Biportal-RATS vs. Uniportal-VATS for Lung Resections: A Propensity Score-Matched Analysis from Early Experience
Abstract
1. Introduction
2. Materials and Methods
- Age < 18 years.
- Previous pulmonary or chest wall surgery.
- Prior neoadjuvant treatments.
2.1. Preoperative Assessment
2.2. Surgical Techniques
2.3. Assessment of Health-Related Quality of Life (EQ-5D-5L)
2.4. Outcomes
2.5. Statistical Analysis
3. Results
- Mobility.
- Self-care.
- Usual activities (work, study, and family).
- Pain or discomfort.
- Anxiety or depression.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nachira, D.; Meacci, E.; Petracca Ciavarella, L.; Chiappetta, M.; De Santis, G.; Ferretti, G.M.; Mastromarino, M.G.; Porziella, V.; Vita, M.L.; Congedo, M.T.; et al. Uniportal video-assisted thoracic surgery Roman experience—A report of the first 16-month Roman experience. J. Thorac. Dis. 2018, 10 (Suppl. S31), S3678–S3685. [Google Scholar] [CrossRef]
- Meacci, E.; Nachira, D.; Congedo, M.T.; Margaritora, S. Teaching uniportal video-assisted thoracic surgery in Rome. J. Vis. Surg. 2017, 3, 49. [Google Scholar] [CrossRef][Green Version]
- Gonzalez-Rivas, D. VATS lobectomy: Surgical evolution from conventional VATS to uniportal approach. Sci. World J. 2012, 2012, 780842. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, D.; Mendez, L.; Delgado, M.; Fieira, E.; Fernandez, R. Uniportal video-assisted thoracoscopic anatomic segmentectomy. J. Thorac. Dis. 2013, 5, S226–S233. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, D.; Delgado, M.; Fieira, E.; Fernandez, R. Double sleeve uniportal video-assisted thoracoscopic lobectomy for non-small cell lung cancer. Ann. Cardiothorac. Surg. 2014, 3, E2. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Hu, X.F.; Jiang, G.N.; Ding, J.A.; Zhu, Y.M. Nonintubated-awake anesthesia for uniportal video-assisted thoracic surgery procedures. Thorac. Surg. Clin. 2017, 27, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Cai, Y.; Fu, S.; Zhang, N.; Fu, X. Comparison study of post-operative pain and short-term quality of life between uniportal and three portal video-assisted thoracic surgery for radical lung cancer resection. Zhongguo Fei Ai Za Zhi 2016, 19, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Helmig, M.; Swierzy, M.; Neudecker, J.; Badakhshi, H.; Gonzalez-Rivas, D.; Rückert, J.C. Uniportal VATS: The first German experience. J. Thorac. Dis. 2014, 6 (Suppl. S6), S650–S655. [Google Scholar] [CrossRef]
- Akter, F.; Routledge, T.; Toufektzian, L.; Attia, R. In minor and major thoracic procedures is uniport superior to multiport video-assisted thoracoscopic surgery? Interact. Cardiovasc. Thorac. Surg. 2015, 20, 550–555. [Google Scholar] [CrossRef]
- Mattioni, G.; Palleschi, A.; Mendogni, P.; Tosi, D. Approaches and outcomes of robotic-assisted thoracic surgery (RATS) for lung cancer: A narrative review. J. Robot. Surg. 2023, 17, 797–809. [Google Scholar] [CrossRef]
