H.M.; Boersma, L.V.A.; Kuschyk, J.; El-Chami, M.F.; Bonnemeier, H.; Behr, E.R.; Brouwer, T.F.; Kääb, S.; et al. Subcutaneous or Transvenous Defibrillator Therapy. N. Engl. J. Med. 2020, 383, 526–536. [Google Scholar] [CrossRef]
- Kurt, M.; Jathanna, N.; Babady, M.; Schmidt, J.; Müller, P.; Gerguri, S.; Clasen, L.; Bejinariu, A.; Kelm, M.; Fürnkranz, A.; et al. Avoiding inappropriate therapy of single-lead implantable cardioverter-defibrillator by using atrial-sensing electrodes. J. Cardiovasc. Electrophysiol. 2018, 29, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Worden, N.E.; Alqasrawi, M.; Mazur, A. Long-Term Stability and Clinical Utility of Amplified Atrial Electrograms in a Single-Lead ICD System with Floating Atrial Electrodes. Pacing Clin. Electrophysiol. 2016, 39, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Oosterwerff, E.F.J.; Theuns, D.A.M.J.; Maass, A.H.; van Erven, L. Remarkably high and accelerating failure rate of a widely used implantable cardioverter-defibrillator lead: A large-scale manufacturer-independent multicenter study with long accurate follow-up. Heart Rhythm. O2 2024, 5, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Schuchert, A.; Muto, C.; Maounis, T.; Frank, R.; Boulogne, E.; Polauck, A.; Padeletti, L. MASCOT study group. Lead complications, device infections, and clinical outcomes in the first year after implantation of cardiac resynchronization therapy-defibrillator and cardiac resynchronization therapy-pacemaker. Europace 2013, 15, 71–76. [Google Scholar] [CrossRef]
- Kirkfeldt, R.E.; Johansen, J.B.; Nohr, E.A.; Jørgensen, O.D.; Nielsen, J.C. Complications after cardiac implantable electronic device implantations: An analysis of a complete, nationwide cohort in Denmark. Eur. Heart J. 2014, 35, 1186–1194. [Google Scholar] [CrossRef]
- Köbe, J.; Andresen, D.; Maier, S.; Stellbrink, C.; Kleemann, T.; Gonska, B.-D.; Reif, S.; Hochadel, M.; Senges, J.; Eckardt, L. Complications and 1-year benefit of cardiac resynchronization therapy in patients over 75 years of age—Insights from the German Device Registry. Int. J. Cardiol. 2017, 228, 784–789. [Google Scholar] [CrossRef]
- Krahn, A.D.; Longtin, Y.; Philippon, F.; Birnie, D.H.; Manlucu, J.; Angaran, P.; Rinne, C.; Coutu, B.; Low, R.A.; Essebag, V.; et al. Prevention of Arrhythmia Device Infection Trial: The PADIT Trial. J. Am. Coll. Cardiol. 2018, 72, 3098–3109. [Google Scholar] [CrossRef]
- Santini, M.; Di Fusco, S.A.; Santini, A.; Magris, B.; Pignalberi, C.; Aquilani, S.; Colivicchi, F.; Gargaro, A.; Ricci, R.P. Prevalence and predictor factors of severe venous obstruction after cardiovascular electronic device implantation. Europace 2016, 18, 1220–1226. [Google Scholar] [CrossRef]



