Diabetes as a Risk Factor for Sarcopenia in Patients with MASH-Related Cirrhosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Patients and Assessment of MASH-Driven Cirrhosis
2.4. Biochemical Analyses
2.5. Assessment of Sarcopenia
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. The Impact of Diabetes on the Prognosis of Patients with MASH-Driven Cirrhosis
3.3. Prevalence of Sarcopenia in MASH Patients With and Without DM
3.4. Predictors of Sarcopenia in Patients with Cirrhosis Due to MASH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | Body mass index |
| CMRF | Cardiometabolic risk factor |
| CT | Computed tomography |
| DM | Diabetes mellitus |
| LRE | Liver-related events |
| MASLD | Metabolic dysfunction-associated steatotic liver disease |
| SMI | Skeletal muscle mass index |
| ALT | Alanine aminotransferase |
| AST | Aspartate aminotransferase |
| HCC | Hepatocellular carcinoma |
| MASH | Metabolic dysfunction-associated steatohepatitis |
| NAFLD | Nonalcoholic fatty liver disease |
| NASH | Nonalcoholic steatohepatitis |
References
- Gines, P.; Krag, A.; Abraldes, J.G.; Sola, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Garcia-Tsao, G.; Friedman, S.; Iredale, J.; Pinzani, M. Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology 2010, 51, 1445–1449. [Google Scholar] [CrossRef]
- Huang, D.Q.; Tan, D.J.H.; Ng, C.H.; Amangurbanova, M.; Sutter, N.; Lin Tay, P.W.; Lim, W.H.; Yong, J.N.; Tang, A.; Syn, N.; et al. Hepatocellular carcinoma incidence in alcohol-associated cirrhosis: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2023, 21, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.J.H.; Setiawan, V.W.; Ng, C.H.; Lim, W.H.; Muthiah, M.D.; Tan, E.X.; Dan, Y.Y.; Roberts, L.R.; Loomba, R.; Huang, D.Q. Global burden of liver cancer in males and females: Changing etiological basis and the growing contribution of NASH. Hepatology 2023, 77, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Kim, B.K.; Yang, K.; Majzoub, A.M.; Nayfeh, T.; Tamaki, N.; Izumi, N.; Nakajima, A.; Idilman, R.; Gumussoy, M.; et al. Liver stiffness on magnetic resonance elastography and the MEFIB index and liver-related outcomes in nonalcoholic fatty liver disease: A systematic review and meta-analysis of individual participants. Gastroenterology 2022, 163, 1079–1089.e5. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global epidemiology of cirrhosis—Aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef]
- Enomoto, H.; Akuta, N.; Hikita, H.; Suda, G.; Inoue, J.; Tamaki, N.; Ito, K.; Akahane, T.; Kawaoka, T.; Morishita, A.; et al. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol. Res. 2024, 54, 763–772. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Isakov, V. Metabolic dysfunction-associated steatotic liver disease: A story of muscle and mass. World J. Gastroenterol. 2025, 31, 105346. [Google Scholar] [CrossRef]
- Marjot, T.; Armstrong, M.J.; Stine, J.G. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol. Commun. 2025, 9, e0711. [Google Scholar] [CrossRef]
