Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Design, Timing and Location of Research and Participants
2.2. Sample Size
2.3. Hamstring Stiffness Measurements
2.4. Nordic Hamstring Exercise
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BF | Biceps femoris |
| HSI | Hamstring strain injuries |
| NHE | Nordic hamstring exercise |
| ST | Semitendinosus |
References
- Gudelis, M.; Pruna, R.; Trujillano, J.; Lundblad, M.; Khodaee, M. Epidemiology of hamstring injuries in 538 cases from an FC Barcelona multi sports club. Physician Sportsmed. 2024, 52, 57–64. [Google Scholar] [CrossRef]
- Brooks, J.H.; Fuller, C.W.; Kemp, S.P.; Reddin, D.B. Epidemiology of injuries in English professional rugby union: Part 1 match injuries. Br. J. Sports Med. 2005, 39, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2023, 57, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Feeley, B.T.; Kennelly, S.; Barnes, R.P.; Muller, M.S.; Kelly, B.T.; Rodeo, S.A.; Warren, R.F. Epidemiology of National Football League training camp injuries from 1998 to 2007. Am. J. Sports Med. 2008, 36, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.; Drezner, J.; Shield, A.; Williams, M.; Webner, D.; Sennett, B.; Kapur, R.; Cohen, M.; Ulager, J.; Cafengiu, A.; et al. Acute Injuries in Track and Field Athletes: A 3-Year Observational Study at the Penn Relays Carnival With Epidemiology and Medical Coverage Implications. Am. J. Sports Med. 2015, 43, 816–822. [Google Scholar] [CrossRef]
- Orchard, J.W.; Seward, H.; Orchard, J.J. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am. J. Sports Med. 2013, 41, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Drezner, J.; Ulager, J.; Sennett, M. Hamstring muscle injuries in track and field athletes: A 3-year study at the Penn Relay Carnival. Clin. J. Sport. Med. 2005, 15, 386. [Google Scholar] [CrossRef]
- Gabbe, B.; Finch, C.; Wajswelner, H.; Bennell, K. Australian football: Injury profile at the community level. J. Sci. Med. Sport. 2002, 5, 149–160. [Google Scholar] [CrossRef]
- Brooks, J.H.; Fuller, C.W.; Kemp, S.P.; Reddin, D.B. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am. J. Sports Med. 2006, 34, 1297–1306. [Google Scholar] [CrossRef]
- Heiser, T.M.; Weber, J.; Sullivan, G.; Clare, P.; Jacobs, R.R. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players. Am. J. Sports Med. 1984, 12, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Seward, H. Injury report 2009: Australian football league. Sport Health 2010, 28, 10. [Google Scholar]
- Askling, C.M.; Tengvar, M.; Saartok, T.; Thorstensson, A. Acute first-time hamstring strains during high-speed running: A longitudinal study including clinical and magnetic resonance imaging findings. Am. J. Sports Med. 2007, 35, 197–206. [Google Scholar] [CrossRef]
- Hernesman, S.C.; Hoch, A.Z.; Vetter, C.S.; Young, C.C. Foot drop in a marathon runner from chronic complete hamstring tear. Clin. J. Sport. Med. 2003, 13, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Muckle, D. Associated factors in recurrent groin and hamstring injuries. Br. J. Sports Med. 1982, 16, 37. [Google Scholar] [CrossRef]
- Arnason, A.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of hamstring strains in elite soccer: An intervention study. Scand. J. Med. Sci. Sports 2008, 18, 40–48. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring Strain Injuries Factors that Lead to Injury and Re-Injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Thorborg, K.; Nielsen, M.B.; Budtz-Jørgensen, E.; Hölmich, P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: A cluster-randomized controlled trial. Am. J. Sports Med. 2011, 39, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, G.; Akaras, E.; Kubis, H.-P.; Owen, J.A. Heterogeneous effects of eccentric training and nordic hamstring exercise on the biceps femoris fascicle length based on ultrasound assessment and extrapolation methods: A systematic review of randomised controlled trials with meta-analyses. PLoS ONE 2021, 16, e0259821. [Google Scholar] [CrossRef]
- van der Horst, N.; Smits, D.W.; Petersen, J.; Goedhart, E.A.; Backx, F.J. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef]
- Yagiz, G.; Fredianto, M.; Ulfa, M.; Ariani, I.; Agustin, A.D.; Shida, N.; Moore, E.W.G.; Kubis, H.-P. A retrospective comparison of the biceps femoris long head muscle structure in athletes with and without hamstring strain injury history. PLoS ONE 2024, 19, e0298146. [Google Scholar] [CrossRef] [PubMed]
- Kepir, E.; Demiral, F.; Akaras, E.; Paksoy, A.E.; Sevindik Aktas, B.; Yilmaz Cankaya, B.; Oztop, B.; Yagiz, G.; Owen, J.A. Hamstring Muscle Stiffness in Athletes with and without Anterior Cruciate Ligament Reconstruction History: A Retrospective Study. J. Clin. Med. 2024, 13, 4370. [Google Scholar] [CrossRef] [PubMed]