- Mazzei, M.; Abbas, A.E. Why comprehensive adoption of robotic assisted thoracic surgery is ideal for both simple and complex lung resections. J. Thorac. Dis. 2020, 12, 70–81. [Google Scholar] [CrossRef]
- Elliott, I.A.; Yanagawa, J. Can the robot overcome technical challenges of thoracoscopic bronchial anastomosis? J. Thorac. Dis. 2019, 11 (Suppl. S9), S1147–S1152. [Google Scholar] [CrossRef] [PubMed]
- Riad, A.; Hadid, M.; Elomri, A.; Al-Ansari, A.; Rejeb, M.A.; Qaraqe, M.; Dakua, S.P.; Jaber, A.R.; Al-Ansari, A.; Aboumarzouk, O.M.; et al. Advancements and challenges in robotic surgery: A holistic examination of operational dynamics and future directions. Surg. Pract. Sci. 2025, 22, 100294. [Google Scholar] [CrossRef]
- Tan, Y.P.A.; Ho, J.Y.; Chan, W.H.; Koong, H.N.; Chia, D.S.Y. Current limitations of surgical robotics in reconstructive plastic microsurgery. Front. Surg. 2018, 5, 22. [Google Scholar] [CrossRef]
- Tokuishi, K.; Wakahara, J.; Ueda, Y.; Miyahara, S.; Nakashima, H.; Masuda, Y.; Waseda, R.; Shiraishi, T.; Sato, T. Factors related to post-thoracotomy pain following robotic-assisted thoracic surgery. Asian J. Endosc. Surg. 2024, 17, e13302. [Google Scholar] [CrossRef]
- Haruki, T.; Takagi, Y.; Kubouchi, Y.; Kidokoro, Y.; Nakanishi, A.; Nozaka, Y.; Oshima, Y.; Matsui, S.; Nakamura, H. Comparison between robot-assisted thoracoscopic surgery and video-assisted thoracoscopic surgery for mediastinal and hilar lymph node dissection in lung cancer surgery. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 409–417. [Google Scholar] [CrossRef]
- Yang, N.; He, X.; Bai, Q.; Cui, B.; Gou, Y. Analysis of the short-term outcomes of biportal robot-assisted lobectomy. Int. J. Med. Robot. 2021, 17, e2326. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Ebana, H.; Kanauchi, N.; Suzuki, J.; Ujiie, H.; Chiba, M.; Sato, K.; Matsuo, S.; Hoshijima, K.; Kobayashi, A.; et al. Dual-portal robotic-assisted thoracic surgery (DRATS) as a reduced port RATS: Early experiences in three institutions in Japan. J. Thorac. Dis. 2023, 15, 6475–6482. [Google Scholar] [CrossRef] [PubMed]
- Kuzmych, K.; Nachira, D.; Congedo, M.T.; Calabrese, G.; Senatore, A.; Margaritora, S.; Meacci, E. Biportal robotic-assisted surgery for lung segmentectomies: A surgical technique overview. J. Vis. Surg. 2025, 11, 11. [Google Scholar] [CrossRef]
- Ismail, M.; Nachira, D. Devising the guidelines: The concept of uniportal video-assisted thoracic surgery—Instrumentation and operatory room staff. J. Thorac. Dis. 2019, 11 (Suppl. S10), S2123–S2129. [Google Scholar] [CrossRef]
- Nachira, D.; Punzo, G.; Calabrese, G.; Sessa, F.; Congedo, M.T.; Beccia, G.; Aceto, P.; Kuzmych, K.; Cambise, C.; Sassorossi, C.; et al. The efficacy of continuous serratus anterior and erector spinae plane blocks vs. intercostal nerve block in uniportal-VATS surgery: A propensity-matched prospective trial. J. Clin. Med. 2024, 13, 606. [Google Scholar] [CrossRef]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef]