| All (n = 211) | DX (n = 98) | 3L (n = 113) | p Value | |
|---|---|---|---|---|
| Age (years) | 66.4 ± 1.5 | 65.5 ± 1.1 | 67.2 ± 1.1 | 0.28 |
| Female % | 30.3 | 29.5 | 30.9 | 0.82 |
| BMI (Kg/m2) | 27.0 ± 0.3 | 27.3 ± 0.5 | 26.7 ± 0.4 | 0.37 |
| NYHA class I-II, n (%) | 138 (65%) | 68 (69%) | 70 (62%) | 0.25 |
| Underlying HD n (%) | ||||
| Ischemic post-MI HD | 43 (20) | 21 (21) | 22 (19) | 0.69 |
| Ischemic HD | 12 (6) | 3 (3) | 9 (8) | 0.15 |
| Hypertrophic HD | 11 (5) | 4 (4) | 7 (6) | 0.55 |
| Valvular HD | 16 (8) | 8 (8) | 8 (7) | 0.75 |
| Dilated CMP | 112 (53) | 53 (54) | 59 (52) | 0.73 |
| Other * | 14 (7) | 8 (8) | 6 (5) | 0.40 |
| Diabetes n (%) | 61 (29) | 29 (30) | 32 (28) | 0.83 |
| Insulin-dependent | 19 (9) | 10 (10) | 9 (8) | 0.57 |
| Creatinine (mg/dL) | 1.18 ± 0.5 | 1.19 ± 0.7 | 1.18 ± 0.4 | 0.87 |
| COPD, % | 28 (13) | 13 (13) | 15 (13) | 0.99 |
| Stroke/TIA/PAD n (%) | 15 (7) | 4 (4) | 11 (10) | 0.11 |
| History of AF, n (%) | 51 (24) | 24 (25) | 27 (24) | 0.92 |
| History of AVB, n (%) | ||||
| I° AVB | 45 (21) | 16 (16) | 29 (26) | 0.09 |
| II° AVB | 11 (5) | 4 (4) | 7 (6) | 0.48 |
| III° AVB | 3 (1) | 1 (1) | 2 (2) | 1 |
| HR (bpm) | 65 ± 13 | 66 ± 15 | 65 ± 12 | 0.37 |
| QRS duration (ms) | 159 ± 17 | 160 ± 18 | 159 ± 17 | 0.75 |
| LBBB | 143 (68) | 75 (77) | 68 (60) | 0.01 |
| RBBB | 6 (3) | 3 (3) | 3 (3) | 0.84 |
| LAFB | 16 (8) | 4 (4) | 12 (11) | 0.08 |
| RBBB + LAFB | 16 (8) | 5 (5) | 11 (10) | 0.22 |
| IVCD | 33 (16) | 11 (11) | 22 (19) | 0.11 |
| EF (%) | 30 ± 6 | 29 ± 6 | 30 ± 6 | 0.37 |
| LVESV (mL) | 140 ± 3.4 | 149 ± 5.5 | 133 ± 4.1 | 0.02 |
| LVESV(i) (mL/m2) | 73 ± 1.8 | 77.1 ± 2.8 | 68.5 ± 2.3 | 0.04 |
| Medical therapy (n, %) | ||||
| Beta blockers | 186 (88) | 87 (89) | 99 (88) | 0.76 |
| ARNI, ARB, ACEi | 183 (87) | 85 (88) | 98 (88) | 0.98 |
| SGLT2i | 46 (22) | 25 (26) | 21 (19) | 0.22 |
| MRA | 133 (63) | 64 (66) | 69 (62) | 0.51 |
| Loop diuretic | 166 (79) | 75 (77) | 91 (81) | 0.48 |
| Antiarrhythmic drugs | 38 (18) | 12 (12) | 26 (23) | 0.04 |
| All | DX | 3L | p Value | |
|---|---|---|---|---|
| Primary clinical endpoint at 1 year (%) | 34 (16.1) | 13 (13.4) | 23 (20.3) | 0.23 |
| Primary clinical endpoint last follow-up (%) | 76 (36.1) | 31 (31.9) | 45 (39.8) | 0.24 |
| HF events (%) after 1 year | 20 (9.5) | 8 (8.2) | 12 (10.6) | 0.62 |
| HF events (%) last follow-up | 22 (10.5) | 10 (1.3) | 12 (10.6) | 0.95 |