- Askling, C.M.; Tengvar, M.; Tarassova, O.; Thorstensson, A. Acute hamstring injuries in Swedish elite sprinters and jumpers: A prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br. J. Sports Med. 2014, 48, 532–539. [Google Scholar] [CrossRef]
- Askling, C.M.; Tengvar, M.; Thorstensson, A. Acute hamstring injuries in Swedish elite football: A prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br. J. Sports Med. 2013, 47, 953–959. [Google Scholar] [CrossRef]
- Kepir, E.; Owen, J.; Çar, B.; Esedullah, A.; Yildirim, N.; Yagiz, G. Changes in eccentric hamstring strength and muscle soreness in younger and older male football players following match play. BMC Sports Sci. Med. Rehabil. 2025, 17, 319. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport. Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.J.B.; Brown, N.A.T.; Lai, A.K.M.; Perriman, D.; Spratford, W.; Serpell, B.G. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand. J. Med. Sci. Sports 2019, 29, 1083–1091. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med. Sci. Sports Exerc. 2011, 43, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, H.; Quan, W.; Jiang, X.; Liang, M.; Li, S.; Ugbolue, U.C.; Baker, J.S.; Gusztav, F.; Ma, X.; et al. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait Posture 2024, 107, 293–305. [Google Scholar] [CrossRef]
- Koulouris, G.; Connell, D.A.; Brukner, P.; Schneider-Kolsky, M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am. J. Sports Med. 2007, 35, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M.; Orava, S.; Järvinen, M. Hamstring injuries. Current trends in treatment and prevention. Sports Med. 1997, 23, 397–404. [Google Scholar] [CrossRef]
- Thelen, D.; Chumanov, E.; Hoerth, D.; Best, T.; Swanson, S.; Li, L.; Young, M.; Heiderscheit, B. Hamstring Muscle Kinematics during Treadmill Sprinting. Med. Sci. Sports Exerc. 2005, 37, 108–114. [Google Scholar] [CrossRef]
- Soga, T.; Keerasomboon, T.; Akiyama, K.; Hirose, N. Difference of Hamstring Activity Between Bilateral and Unilateral Nordic Hamstring Exercises With a Sloped Platform. J. Sport. Rehabil. 2022, 31, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Roig Pull, M.; Ranson, C. Eccentric muscle actions: Implications for injury prevention and rehabilitation. Phys. Ther. Sport. 2007, 8, 88–97. [Google Scholar] [CrossRef]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Shield, A.J. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: A prospective study. Am. J. Sports Med. 2015, 43, 2663–2670. [Google Scholar] [CrossRef]
- Opar, D.; Williams, M.; Timmins, R.; Hickey, J.; Duhig, S.; Shield, A. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med. Sci. Sports Exerc. 2015, 47, 857–865. [Google Scholar] [CrossRef]
- Orchard, J.; Seward, H.; Orchard, J.; Driscoll, T. The speed-fatigue trade off in hamstring aetiology: Analysis of 2011 AFL injury data. Sport Health 2012, 30, 53. [Google Scholar]
- Orchard, J.W. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am. J. Sports Med. 2001, 29, 300–303. [Google Scholar] [CrossRef]
- Sugiura, Y.; Saito, T.; Sakuraba, K.; Sakuma, K.; Suzuki, E. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J. Orthop. Sports Phys. Ther. 2008, 38, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Gabbe, B.J.; Bennell, K.L.; Finch, C.F.; Wajswelner, H.; Orchard, J. Predictors of hamstring injury at the elite level of Australian football. Scand. J. Med. Sci. Sports 2006, 16, 7–13. [Google Scholar] [CrossRef]
- Roe, M.; Murphy, J.C.; Gissane, C.; Blake, C. Hamstring injuries in elite Gaelic football: An 8-year investigation to identify injury rates, time-loss patterns and players at increased risk. Br. J. Sports Med. 2018, 52, 982–988. [Google Scholar] [CrossRef]
- Freckleton, G.; Cook, J.; Pizzari, T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br. J. Sports Med. 2014, 48, 713–717. [Google Scholar] [CrossRef]
- Verrall, G.M.; Slavotinek, J.P.; Barnes, P.G.; Fon, G.T.; Spriggins, A.J. Clinical risk factors for hamstring muscle strain injury: A prospective study with correlation of injury by magnetic resonance imaging. Br. J. Sports Med. 2001, 35, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Malliaropoulos, N.; Bikos, G.; Meke, M.; Vasileios, K.; Valle, X.; Lohrer, H.; Maffulli, N.; Padhiar, N. Higher frequency of hamstring injuries in elite track and field athletes who had a previous injury to the ankle-a 17 years observational cohort study. J. Foot Ankle Res. 2018, 11, 7. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; van Dyk, N.; Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 2020, 54, 1081. [Google Scholar] [CrossRef]