- Lampridis, S.; Maraschi, A.; Le Reun, C.; Routledge, T.; Billè, A. Robotic versus video-assisted thoracic surgery for lung cancer: Short-term outcomes of a propensity matched analysis. Cancers 2023, 15, 2391. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Zhang, J.; Tian, Y.; Zou, N.; Zhu, H.; Gu, Z.; Jin, W.; Ning, J.; Jiang, L.; Huang, J.; et al. Short- and long-term outcomes of robotic-assisted versus video-assisted thoracoscopic lobectomy in non-small cell lung cancer patients aged 35 years or younger: A real-world study with propensity score-matched analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 9947–9958. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Manganas, C.; Ang, S.C.; Yan, T.D. A systematic review and meta-analysis on pulmonary resections by robotic video-assisted thoracic surgery. Ann. Cardiothorac. Surg. 2012, 1, 3–10. [Google Scholar] [CrossRef]
- Veronesi, G.; Novellis, P.; Voulaz, E.; Alloisio, M. Robot-assisted surgery for lung cancer: State of the art and perspectives. Lung Cancer 2016, 101, 28–34. [Google Scholar] [CrossRef]
- Park, B.J.; Flores, R.M.; Rusch, V.W. Robotic assistance for video-assisted thoracic surgical lobectomy: Technique and initial results. J. Thorac. Cardiovasc. Surg. 2006, 131, 54–59. [Google Scholar] [CrossRef]
- Novellis, P.; Maisonneuve, P.; Dieci, E.; Voulaz, E.; Bottoni, E.; Di Stefano, S.; Solinas, M.; Testori, A.; Cariboni, U.; Alloisio, M.; et al. Quality of Life, Postoperative Pain, and Lymph Node Dissection in a Robotic Approach Compared to VATS and OPEN for Early Stage Lung Cancer. J. Clin. Med. 2021, 10, 1687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adamica, D.; Tulinský, L.; Kepičová, M.; Dzurňáková, P.; Ihnát, P.; Mitták, M.; Varga, A.; Neoral, Č.; Martínek, L. Robotic-assisted mediastinal lymphadenectomy in lung cancer: A narrative review. J. Robot. Surg. 2025, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, W.; Zhao, Y.; Gao, X.; Dai, W.; Zhou, X.; Yu, H.; Shi, Q.; Li, Q.; Wei, X. Comparison of early postoperative patient-reported outcomes after multiportal robotic-assisted thoracoscopic surgery and uniportal video-assisted thoracoscopic surgery for non-small cell lung cancer. Eur. J. Surg. Oncol. 2024, 50, 108481. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Suzuki, J.; Ebana, H.; Kanauchi, N.; Uchida, T.; Shiono, S. Comparison of the short-term outcomes and the incidence of post-thoracotomy pain syndrome between dual-portal and multi-portal robotic-assisted thoracic surgery. Gen. Thorac. Cardiovasc. Surg. 2025, 73, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Högerle, B.A.; Scheiner, M.; Pinter-Högerle, A.; Schmidt, W.; Winter, H.; Eichhorn, M.E. Quality of life during the implementation of a robot-assisted thoracic surgery program compared to video-assisted thoracic surgery: A retrospective evaluation of 138 patients. Video-Assist. Thorac. Surg. 2025, 10, 5. [Google Scholar] [CrossRef]