- Wong, R.; Yuan, L.Y. Sarcopenia and metabolic dysfunction associated steatotic liver disease: Time to address both. World J. Hepatol. 2024, 16, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Akiko, G.; Tohru, M. Obesity and Overweight in Asian People. Circ. J. Off. J. Jpn. Circ. Soc. 2016, 80, 2425–2426. [Google Scholar]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Yoon, J.K.; Lee, S.; Kim, K.W.; Lee, J.E.; Hwang, J.A.; Park, T.; Lee, J. Reference Values for Skeletal Muscle Mass at the Third Lumbar Vertebral Level Measured by Computed Tomography in a Healthy Korean Population. Endocrinol. Metab. 2021, 36, 672–677. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Hara, N.; Moriya, K.; Hino, K.; Koike, K. Reduced handgrip strength predicts poorer survival in chronic liver diseases: A large multicenter study in Japan. Hepatol. Res. 2021, 51, 957–967. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; van Vugt, J.L.A.; et al. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J. Hepatol. 2022, 76, 588–597. [Google Scholar] [CrossRef]
- Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef]
- Kang, S.; Moon, M.K.; Kim, W.; Koo, B.K. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: A Korean nationwide survey. J. Cachexia Sarcopenia Muscle 2020, 11, 1232–1241. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Liu, H.; Lei, Z.; Cheng, S.; Cao, H. The association between eight complete blood count-derived inflammatory markers and muscle health. Front. Nutr. 2025, 12, 1498757. [Google Scholar] [CrossRef] [PubMed]
- Araki, A.; Heying, Z.; Mori, S. Relationship between sarcopenic obesity or sarcopenia and insulin resistance or functional disability. Nihon Ronen Igakkai Zasshi 2012, 49, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Bertot, L.C.; Jeffrey, G.P.; de Boer, B.; MacQuillan, G.; Garas, G.; Chin, J.; Huang, Y.; Adams, L.A. Diabetes impacts prediction of cirrhosis and prognosis by non-invasive fibrosis models in non-alcoholic fatty liver disease. Liver Int. 2018, 38, 1793–1802. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Elkrief, L.; Rautou, P.E.; Sarin, S.; Valla, D.; Paradis, V.; Moreau, R. Diabetes mellitus in patients with cirrhosis: Clinical implications and management. Liver Int. 2016, 36, 936–948. [Google Scholar] [CrossRef]
- Goh, G.B.; Pan, A.; Chow, W.C.; Yuan, J.M.; Koh, W.P. Association between diabetes mellitus and cirrhosis mortality: The Singapore Chinese Health Study. Liver Int. 2017, 37, 251–258. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Van Natta, M.L.; Clark, J.; Neuschwander-Tetri, B.A.; Diehl, A.; Dasarathy, S.; Loomba, R.; Chalasani, N.; Kowdley, K.; Hameed, B.; et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 2021, 385, 1559–1571. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Takahashi, F.; Okamura, T.; Hamaguchi, M.; Fukui, M. Diet, exercise, and pharmacotherapy for sarcopenia in people with diabetes. Metabolism 2023, 144, 155585. [Google Scholar] [CrossRef]
- Tanaka, M.; Masuda, S.; Yamakage, H.; Inoue, T.; Ohue-Kitano, R.; Yokota, S.; Kusakabe, T.; Wada, H.; Sanada, K.; Ishii, K.; et al. Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese obese patients. Diabetes Res. Clin. Pract. 2018, 142, 195–202. [Google Scholar] [CrossRef]
- Chen, S.; Yan, S.; Aiheti, N.; Kuribanjiang, K.; Yao, X.; Wang, Q.; Zhou, T.; Yang, L. A bi-directional Mendelian randomization study of sarcopenia-related traits and type 2 diabetes mellitus. Front. Endocrinol. 2023, 14, 1109800. [Google Scholar] [CrossRef]
- Mesinovic, J.; Scott, D. Sarcopenia and diabetes mellitus: Evidence for a bi-directional relationship. Eur. Geriatr. Med. 2019, 10, 677–680. [Google Scholar] [CrossRef]