- Woods, C.; Hawkins, R.D.; Maltby, S.; Hulse, M.; Thomas, A.; Hodson, A. The Football Association Medical Research Programme: An audit of injuries in professional football--analysis of hamstring injuries. Br. J. Sports Med. 2004, 38, 36–41. [Google Scholar] [CrossRef]
- Bennell, K.; Wajswelner, H.; Lew, P.; Schall-Riaucour, A.; Leslie, S.; Plant, D.; Cirone, J. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br. J. Sports Med. 1998, 32, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Burkett, L.N. Causative factors in hamstring strains. Med. Sci. Sports 1970, 2, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.; Wiseman, D. Strength, the common variable in hamstring strain. Athl. Train. 1972, 7, 36–40. [Google Scholar]
- Croisier, J.L.; Forthomme, B.; Namurois, M.H.; Vanderthommen, M.; Crielaard, J.M. Hamstring muscle strain recurrence and strength performance disorders. Am. J. Sports Med. 2002, 30, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Marsden, J.; Lord, S.; Garlick, D. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am. J. Sports Med. 1997, 25, 81–85. [Google Scholar] [CrossRef]
- Yamamoto, T. Relationship between hamstring strains and leg muscle strength. A follow-up study of collegiate track and field athletes. J. Sports Med. Phys. Fit. 1993, 33, 194–199. [Google Scholar]
- Yeung, S.S.; Suen, A.M.Y.; Yeung, E.W. A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. Br. J. Sports Med. 2009, 43, 589–594. [Google Scholar] [CrossRef]
- Devlin, L. Recurrent posterior thigh symptoms detrimental to performance in rugby union: Predisposing factors. Sports Med. 2000, 29, 273–287. [Google Scholar] [CrossRef]
- Mair, S.D.; Seaber, A.V.; Glisson, R.R.; Garrett, W.E., Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am. J. Sports Med. 1996, 24, 137–143. [Google Scholar] [CrossRef]
- Worrell, T.W.; Perrin, D.H. Hamstring muscle injury: The influence of strength, flexibility, warm-up, and fatigue. J. Orthop. Sports Phys. Ther. 1992, 16, 12–18. [Google Scholar] [CrossRef] [PubMed]
- De Vos, R.-J.; Reurink, G.; Goudswaard, G.-J.; Moen, M.H.; Weir, A.; Tol, J.L. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br. J. Sports Med. 2014, 48, 1377–1384. [Google Scholar] [CrossRef]
- Goossens, L.; Witvrouw, E.; Vanden Bossche, L.; De Clercq, D. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students. Eur. J. Sport Sci. 2015, 15, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to hamstring injuries in soccer: A prospective study using muscle functional magnetic resonance imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Gillquist, J. The frequency of muscle tightness and injuries in soccer players. Am. J. Sports Med. 1982, 10, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Hennessey, L.; Watson, A.W. Flexibility and posture assessment in relation to hamstring injury. Br. J. Sports Med. 1993, 27, 243–246. [Google Scholar] [CrossRef]
- Avrillon, S.; Guilhem, G.; Barthelemy, A.; Hug, F. Coordination of hamstrings is individual specific and is related to motor performance. J. Appl. Physiol. 2018, 125, 1069–1079. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Biceps femoris and semitendinosus—Teammates or competitors? New insights into hamstring injury mechanisms in male football players: A muscle functional MRI study. Br. J. Sports Med. 2014, 48, 1599–1606. [Google Scholar] [CrossRef]
- Venturelli, M.; Schena, F.; Zanolla, L.; Bishop, D. Injury risk factors in young soccer players detected by a multivariate survival model. J. Sci. Med. Sport 2011, 14, 293–298. [Google Scholar] [CrossRef]
- Smith, M.M.F.; Bonacci, J.; Mendis, M.D.; Christie, C.; Rotstein, A.; Hides, J.A. Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers. J. Sci. Med. Sport 2017, 20, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Duhig, S.; Shield, A.J.; Opar, D.; Gabbett, T.J.; Ferguson, C.; Williams, M. Effect of high-speed running on hamstring strain injury risk. Br. J. Sports Med. 2016, 50, 1536–1540. [Google Scholar] [CrossRef]
- Ruddy, J.D.; Pollard, C.W.; Timmins, R.G.; Williams, M.D.; Shield, A.J.; Opar, D.A. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br. J. Sports Med. 2018, 52, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Danneels, L.; Van Tiggelen, D.; Palmans, T.; Witvrouw, E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: A prospective study with electromyography time-series analysis during maximal sprinting. Am. J. Sports Med. 2017, 45, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Van Tiggelen, D.; Palmans, T.; Danneels, L.; Witvrouw, E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Lievens, E.; Van Vossel, K.; Van de Casteele, F.; Wezenbeek, E.; Deprez, D.; Matthys, S.; De Winne, B.; McNally, S.; De Graaf, W.; Murdoch, J.B.; et al. Muscle Fibre Typology as a Novel Risk Factor for Hamstring Strain Injuries in Professional Football (Soccer): A Prospective Cohort Study. Sports Med. 2022, 52, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Watsford, M.L.; Murphy, A.J.; McLachlan, K.A.; Bryant, A.L.; Cameron, M.L.; Crossley, K.M.; Makdissi, M. A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. Am. J. Sports Med. 2010, 38, 2058–2064. [Google Scholar] [CrossRef]