| New AF (%) after 1 year | 12 (5.7) | 5 (5.2) | 7 (6.2) | 0.79 |
| New AF (%) at last follow-up | 25 (11.9) | 14 (14.4) | 11 (9.7) | 0.28 |
| Heart Tx/LVAD 1 (%) at 1 year | 4 (1.9) | 0 (0) | 4 (3.5) | 0.13 |
| Heart Tx/LVAD (%) at last fup | 10 (4.8) | 3 (3.1) | 7 (6.2) | 0.35 |
| Death for all causes (%) at 1 year | 8 (3.8) | 2 (2.1) | 6 (5.3) | 0.30 |
| Death for all causes (%) at last fup | 35 (16.7) | 14 (14.4) | 21 (18.6) | 0.45 |
| CV death (%) at 1 year | 5 (2.4) | 1 (1) | 4 (3.5) | 0.99 |
| CV death (%) at last follow-up | 19 (9) | 8 (8.2) | 11 (9.7) | 0.73 |
| Follow-up duration, months | 46.5 ± 1.9 | 49.6 ± 3.2 | 43.9 ± 2.2 | 0.14 |
| Composite Endpoint at Final Follow-Up | HR | 95% CI | p Value |
|---|---|---|---|
| DX group | 0.98 | 0.58–1.65 | 0.93 |
| LBBB | 0.64 | 0.35–1.15 | 0.14 |
| QRS duration | 1.00 | 0.98–1.01 | 0.73 |
| CKD | 2.52 | 1.56–4.09 | <0.001 |
| LV-only pacing | 0.96 | 0.54–1.68 | 0.88 |
| All | DX | 3L | p Value | |
|---|---|---|---|---|
| Echocardiographic responders 1 year FUP | ||||
| 80% | 88% | 75% | 0.02 |
| 75% | 81% | 70% | 0.08 |
| Echocardiographic responders Last FUP | ||||
| 75% | 78% | 71% | 0.39 |
| 71% | 75% | 67% | 0.42 |
| LVEDV mean variation 1 year FUP (mL) | −38.1 ± 4 | −53.2 ± 6.2 | −27 ± 5 | 0.01 |
| LVEDV mean variation last FUP (mL) | −46.1 ± 6.2 | −58.7 ± 9 | −33.7 ± 8.2 | 0.04 |
| LVESV mean variation 1 year FUP (mL) | −44 ± 3.6 | −62.4 ± 6.2 | −31 ± 4.2 | 0.001 |
| LVESV mean variation last FUP (mL) | −47.4 ± 5.6 | −58.7 ± 8.4 | −36.2 ± 7.4 | 0.04 |
| LVEF mean variation 1 year FUP (%) | 11.4 ± 0.74 | 14.1 ± 1 | 9.4 ± 1 | 0.001 |
| LVEF mean variation last FUP (%) | 11.57 ± 1 | 12.7 ± 1.6 | 10.4 ± 1.5 | 0.30 |
| Echocardiographic Response at 1 Year (−9.3% LVESV) | OR | 95% CI | p Value |
|---|---|---|---|
| DX group | 2.06 | 0.75–5.67 | 0.16 |
| LBBB | 5.77 | 2.16–15.4 | <0.01 |
| QRS duration | 1.00 | 0.98–1.03 | 0.75 |
| CKD | 0.32 | 0.13–0.78 | 0.01 |
| LV-only pacing | 1.40 | 0.51–3.81 | 0.88 |
| Baseline | Follow-up | |||||
|---|---|---|---|---|---|---|
| DX | 3L | p Value | DX | 3L | p Value | |
| A sensing (mV) | 6.3 ± 0.5 | 3.2 ± 0.52 | <0.01 | 5.6 ± 0.4 | 3.3 ± 0.2 | <0.01 |
| RV sensing (mV) | 16.8 ± 0.5 | 13.2 ± 0.65 | <0.01 | 15.5 ± 0.6 | 12.4 ± 0.6 | 0.03 |
| RV impedence (ohm) | 586 ± 13 | 543 ± 12 | 0.02 | 535 ± 13 | 453 ± 10 | 0.01 |
| RV threshold (V@0.4 ms) | 0.6 ± 0.3 | 0.8 ± 0.2 | 0.34 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.20 |
| LV impedence (ohm) | 611 ± 18 | 678 ± 23 | 0.03 | 625 ± 19 | 608 ± 16 | 0.50 |
| LV threshold (V@0.4 ms) | 1 ± 0.7 | 1 ± 0.5 | 0.69 | 1 ± 0.5 | 1.1 ± 0.5 | 0.18 |