- Koo, B.K.; Roh, E.; Yang, Y.S.; Moon, M.K. Difference between old and young adults in contribution of beta-cell function and sarcopenia in developing diabetes mellitus. J. Diabetes Investig. 2016, 7, 233–240. [Google Scholar] [CrossRef]
- Huang, S.; Xiang, C.; Song, Y. Identification of the shared gene signatures and pathways between sarcopenia and type 2 diabetes mellitus. PLoS ONE 2022, 17, e0265221. [Google Scholar] [CrossRef]
- Tateishi, R.; Matsumura, T.; Okanoue, T.; Shima, T.; Uchino, K.; Fujiwara, N.; Senokuchi, T.; Kon, K.; Sasako, T.; Taniai, M.; et al. Hepatocellular carcinoma development in diabetic patients: A nationwide survey in Japan. J. Gastroenterol. 2021, 56, 261–273. [Google Scholar] [CrossRef]




| Total | Non-DM Group | DM Group | p-Value | |
|---|---|---|---|---|
| (N = 169) | (N = 61) | (N = 108) | ||
| BMI (kg/m2) | 27.2 (19.2–40.4) | 27.2 (16.9–45.6) | 27.2 (18.3–46.3) | 0.98 |
| waist (cm) | 94.6 (68–120) | 93.9 (68–120) | 95.0 (69–136.5) | 0.57 |
| age (y) | 70 (44–98) | 71 (44–98) | 69.9 (47–89) | 0.40 |
| male sex [n (%)] | 77 (45.5) | 31(50.8) | 46 (42.5) | 0.22 |
| Child–Pugh class | ||||
| A | 111 | 39 | 80 | |
| B | 52 | 21 | 23 | 0.34 |
| C | 6 | 1 | 5 | |
| hemoglobin (g/dL) | 12.3 (7.7–16.2) | 12.0 (8–16.2) | 12.4 (6.9–17.3) | 0.21 |
| platelet (×104/µL) | 11.8 (3.5–30.3) | 11.1 (3.4–21.7) | 12.2 (3.5–32.3) | 0.21 |
| AST (IU/L) | 46 (16–152) | 43 (16–147) | 47 (19–189) | 0.35 |
| ALT (IU/L) | 35 (9–177) | 30 (9–90) | 38 (9–332) | 0.35 |
| total protein (g/dL) | 7.0 (3.4–8.5) | 6.8 (3.4–8.4) | 7.1 (4.5–8.5) | 0.04 |
| albumin (g/dL) | 3.7 (2.2–4.8) | 3.6 (2.3–4.8) | 3.7 (1.6–4.9) | 0.35 |
| triglyceride (mg/dL) | 105 (10–465) | 92 (10–236) | 112 (25–465) | 0.02 |
| total cholesterol (mg/dL) | 161 (40–347) | 159 (40–249) | 163 (69–347) | 0.51 |
| cholinesterase (IU/L) | 214 (45–459) | 202 (65–407) | 221 (45–469) | 0.15 |
| total bilirubin (mg/dL) | 1.3 (0.4–4.5) | 1.3 (0.4–4.5) | 1.3 (0.4–4.3) | 0.66 |
| ammonia (µ/dL) | 50.8 (13.3–225.8) | 55.9 (17–225.8) | 48.0 (13.3–193.9) | 0.14 |
| prothrombin time (%) | 78.9 (38–116) | 77.5 (41–119) | 79.7 (38–116) | 0.37 |
| HbA1c (%) | 6.3 (3.9–11.1) | 5.5 (3.9–6.4) | 6.7 (4.5–11.1) | <0.001 |
| FIB-4 index | 4.8 (1.2–15.4) | 4.6 (2–11.3) | 4.9 (1.2–15.4) | 0.49 |
| CT-SMI (cm2/m2) | ||||
| men | 49.0 (24–65.5) | 49.9 (32.2–62.8) | 46.5 (24–65.5) | 0.50 |
| women | 40.5 (25–63) | 44.3 (29.8–55) | 41.0 (25–63.0) | 0.53 |
| Total | Non-Sarcopenia Group | Sarcopenia Group | p-Value | |
|---|---|---|---|---|
| (N = 169) | (N = 118) | (N = 51) | ||
| age (y) | 70 (44–98) | 69.4 (44–98) | 72.7 (50–88) | 0.03 |
| male sex [n (%)] | 77 (45.5) | 58 (49.1) | 19 (37.2) | 0.17 |
| Child–Pugh class | ||||
| A | 111 | 88 | 31 | 0.07 |
| B/C | 58 | 30 | 20 | |
| hemoglobin (g/dL) | 12.3 (7.7–16.2) | 12.5 (7.7–17.3) | 11.7 (6.9–17.2) | 0.02 |
| platelet (×104/µL) | 11.8 (3.5–30.3) | 12.0 (3.4–32.3) | 11.2 (4.2–23.8) | 0.34 |
| AST (IU/L) | 46 (16–152) | 45 (20–147) | 48 (16–189) | 0.51 |
| ALT (IU/L) | 35 (9–177) | 34 (9–113) | 38 (9–332) | 0.57 |
| total protein (g/dL) | 7.0 (3.4–8.5) | 7.1 (3.4–8.5) | 6.9 (5.3–8.5) | 0.16 |
| albumin (g/dL) | 3.7 (2.2–4.8) | 3.7 (2.2–4.9) | 3.5 (1.6–4.8) | 0.03 |
| triglyceride (mg/dL) | 105 (10–465) | 105 (10–257) | 104 (25–465) | 0.96 |
| total cholesterol (mg/dL) | 161 (40–347) | 167 (40–347) | 149 (69–272) | 0.01 |
| cholinesterase (IU/L) | 214 (45–459) | 226 (65–469) | 187 (45–384) | 0.006 |