- Yagiz, G.; Dayala, V.K.; Williams, K.; Owen, J.A.; Kubis, H.-P. Alterations in biceps femoris long head fascicle length, Eccentric hamstring strength qualities and single-leg hop distance throughout the ninety minutes of TSAFT90 simulated football match. PLoS ONE 2022, 17, e0278222. [Google Scholar] [CrossRef]
- Blazevich, A. Effects of Physical Training and Detraining, Immobilisation, Growth and Aging on Human Fascicle Geometry. Sports Med. 2006, 36, 1003–1017. [Google Scholar] [CrossRef]
- Lieber, R.L.; Fridén, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Abe, T.; Kojima, K.; Stager, J.M. Skeletal muscle mass and muscular function in master swimmers is related to training distance. Rejuvenation Res. 2014, 17, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound 2015, 23, 166–173. [Google Scholar] [CrossRef]
- Akima, H.; Kano, Y.; Enomoto, Y.; Ishizu, M.; Okada, M.; Oishi, Y.; Katsuta, S.; Kuno, S. Muscle function in 164 men and women aged 20–84 yr. Med. Sci. Sports Exerc. 2001, 33, 220–226. [Google Scholar] [CrossRef]
- Freilich, R.J.; Kirsner, R.L.; Byrne, E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul. Disord. 1995, 5, 415–422. [Google Scholar] [CrossRef]
- Fukunaga, T.; Roy, R.R.; Shellock, F.G.; Hodgson, J.A.; Edgerton, V.R. Specific tension of human plantar flexors and dorsiflexors. J. Appl. Physiol. 1996, 80, 158–165. [Google Scholar] [CrossRef]
- Ikai, M.; Fukunaga, T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int. Z. Angew. Physiol. 1968, 26, 26–32. [Google Scholar] [CrossRef]
- Lieber, R.L. Skeletal Muscle Structure and Function: Inplications for Rehabilitation and Sports Medicine; Williams and Wilkins: Baltimore, MD, USA, 1992. [Google Scholar]
- Maughan, R.J.; Watson, J.S.; Weir, J. Strength and cross-sectional area of human skeletal muscle. J. Physiol. 1983, 338, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Moreau, N.G.; Simpson, K.N.; Teefey, S.A.; Damiano, D.L. Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Phys. Ther. 2010, 90, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Narici, M.V.; Landoni, L.; Minetti, A.E. Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Bouhlel, E.; Vandewalle, H.; Monod, H. Muscle mass as a factor limiting physical work. J. Appl. Physiol. 1988, 64, 1472–1479. [Google Scholar] [CrossRef]
- Strasser, E.M.; Draskovits, T.; Praschak, M.; Quittan, M.; Graf, A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age 2013, 35, 2377–2388. [Google Scholar] [CrossRef] [PubMed]
- Shida, N.; Yagiz, G.; Yamada, T. The Effects of Exergames on Muscle Architecture: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 10325. [Google Scholar] [CrossRef]
- Yagiz, G.; Akaras, E.; Kubis, H.-P.; Owen, J.A. The Effects of Resistance Training on Architecture and Volume of the Upper Extremity Muscles: A Systematic Review of Randomised Controlled Trials and Meta-Analyses. Appl. Sci. 2022, 12, 1593. [Google Scholar] [CrossRef]
- Abe, T.; Fukashiro, S.; Harada, Y.; Kawamoto, K. Relationship between sprint performance and muscle fascicle length in female sprinters. J. Physiol. Anthropol. Appl. Human Sci. 2001, 20, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Anousaki, E.; Zaras, N.; Stasinaki, A.N.; Panidi, I.; Terzis, G.; Karampatsos, G. Effects of a 25-Week Periodized Training Macrocycle on Muscle Strength, Power, Muscle Architecture, and Performance in Well-Trained Track and Field Throwers. J. Strength Cond. Res. 2021, 35, 2728–2736. [Google Scholar] [CrossRef]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef]
- Ikebukuro, T.; Kubo, K.; Okada, J.; Yata, H.; Tsunoda, N. The relationship between muscle thickness in the lower limbs and competition performance in weightlifters and sprinters. Jpn. J. Phys. Fit. Sports Med. 2011, 60, 401–411. [Google Scholar] [CrossRef]
- Kumagai, K.; Abe, T.; Brechue, W.; Ryushi, T.; Takano, S.; Mizuno, M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J. Appl. Physiol. 2000, 88, 811–816. [Google Scholar] [CrossRef]
- Mangine, G.T.; Fukuda, D.H.; LaMonica, M.B.; Gonzalez, A.M.; Wells, A.J.; Townsend, J.R.; Jajtner, A.R.; Fragala, M.S.; Stout, J.R.; Hoffman, J.R. Influence of gender and muscle architecture asymmetry on jump and sprint performance. J. Sports Sci. Med. 2014, 13, 904–911. [Google Scholar]