| Q-LV (ms) | 123 ± 4.6 | 130 ± 6.4 | 0.32 | - | - | |
| RV-LV (ms) | 97 ± 5.1 | 99 ± 5.6 | 0.88 | - | - | |
| Tot. CRT delivered (%) | 94 ± 1.6 | 96 ± 1.5 | 0.30 | |||
| Biventricular | 36 ± 5.1 | 47 ± 4.8 | 0.10 | |||
| LV-only | 64 ± 5 | 50 ± 4.8 | 0.04 | |||
| AF burden (%) | 4.5 ± 1.9 | 5.2 ± 2.1 | 0.8 | |||
| Arrhyth. events n (%) | 4 (4.5) | 5 (4.8) | 0.93 | |||
| PVC counter (%) | 2.5 ± 0.5 | 2.2 ± 0.3 | 0.59 | |||
| A pacing (%) | 0 | 3.6 ± 1.2 | ||||
| All | DX | 3L | p Value | |
|---|---|---|---|---|
| Device/lead infections | 3 (1.4) | 1 (1) | 2 (1.8) | 0.56 |
| Lead failures: | ||||
| - Atrial lead/upgrade n (%) 1 year | 2 (1) | 0 | 2 (1.8) | 0.50 |
| - Atrial lead/upgrade n (%) last fup | 5 (2.4) | 2 (2.1) | 3 (2.7) | 0.99 |
| - RV lead n (%) 1 year | 3 (1.4) | 2 (2.1) | 1 (0.9) | 0.33 |
| - RV lead n (%) last fup | 7 (3.3) | 5 (5.2) | 2 (1.8) | 0.25 |
| - LV lead n (%) 1 year | 5 (2.4) | 4 (4.1) | 1 (0.9) | 0.18 |
| - LV lead n (%) last fup | 9 (4.3) | 7 (7.2) | 2 (1.8) | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carecci, A.; Biffi, M.; Lazzeri, M.; Quaranta, A.; Bartoli, L.; Spadotto, A.; Martignani, C.; Angeletti, A.; Diemberger, I.; Massaro, G.; et al. Comparative Analysis of Two-Lead DX-Based CRT Versus Conventional Three-Lead CRT-D: Results from a Single-Center Prospective Study. J. Clin. Med. 2025, 14, 8746. https://doi.org/10.3390/jcm14248746
Carecci A, Biffi M, Lazzeri M, Quaranta A, Bartoli L, Spadotto A, Martignani C, Angeletti A, Diemberger I, Massaro G, et al. Comparative Analysis of Two-Lead DX-Based CRT Versus Conventional Three-Lead CRT-D: Results from a Single-Center Prospective Study. Journal of Clinical Medicine. 2025; 14(24):8746. https://doi.org/10.3390/jcm14248746
Chicago/Turabian StyleCarecci, Alessandro, Mauro Biffi, Mirco Lazzeri, Andrea Quaranta, Lorenzo Bartoli, Alberto Spadotto, Cristian Martignani, Andrea Angeletti, Igor Diemberger, Giulia Massaro, and et al. 2025. "Comparative Analysis of Two-Lead DX-Based CRT Versus Conventional Three-Lead CRT-D: Results from a Single-Center Prospective Study" Journal of Clinical Medicine 14, no. 24: 8746. https://doi.org/10.3390/jcm14248746
APA StyleCarecci, A., Biffi, M., Lazzeri, M., Quaranta, A., Bartoli, L., Spadotto, A., Martignani, C., Angeletti, A., Diemberger, I., Massaro, G., & Ziacchi, M. (2025). Comparative Analysis of Two-Lead DX-Based CRT Versus Conventional Three-Lead CRT-D: Results from a Single-Center Prospective Study. Journal of Clinical Medicine, 14(24), 8746. https://doi.org/10.3390/jcm14248746