- Zhang, J.; Yip, R.; Taioli, E.; Flores, R.M.; Henschke, C.I.; Yankelevitz, D.F.; Schwartz, R.M.; IELCART Investigators. Quality of life outcomes after robotic-assisted and video-assisted thoracoscopic surgery for early-stage non-small cell lung cancer. JTCVS Open 2025, 24, 383–393. [Google Scholar] [CrossRef] [PubMed]








| Variable | U-VATS (n = 91) | Bi-RATS (n = 39) | p-Value |
|---|---|---|---|
| Sex (male) | 42 (46.15%) | 13 (33.33%) | 0.175 |
| Age (years) | 67.19 ± 10.60 | 69.10 ± 12.88 | 0.378 |
| BMI (kg/m2) | 25.78 ± 4.79 | 25.40 ± 3.84 | 0.665 |
| Current smoker | 15 (16.48%) | 9 (23.08%) | 0.691 |
| Pack-years | 26.68 ± 30.38 | 22.03 ± 26.63 | 0.413 |
| Hypertension | 49 (53.85%) | 22 (56.41%) | 0.837 |
| Coronary artery disease (CAD) | 8 (8.79%) | 7 (17.95%) | 0.14 |
| Comorbidities (≥1) | 66 (72.53%) | 19 (48.72%) | 0.009 |
| Other neoplasms | 43 (47.25%) | 15 (38.46%) | 0.355 |
| Type of resection: | 0.001 | ||
| ● Wedge | 59 (64.83%) | 12 (30.77%) | |
| ● Segmentectomy | 15 (16.48%) | 11 (28.21%) | |
| ● Lobectomy | 17 (18.68%) | 16 (41.03%) | |
| Side of access (right) | 51 (56.04%) | 24 (61.54%) | 0.561 |
| CT lesion diameter (mm) | 16.61 ± 9.69 | 20.18 ± 9.10 | 0.057 |
| Histology: | 0.085 | ||
| ● NSCL | 38 (41.75%) | 25 (64.10%) | |
| ● Lung metastasis | 41 (45.05%) | 14 (35.90%) | |
| ● Others | 12 (13.20%) | 0 | |
| Histological lesion diameter (cm) | 2.13 ± 1.26 | 2.33 ± 1.16 | 0.794 |
| Variable | U-VATS (n = 91) | BI-RATS (n = 39) | p-Value |
|---|---|---|---|
| Intraoperative complications | / | / | / |
| Adhesions | 7 (7.69%) | 2 (5.13%) | 0.598 |
| Conversion | 1 (1.10%) | 0 (0%) | 0.511 |
| Postoperative complications | 16 (17.58%) | 6 (15.38%) | 0.759 |
| Drain duration (days) | 3.92 ± 3.16 | 3.97 ± 2.81 | 0.930 |
| Hospital stay (days) | 3.70 ± 2.30 | 3.33 ± 1.18 | 0.343 |
| Total LN stations | 1.12 ± 1.46 | 2.36 ± 1.98 | <0.001 |
| LYMPH NODES | |||
| ● LOBES | |||
| Total LN stations | 3.06 ± 1.14 | 3.94 ± 1.29 | 0.047 |
| Total number of LNs | 8.12 ± 5.23 | 15.56 ± 12.01 | 0.026 |
| N1 lymph nodes | 3.82 ± 2.58 | 4.56 ±3.08 | 0.459 |
| N2 lymph nodes | 4.29 ± 3.61 | 9.00 ± 9.27 | 0.061 |
| ● SEGMENTS | |||
| Total LN stations | 1.73 ± 1.16 | 2.45 ± 1.51 | 0.181 |
| Total number of LNs | 4.20 ± 3.69 | 8.00 ± 6.18 | 0.066 |
| N1 lymph nodes | 1.20 ± 1.52 | 2.70 ± 1.83 | 0.036 |
| N2 lymph nodes | 2.27 ± 2.25 | 5.10 ± 5.57 | 0.088 |
| Variable | U-VATS (n = 32) | BI-RATS (n = 32) | p-Value |
|---|---|---|---|
| Sex (male) | 12 (37.50%) | 12 (37.50%) | 1.000 |
| Age (years) | 64.47 ± 10.38 | 68.56 ± 12.26 | 0.280 |
| BMI (kg/m2) | 25.83 ± 6.07 | 25.20 ± 4.01 | 0.622 |
| Current smoker | 4 (12.50%) | 9 (28.13%) | 0.227 |
| Pack/years | 16.64 ± 22.40 | 24.59 ±28.03 | 0.234 |
| Hypertension | 15 (46.88%) | 17 (53.13%) | 0.617 |
| Coronary artery disease (CAD) | 4 (12.50%) | 5 (15.63%) | 0.719 |
| Comorbidities (≥1) | 19 (59.38%) | 19 (59.38%) | 1.000 |
| Other neoplasms | 12 (37.50%) | 11 (34.38%) | 0.794 |