- Mangine, G.T.; Fukuda, D.H.; Townsend, J.R.; Wells, A.J.; Gonzalez, A.M.; Jajtner, A.R.; Bohner, J.D.; LaMonica, M.; Hoffman, J.R.; Fragala, M.S.; et al. Sprinting performance on the Woodway Curve 3.0TM is related to muscle architecture. Eur. J. Sport. Sci. 2015, 15, 606–614. [Google Scholar] [CrossRef]
- Nasirzade, A.; Ehsanbakhsh, A.; Argavani, H.; Sobhkhiz, A.; Aliakbari, M. Selected anthropometrical, muscular architecture, and biomechanical variables as predictors of 50-m performance of front crawl swimming in young male swimmers. Sci. Sports 2014, 29, e75–e81. [Google Scholar] [CrossRef]
- Nasirzade, A.; Ehsanbakhsh, A.; Ilbeygi, S.; Sobhkhiz, A.; Argavani, H.; Aliakbari, M. Relationship between sprint performance of front crawl swimming and muscle fascicle length in young swimmers. J. Sports Sci. Med. 2014, 13, 550–556. [Google Scholar] [PubMed]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Changes in muscle architecture and performance during a competitive season in female softball players. J. Strength Cond. Res. 2012, 26, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Zaras, N.; Stasinaki, A.-N.; Terzis, G. Biological Determinants of Track and Field Throwing Performance. J. Funct. Morphol. Kinesiol. 2021, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Zaras, N.D.; Stasinaki, A.N.; Methenitis, S.K.; Krase, A.A.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Rate of Force Development, Muscle Architecture, and Performance in Young Competitive Track and Field Throwers. J. Strength Cond. Res. 2016, 30, 81–92. [Google Scholar] [CrossRef]
- Hides, J.; Frazer, C.; Blanch, P.; Grantham, B.; Sexton, C.; Mendis, M.D. Clinical utility of measuring the size of the lumbar multifidus and quadratus lumborum muscles in the Australian football league setting: A prospective cohort study. Phys. Ther. Sport. 2020, 46, 186–193. [Google Scholar] [CrossRef]
- Hides, J.A.; Brown, C.T.; Penfold, L.; Stanton, W.R. Screening the lumbopelvic muscles for a relationship to injury of the quadriceps, hamstrings, and adductor muscles among elite Australian Football League players. J. Orthop. Sports Phys. Ther. 2011, 41, 767–775. [Google Scholar] [CrossRef]
- Hides, J.A.; Stanton, W.R. Can motor control training lower the risk of injury for professional football players? Med. Sci. Sports Exerc. 2014, 46, 762–768. [Google Scholar] [CrossRef]
- Hides, J.A.; Stanton, W.R. Predicting football injuries using size and ratio of the multifidus and quadratus lumborum muscles. Scand. J. Med. Sci. Sports 2017, 27, 440–447. [Google Scholar] [CrossRef]
- Hides, J.A.; Stanton, W.R.; Mendis, M.D.; Franettovich Smith, M.M.; Sexton, M.J. Small Multifidus Muscle Size Predicts Football Injuries. Orthop. J. Sports Med. 2014, 2, 2325967114537588. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Kang, H.W.; Kim, D.Y.; Kim, Y.T.; Lee, D.Y.; Lee, D.-O. Relationship between calf muscle cross-sectional area and ankle fracture. Foot Ankle Surg. 2020, 27, 860–864. [Google Scholar] [CrossRef]
- Mangine, G.T.; Hoffman, J.R.; Gonzalez, A.M.; Jajtner, A.R.; Scanlon, T.; Rogowski, J.P.; Wells, A.J.; Fragala, M.S.; Stout, J.R. Bilateral differences in muscle architecture and increased rate of injury in national basketball association players. J. Athl. Train. 2014, 49, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, G.; Shida, N.; Kuruma, H.; Furuta, M.; Morimoto, K.; Yamada, M.; Uchiyama, T.; Kubis, H.-P.; Owen, J.A. Rugby Players Exhibit Stiffer Biceps Femoris, Lower Biceps Femoris Fascicle Length to Knee Extensors, and Knee Flexors to Extensors Muscle Volume Ratios Than Active Controls. Int. J. Sports Physiol. Perform. 2023, 18, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Krystofiak, J.; Asselstine, S.; Toto, D.; Rybak, K.; Zhao, Y.; Misuraco, A.; McCune, D. Biceps Femoris Long Head Fascicle Length Not Associated With Hamstring Injury Risk in NCAA Football Athletes. Clin. J. Sport. Med. 2024, 35, e80–e82. [Google Scholar] [CrossRef]
- Schuermans, J.; Witvrouw, E.; Wezenbeek, E.; Lievens, E. Hamstring muscle fibre typology is not associated with hamstring strain injury history or performance in amateur male soccer players: A retrospective magnetic resonance spectroscopy study. Biol. Sport. 2023, 40, 1177–1186. [Google Scholar] [CrossRef]
- Bilston, L.E.; Bolsterlee, B.; Nordez, A.; Sinha, S. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo. J. Appl. Physiol. 2019, 126, 1454–1464. [Google Scholar] [CrossRef]
- Ando, R.; Sato, S.; Hirata, N.; Tanimoto, H.; Imaizumi, N.; Suzuki, Y.; Hirata, K.; Akagi, R. Relationship between resting medial gastrocnemius stiffness and drop jump performance. J. Electromyogr. Kinesiol. 2021, 58, 102549. [Google Scholar] [CrossRef]
- Creze, M.; Nordez, A.; Soubeyrand, M.; Rocher, L.; Maître, X.; Bellin, M.F. Shear wave sonoelastography of skeletal muscle: Basic principles, biomechanical concepts, clinical applications, and future perspectives. Skelet. Radiol. 2018, 47, 457–471. [Google Scholar] [CrossRef]