| total bilirubin (mg/dL) | 1.3 (0.4–4.5) | 1.35 (0.4–4.5) | 1.3 (0.6–3.9) | 0.72 |
| ammonia (µ/dL) | 50.8 (13.3–225.8) | 52.2 (13.3–225.8) | 47.8 (17–137.8) | 0.39 |
| prothrombin time (%) | 78.9 (38–116) | 80 (41–116) | 76.6 (38–119) | 0.22 |
| HbA1c (%) | 6.3 (3.9–11.1) | 6.28 (3.9–11.1) | 6.3 (4.5–9.1) | 0.70 |
| FIB-4 index | 4.8 (1.2–15.4) | 3.9 (1.32–13.6) | 6.6 (1.24–15.4) | <0.001 |
| BMI (kg/m2) | 27.2 (19.2–40.4) | 28.6 (16.9–46.3) | 23.9 (18.3–33.2) | <0.001 |
| waist (cm) | 94.6 (68–120) | 95.9 (69–136) | 91.6 (68–136.5) | 0.08 |
| CT-SMI (cm2/m2) | ||||
| men | 49.0 (24–65.5) | 52.4 (42–65.5) | 36.3 (24–41.7) | <0.001 |
| women | 40.5 (25–63) | 47.8 (25–63) | 34.2 (28.1–38) | <0.001 |
| diabetes, yes [n (%)] | 108 (63.9) | 69 (58.5) | 39 (76.5) | 0.03 |
| Univariate Analysis | Multivariate Analysis | Adjusted Analysis | ||||
|---|---|---|---|---|---|---|
| OR (95%Cl) | p-Value | cOR (95%Cl) | p-Value | aOR (95%Cl) | p-Value | |
| age (y) | ||||||
| <75 | 1.00 | |||||
| ≥75 | 2.37 (1.21–4.64) | 0.012 | 1.32 (0.52–3.35) | 0.55 | ||
| Child–Pugh class | ||||||
| A | 1.00 | |||||
| B/C | 1.89 (0.94–3.80) | 0.07 | 1.03 (0.26–4.05) | 0.96 | ||
| hemoglobin (g/dL) | ||||||
| ≥11.8 | 1.00 | |||||
| <11.8 | 2.47 (1.25–4.85) | 0.008 | 0.52 (0.16–1.63) | 0.26 | ||
| albumin (g/dL) | ||||||
| ≥3.5 | 1.00 | 1.00 | ||||
| <3.5 | 2.21 (1.11–4.38) | 0.023 | 1.58 (0.42–5.95) | 0.49 | 2.16 (0.86–5.39) | 0.09 |
| total cholesterol (mg/dL) | ||||||
| ≥144 | 1.00 | |||||
| <144 | 2.57 (1.30–5.06) | 0.006 | 1.01 (0.36–2.76) | 0.99 | ||
| cholinesterase (IU/L) | ||||||
| ≥200 | 1.00 | |||||
| <200 | 1.7 (0.877–3.29) | 0.11 | 0.52 (0.16–1.73) | 0.29 | ||
| FIB-4 index | ||||||
| <5 | 1.00 | 1.00 | ||||
| ≥5 | 7.74 (3.71–16.1) | <0.0001 | 8.6 (3.24–22.8) | <0.0001 | 8.1 (3.35–19.6) | <0.0001 |
| BMI (kg/m2) | ||||||
| ≥25 | 1.00 | 1.00 | ||||
| <25 | 0.112 (0.05–0.23) | <0.0001 | 0.13 (0.05–0.328) | <0.0001 | 0.114 (0.04–0.27) | <0.0001 |
| diabetes | ||||||
| no | 1.00 | 1.00 | ||||
| yes | 2.3 (1.10–4.85) | 0.02 | 4.38 (1.55–12.3) | 0.005 | 3.67 (1.41–9.56) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, S.; Takaya, H.; Namisaki, T.; Nakatani, T.; Hanatani, J.-i.; Tsuji, Y.; Kitagawa, K.; Nishimura, N.; Kaji, K.; Yoshiji, H. Diabetes as a Risk Factor for Sarcopenia in Patients with MASH-Related Cirrhosis. J. Clin. Med. 2025, 14, 8691. https://doi.org/10.3390/jcm14248691
Sato S, Takaya H, Namisaki T, Nakatani T, Hanatani J-i, Tsuji Y, Kitagawa K, Nishimura N, Kaji K, Yoshiji H. Diabetes as a Risk Factor for Sarcopenia in Patients with MASH-Related Cirrhosis. Journal of Clinical Medicine. 2025; 14(24):8691. https://doi.org/10.3390/jcm14248691
Chicago/Turabian StyleSato, Shinya, Hiroaki Takaya, Tadashi Namisaki, Tatsuya Nakatani, Jun-ichi Hanatani, Yuki Tsuji, Koh Kitagawa, Norihisa Nishimura, Kosuke Kaji, and Hitoshi Yoshiji. 2025. "Diabetes as a Risk Factor for Sarcopenia in Patients with MASH-Related Cirrhosis" Journal of Clinical Medicine 14, no. 24: 8691. https://doi.org/10.3390/jcm14248691
APA StyleSato, S., Takaya, H., Namisaki, T., Nakatani, T., Hanatani, J.-i., Tsuji, Y., Kitagawa, K., Nishimura, N., Kaji, K., & Yoshiji, H. (2025). Diabetes as a Risk Factor for Sarcopenia in Patients with MASH-Related Cirrhosis. Journal of Clinical Medicine, 14(24), 8691. https://doi.org/10.3390/jcm14248691