| Type of resection: | 1.000 | ||
| ● Wedge | 12 (37.50%) | 12 (37.50%) | |
| ● Segmentectomy | 7 (21.88%) | 7 (21.88%) | |
| ● Lobectomy | 13 (40.63%) | 13 (40.63%) | |
| Side of access (right) | 17 (53.13%) | 20 (62.50%) | 0.448 |
| CT lesion diameter (mm) | 17.07 ± 9.62 | 19.59 ± 8.53 | 0.282 |
| Histology: | 0.238 | ||
| ● NSCLC | 25 (78.13%) | 24 (75.00%) | |
| ● Lung metastasis | 7 (21.87%) | 8 (25.00%) | |
| Histological lesion diameter (cm) | 1.71 ± 1.11 | 2.33 ± 1.16 | 0.448 |
| Variable | U-VATS (n = 32) | BI-RATS (n = 32) | p-Value |
|---|---|---|---|
| Intraoperative complications | / | / | / |
| Adhesions | 4 (12.50%) | 2 (6.25%) | 0.391 |
| Conversion | / | / | / |
| Postoperative complications | 6 (18.75%) | 6 (18.75%) | 1.000 |
| Drain duration (days) | 3.75 ± 1.93 | 4.19 ± 3.07 | 0.498 |
| Hospital stay (days) | 3.97 ± 2.01 | 3.41 ± 1.29 | 0.187 |
| LYMPH NODES: | |||
| ● LOBES | |||
| Total LN stations | 3.31 ± 0.947 | 3.92 ± 1.19 | 0.157 |
| Total number of LNs | 8.46 ± 5.27 | 15.00 ± 10.83 | 0.062 |
| N1 lymph nodes | 4.38 ± 2.63 | 4.38 ± 3.18 | 1.000 |
| N2 lymph nodes | 4.08 ± 3.30 | 8.15 ± 7.53 | 0.086 |
| Nodal upstaging | / | / | / |
| ● SEGMENTS | |||
| Total LN stations | 1.14 ± 1.22 | 2.43 ± 1.40 | 0.091 |
| Total number of LNs | 1.43 ± 1.62 | 8.86 ± 7.11 | 0.019 |
| N1 lymph nodes | 0.57 ± 0.79 | 2.14 ± 1.574 | 0.036 |
| N2 lymph nodes | 0.86 ± 0.90 | 6.71 ± 5.99 | 0.025 |
| Nodal upstaging | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nachira, D.; Kuzmych, K.; Congedo, M.T.; Oddone, A.; Calabrese, G.; Senatore, A.; Punzo, G.; Vita, M.L.; Petracca-Ciavarella, L.; Margaritora, S.; et al. Biportal-RATS vs. Uniportal-VATS for Lung Resections: A Propensity Score-Matched Analysis from Early Experience. J. Clin. Med. 2025, 14, 8715. https://doi.org/10.3390/jcm14248715
Nachira D, Kuzmych K, Congedo MT, Oddone A, Calabrese G, Senatore A, Punzo G, Vita ML, Petracca-Ciavarella L, Margaritora S, et al. Biportal-RATS vs. Uniportal-VATS for Lung Resections: A Propensity Score-Matched Analysis from Early Experience. Journal of Clinical Medicine. 2025; 14(24):8715. https://doi.org/10.3390/jcm14248715
Chicago/Turabian StyleNachira, Dania, Khrystyna Kuzmych, Maria Teresa Congedo, Alessia Oddone, Giuseppe Calabrese, Alessia Senatore, Giovanni Punzo, Maria Letizia Vita, Leonardo Petracca-Ciavarella, Stefano Margaritora, and et al. 2025. "Biportal-RATS vs. Uniportal-VATS for Lung Resections: A Propensity Score-Matched Analysis from Early Experience" Journal of Clinical Medicine 14, no. 24: 8715. https://doi.org/10.3390/jcm14248715
APA StyleNachira, D., Kuzmych, K., Congedo, M. T., Oddone, A., Calabrese, G., Senatore, A., Punzo, G., Vita, M. L., Petracca-Ciavarella, L., Margaritora, S., & Meacci, E. (2025). Biportal-RATS vs. Uniportal-VATS for Lung Resections: A Propensity Score-Matched Analysis from Early Experience. Journal of Clinical Medicine, 14(24), 8715. https://doi.org/10.3390/jcm14248715