- Barrett, J.M.; Malakoutian, M.; Fels, S.; Brown, S.H.M.; Oxland, T.R. Muscle short-range stiffness behaves like a maxwell element, not a spring: Implications for joint stability. PLoS ONE 2024, 19, e0307977. [Google Scholar] [CrossRef]
- Brazier, J.; Maloney, S.; Bishop, C.; Read, P.J.; Turner, A.N. Lower Extremity Stiffness: Considerations for Testing, Performance Enhancement, and Injury Risk. J. Strength Cond. Res. 2019, 33, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Ferenczi, M.A.; Bershitsky, S.Y.; Koubassova, N.A.; Kopylova, G.V.; Fernandez, M.; Narayanan, T.; Tsaturyan, A.K. Why muscle is an efficient shock absorber. PLoS ONE 2014, 9, e85739. [Google Scholar] [CrossRef]
- Needle, A.R.; Baumeister, J.; Kaminski, T.W.; Higginson, J.S.; Farquhar, W.B.; Swanik, C.B. Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand. J. Med. Sci. Sports 2014, 24, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Wiegner, A.W.; Watts, R.L. Elastic properties of muscles measured at the elbow in man: I. Normal controls. J. Neurol. Neurosurg. Psychiatry 1986, 49, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-P.; Liu, C.-L.; Zhang, Z.-J. Feasibility of using a portable MyotonPRO device to quantify the elastic properties of skeletal muscle. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2022, 28, e934121. [Google Scholar] [CrossRef]
- Milerská, I.; Lhotská, L.; Macaš, M. Biomechanical Parameters of Muscles, Objective Assessment Using MyotonPRO. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1522–1525. [Google Scholar]
- Bizzini, M.; Mannion, A.F. Reliability of a new, hand-held device for assessing skeletal muscle stiffness. Clin. Biomech. 2003, 18, 459–461. [Google Scholar] [CrossRef]
- Tantipoon, P.; Praditpod, N.; Pakleppa, M.; Li, C.; Huang, Z. Characterization of Flexor Digitorum Superficialis Muscle Stiffness Using Ultrasound Shear Wave Elastography and MyotonPRO: A Cross-Sectional Study Investigating the Correlation between Different Approaches. Appl. Sci. 2023, 13, 6384. [Google Scholar] [CrossRef]
- Chuang, L.L.; Wu, C.Y.; Lin, K.C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Pruyn, E.C.; Watsford, M.L.; Murphy, A.J. Validity and reliability of three methods of stiffness assessment. J. Sport. Health Sci. 2016, 5, 476–483. [Google Scholar] [CrossRef]
- Zinder, S.M.; Padua, D.A. Reliability, validity, and precision of a handheld myometer for assessing in vivo muscle stiffness. J. Sport. Rehabil. 2011, 20, 2010_0051. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Peipsi, A.; Stokes, M.; Knicker, A.; Abeln, V. Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med. Biol. Eng. Comput. 2015, 53, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Otsuka, S.; Okubo, T.; Takeuchi, T.; Fukushige, K.; Naito, M. Assessing site-specificity of the biomechanical properties of hamstring aponeuroses using MyotonPRO: A cadaveric study. Clin. Biomech. 2024, 114, 106230. [Google Scholar] [CrossRef]
- Feng, Y.N.; Li, Y.P.; Liu, C.L.; Zhang, Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018, 8, 17064. [Google Scholar] [CrossRef]
- Lovell, R.; Knox, M.; Weston, M.; Siegler, J.C.; Brennan, S.; Marshall, P.W.M. Hamstring injury prevention in soccer: Before or after training? Scand. J. Med. Sci. Sports 2018, 28, 658–666. [Google Scholar] [CrossRef]
- Howick, J.; Chalmers, I.; Glasziou, P. OCEBM Levels of Evidence Working Group ‘The Oxford 2011 Levels of Evidence’: Oxford Cent Evidence-Based Medicine; University of Oxford: Oxford, UK, 2011. [Google Scholar]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomised trials. PLOS Med. 2025, 22, e1004587. [Google Scholar] [CrossRef]
- Seyedahmadi, M.; Minoonejad, H.; Karimizadeh Ardakani, M.; Heidari, Z.; Bayattork, M.; Akbari, H. What are gender differences in lower limb muscle activity during jump-landing tasks? A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Taddei, U.; Matias, A.; Ribeiro, F.; Bus, S.; Sacco, I. Effects of a foot strengthening program on foot muscle morphology and running mechanics: A proof-of-concept, single-blind randomized controlled trial. Phys. Ther. Sport. 2020, 42, 107–115. [Google Scholar] [CrossRef]
- Coratella, G.; Milanese, C.; Schena, F. Unilateral eccentric resistance training: A direct comparison between isokinetic and dynamic constant external resistance modalities. Eur. J. Sport. Sci. 2015, 15, 720–726. [Google Scholar] [CrossRef]
- Noğay, A.E.K.; Özen, M. Birinci basamak için fiziksel aktivite anketinin Türkçe uyarlamasının geçerlilik ve güvenilirliği. Konuralp Med. J. 2019, 11, 1–8. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Evangelidis, P.E.; Shan, X.; Otsuka, S.; Yang, C.; Yamagishi, T.; Kawakami, Y. Fatigue-induced changes in hamstrings’ active muscle stiffness: Effect of contraction type and implications for strain injuries. Eur. J. Appl. Physiol. 2023, 123, 833–846. [Google Scholar] [CrossRef]
- Trybulski, R.; Kużdżał, A.; Wilk, M.; Więckowski, J.; Fostiak, K.; Muracki, J. Reliability of MyotonPro in measuring the biomechanical properties of the quadriceps femoris muscle in people with different levels and types of motor preparation. Front. Sports Act. Living 2024, 6, 1453730. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qin, K.; Tang, C.; Zhu, Y.; Klein, C.S.; Zhang, Z.; Liu, C. Assessment of Passive Stiffness of Medial and Lateral Heads of Gastrocnemius Muscle, Achilles Tendon, and Plantar Fascia at Different Ankle and Knee Positions Using the MyotonPRO. Med. Sci. Monit. 2018, 24, 7570–7576. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Lin, L.; Liang, H.; Lin, M.; Deng, W.; Zhan, X.; Fu, X.; Liu, C. Gender difference in effects of proprioceptive neuromuscular facilitation stretching on flexibility and stiffness of hamstring muscle. Front. Physiol. 2022, 13, 918176. [Google Scholar] [CrossRef]
- Mjølsnes, R.; Arnason, A.; østhagen, T.; Raastad, T.; Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand. J. Med. Sci. Sports 2004, 14, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Burrows, A.P.; Cleather, D.; Mahaffey, R.; Cimadoro, G. Kinetic and Electromyographic Responses to Traditional and Assisted Nordic Hamstring Exercise. J. Strength Cond. Res. 2020, 34, 2715–2724. [Google Scholar] [CrossRef] [PubMed]
- Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef] [PubMed]
- Pieters, D.; Witvrouw, E.; Steyaert, A.; Vanden Bossche, L.; Schuermans, J.; Freitas, S.; Wezenbeek, E. The Time-Course of Hamstring Muscle Passive Stiffness and Perceived Tightness After Strenuous Exercise: Is It Time to Start Using Localized Stiffness Measurements? J. Strength Cond. Res. 2025, 39, e1279–e1286. [Google Scholar] [CrossRef]
- Zhi, L.; Miyamoto, N.; Naito, H. Passive Muscle Stiffness of Biceps Femoris is Acutely Reduced after Eccentric Knee Flexion. J. Sports Sci. Med. 2022, 21, 487–492. [Google Scholar] [CrossRef]
- Kawama, R.; Takahashi, K.; Nobukawa, R.; Wakahara, T. Passive stiffness of the biarticular hamstring muscles could acutely decrease after eccentric-only resistance exercise, but not after passive muscle lengthening: Effects of exercise load. J. Sports Sci. 2025, 43, 2740–2753. [Google Scholar] [CrossRef]
- Daggfeldt, K. Muscle Bulging Reduces Muscle Force and Limits The Maximal Effective Muscle Size. J. Mech. Med. Biol. 2006, 6, 229–239. [Google Scholar] [CrossRef]
- Ducomps, C.; Mauriège, P.; Darche, B.; Combes, S.; Lebas, F.; Doutreloux, J.P. Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: Role of collagen. Acta Physiol. Scand. 2003, 178, 215–224. [Google Scholar] [CrossRef]
- Gillies, A.R.; Lieber, R.L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011, 44, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Al Najjar, A.; Shield, A.J. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury. Scand. J. Med. Sci. Sports 2016, 26, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef]
- Suskens, J.J.M.; Secondulfo, L.; Kiliç, Ö.; Hooijmans, M.T.; Reurink, G.; Froeling, M.; Nederveen, A.J.; Strijkers, G.J.; Tol, J.L. Effect of two eccentric hamstring exercises on muscle architectural characteristics assessed with diffusion tensor MRI. Scand. J. Med. Sci. Sports 2023, 33, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Magdalena, P.-G.; Bartłomiej, B.; Robert, T.; Małgorzata, S.; Hsing-Kuo, W.; Sebastian, K. Acute fatigue-induced alterations in hamstring muscle properties after repeated Nordic hamstring exercises. Sci. Progress. 2024, 107, 00368504241242934. [Google Scholar] [CrossRef] [PubMed]
- Pieters, D.; Witvrouw, E.; Steyaert, A.; Vanden Bossche, L.; Schuermans, J.; Wezenbeek, E. The impact of a 10-week Nordic hamstring exercise programme on hamstring muscle stiffness, a randomised controlled trial using shear wave elastography. J. Sports Sci. 2024, 42, 1579–1588. [Google Scholar] [CrossRef]
- Seymore, K.D.; Domire, Z.J.; DeVita, P.; Rider, P.M.; Kulas, A.S. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur. J. Appl. Physiol. 2017, 117, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Vatovec, R.; Marušič, J.; Marković, G.; Šarabon, N. Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J. Sports Sci. 2021, 39, 2370–2377. [Google Scholar] [CrossRef]
- Ley, C.D.; Valdes, E.M.; Murtagh, C.F.; Power, J.; Nobes, L.; Drust, B. MyotonPRO Is Not Comparable to Shear Wave Elastography in the Measurement of Rectus Femoris Muscle Stiffness due to Interference of Subcutaneous Adipose Tissue. Scand. J. Med. Sci. Sports 2025, 35, e70095. [Google Scholar] [CrossRef] [PubMed]



| Age (Years) | Body-Mass (kg) | Height (cm) | IPAQ MET Score | Gender | Dominant Side | |
|---|---|---|---|---|---|---|
| NHE Group | 20.00 ± 1.04 | 61.92 ± 11.35 | 167.50 ± 10.29 | 9117 ± 4932 | 8 females, 4 males | 1 left, 11 right |
| Control Group | 19.83 ± 0.72 | 64.08 ± 13.21 | 169.25 ± 10.08 | 8941 ± 3495 | 8 females, 4 males | 12 right |
| Significance between groups | p = 0.653 | p = 0.671 | p = 0.678 | p = 0.920 | N/A | N/A |
| (a) | ||||
| Pre-Test | Post-Test | Changes Between Pre-Test and Post-Test | p-Value and Effect Sizes for Within-Groups | |
| NHE Group | 213.75 ± 40.27 | 201.75 ± 40.64 | −12.00 ± 29.77 | p = 0.696, g = 0.30 |
| Control Group | 219.42 ± 53.75 | 222.25 ± 45.92 | 2.83 ± 18.51 | p = 0.108, g = 0.06 |
| p-value and effect sizes for between-groups | p = 0.773, g = 0.30 | p = 0.259, g = 0.48 | p = 0.157, g = 0.37 | N/A |
| (b) | ||||
| Pre-Test | Post-Test | Changes Between Pre-Test and Post-Test | p-Value and Effect Sizes for Within-Groups | |
| NHE Group | 188.58 ± 66.97 | 199.83 ± 72.24 | 11.25 ± 16.29 | p = 0.057, g = 0.16 |
| Control Group | 208.67 ± 55.21 | 210.33 ± 55.77 | 1.67 ± 22.12 | p = 0.769, g = 0.03 |
| p-value and effect sizes for between-groups | p = 0.431, g = 0.33 | p = 0.694, g = 0.16 | p = 0.240, g = 0.49 | N/A |
| (c) | ||||
| Pre-Test | Post-Test | Changes Between Pre-Test and Post-Test | p-Value and Effect Sizes for Within-Groups | |
| NHE Group | 201.17 ± 50.85 | 200.79 ± 53.80 | −0.38 ± 16.79 | p = 0.934, g = 0.01 |
| Control Group | 214.04 ± 51.91 | 216.29 ± 49.26 | 2.25 ± 14.17 | p = 0.621, g = 0.04 |
| p-value and effect sizes for between-groups | p = 0.546, g = 0.25 | p = 0.469, g = 0.30 | p = 0.683, g = 0.17 | N/A |
| (a) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.664, R = 0.094 | R2 = 0.01 |
| Body-mass | p = 0.233, R = 0.253 | R2 = 0.06 |
| Height | p = 0.015 *, R = 0.491 | R2 = 0.24 |
| Gender | p < 0.001 **, R = 0.645 | R2 = 0.42 |
| Physical activity level (IPAQ MET score) | p = 0.456, R = 0.160 | R2 = 0.03 |
| (b) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.728, R = 0.075 | R2 = 0.01 |
| Body-mass | p = 0.301, R = 0.220 | R2 = 0.05 |
| Height | p = 0.064, R = 0.385 | R2 = 0.15 |
| Gender | p = 0.003 *, R = 0.584 | R2 = 0.34 |
| Physical activity level (IPAQ MET score) | p = 0.298, R = 0.222 | R2 = 0.05 |
| (c) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.683, R = 0.088 | R2 = 0.01 |
| Body-mass | p = 0.242, R = 0.248 | R2 = 0.06 |
| Height | p = 0.025 *, R = 0.456 | R2 = 0.21 |
| Gender | p < 0.001 **, R = 0.419 | R2 = 0.39 |
| Physical activity level (IPAQ MET score) | p = 0.333, R = 0.207 | R2 = 0.04 |
| (d) | ||
| Gender and height for pre-test BF stiffness | p = 0.003 *, R = 0.646 | R2 = 0.42 |
| Gender and height for pre-test ST stiffness | p = 0.009 *, R = 0.599 | R2 = 0.36 |
| Gender and height for pre-test overall hamstring stiffness | p = 0.003 *, R = 0.654 | R2 = 0.43 |
| (e) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.170, R = 0.424 | R2 = 0.18 |
| Body-mass | p = 0.939, R = 0.025 | R2 = 0.001 |
| Height | p = 0.597, R = 0.170 | R2 = 0.03 |
| Gender | p = 0.630, R = 0.155 | R2 = 0.02 |
| Physical activity level (IPAQ MET score) | p = 0.674, R = 0.136 | R2 = 0.02 |
| (f) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.655, R = 0.144 | R2 = 0.02 |
| Body-mass | p = 0.277, R = 0.341 | R2 = 0.12 |
| Height | p = 0.030 *, R = 0.625 | R2 = 0.39 |
| Gender | p = 0.333, R = 0.306 | R2 = 0.09 |
| Physical activity level (IPAQ MET score) | p = 0.632, R = 0.154 | R2 = 0.02 |
| (g) | ||
| p and R-Values | R2 Values | |
| Age | p = 0.334, R = 0.306 | R2 = 0.01 |
| Body-mass | p = 0656., R = 0.144 | R2 = 0.02 |
| Height | p = 0.138, R = 0.454 | R2 = 0.21 |
| Gender | p = 0.368, R = 0.286 | R2 = 0.01 |
| Physical activity level (IPAQ MET score) | p = 0.543, R = 0.195 | R2 = 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagiz, G.; Monleón, C.; Akaras, E.; Adanir, S.; Liébana, E. Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial. J. Clin. Med. 2025, 14, 8677. https://doi.org/10.3390/jcm14248677
Yagiz G, Monleón C, Akaras E, Adanir S, Liébana E. Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial. Journal of Clinical Medicine. 2025; 14(24):8677. https://doi.org/10.3390/jcm14248677
Chicago/Turabian StyleYagiz, Gokhan, Cristina Monleón, Esedullah Akaras, Sena Adanir, and Encarnación Liébana. 2025. "Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial" Journal of Clinical Medicine 14, no. 24: 8677. https://doi.org/10.3390/jcm14248677
APA StyleYagiz, G., Monleón, C., Akaras, E., Adanir, S., & Liébana, E. (2025). Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial. Journal of Clinical Medicine, 14(24), 8677. https://doi.org/10.3390/jcm14248677

