Cognitive Status Classification Among Older Adults: A Study from SHARE-HCAP
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Procedure
2.2. Instruments
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Regression Analyses
4. Discussion
4.1. Limitations and Strengths
4.2. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SA | Successful Ageing |
| SOC | Selection Optimization and Compensation (SOC) |
| Comprehensive PCP | Comprehensive Preventive Corrective Proactive |
| QoL | Quality of Life |
| MCI | Mild Cognitive Impairment |
| AD | Alzheimer’s Disease |
| SCI | Severe Cognitive Impairment |
| SHARE | Survey of Health, Ageing and Retirement in Europe |
| SHARE-HCAP | Survey of Health, Ageing and Retirement in Europe and Harmonized Cognitive Assessment Protocol association |
| ISCED-97 | International Standard Classification of Education |
References
- National Institute of Statistics (INE). Population Projections: Years 2024–2074; INE: Madrid, Spain, 2024; Available online: https://www.ine.es/dyngs/Prensa/en/PROP20242074.htm (accessed on 23 September 2024).
- World Health Organization (WHO). Ageing and Health; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 23 September 2024).
- Gaviano, L.; Pili, R.; Petretto, A.D.; Berti, R.; Carrogu, G.P.; Pinna, M.; Petretto, D.R. Definitions of ageing according to the perspective of the psychology of ageing: A scoping review. Geriatrics 2024, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Baltes, P.B.; Baltes, M.M. Psychological perspectives on successful aging: The model of selective optimization with compensation. In Successful Aging: Perspectives from the Behavioral Sciences; Baltes, P.B., Baltes, M.M., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 1–34. [Google Scholar]
- Kahana, E.; Kahana, B.; Lee, J.E. Proactive approaches to successful aging: One clear path through the forest. Gerontology 2014, 60, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Freund, A.M.; Baltes, P.B. Life-management strategies of selection, optimization and compensation: Measurement by self-report and construct validity. J. Pers. Soc. Psychol. 2002, 82, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Hussenoeder, F.S.; Conrad, I.; Roehr, S.; Fuchs, A.; Pentzek, M.; Bickel, H.; Moesch, E.; Weyerer, S.; Werle, J.; Wiese, B.; et al. Mild cognitive impairment and quality of life in the oldest old: A closer look. Qual. Life Res. 2020, 29, 1675–1683. [Google Scholar] [CrossRef]
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age Ageing 2022, 51, afac173. [Google Scholar] [CrossRef]
- Corbo, I.; Marselli, G.; Di Ciero, V.; Casagrande, M. The protective role of cognitive reserve in mild cognitive impairment: A systematic review. J. Clin. Med. 2023, 12, 1759. [Google Scholar] [CrossRef]
- Öksüz, N.; Ghouri, R.; Taşdelen, B.; Uludüz, D.; Özge, A. Mild cognitive impairment progression and alzheimer’s disease risk: A comprehensive analysis of 3553 cases over 203 months. J. Clin. Med. 2024, 13, 518. [Google Scholar] [CrossRef]
- Trambaiolli, L.R.; Cassani, R.; Mehler, D.M.A.; Falk, T.H. Neurofeedback and the aging brain: A systematic review of training protocols for dementia and mild cognitive impairment. Front. Aging Neurosci. 2021, 13, 682683. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2022, 18, 700–789. [Google Scholar] [CrossRef]
- Song, W.-X.; Wu, W.-W.; Zhao, Y.-Y.; Xu, H.-L.; Chen, G.-C.; Jin, S.-Y.; Chen, J.; Xian, S.-X.; Liang, J.-H. Evidence from a meta-analysis and systematic review reveals the global prevalence of mild cognitive impairment. Front. Aging Neurosci. 2023, 15, 1227112. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.; Ruano, L.; Carvalho, O.P.; Barros, H. Global cognitive impairment prevalence and incidence in community dwelling older adults-a systematic review. Geriatrics 2020, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Dementia; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 23 October 2024).
- American Psychiatric Association (APA). Neurocognitive disorders. In Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Harvey, P.D. Domains of cognition and their assessment. Dialogues Clin. Neurosci. 2019, 21, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Gyasi, R.M.; Chen, L.-K.; Peltzer, K.; König, H.-H. Factors associated with mild cognitive impairment and dementia amongst the oldest old: Findings based on the nationally representative “old age in Germany (D80+)” study. Aging Clin. Exp. Res. 2025, 37, 110. [Google Scholar] [CrossRef]
- Kim, Y. Long-term Distributional Prediction of Cognitive Function. Seoul. J. Econ. 2024, 37, 75–98. [Google Scholar] [CrossRef]
- Weaver, D.F. Thirty risk factors for alzheimer’s disease unified by a common neuroimmune-neuroinflammation mechanism. Brain Sci. 2023, 14, 41. [Google Scholar] [CrossRef]
- Wolfova, K.; Kucera, M.; Cermakova, P. Risk and protective factors of neurocognitive disorders in older adults in central and eastern europe: A systematic review of population-based studies. PLoS ONE 2021, 16, e0260549. [Google Scholar] [CrossRef]
- Khondoker, M.; Macgregor, A.; O Bachmann, M.; Hornberger, M.; Fox, C.; Shepstone, L. Multimorbidity pattern and risk of dementia in later life: An 11-year follow-up study using a large community cohort and linked electronic health records. J. Epidemiol. Community Health 2023, 77, 285–292. [Google Scholar] [CrossRef]
- Trevisan, C.; Siviero, P.; Limongi, F.; Noale, M.; Maggi, S. Health-related predictors of changes in cognitive status in community-dwelling older individuals. Front. Aging Neurosci. 2022, 14, 876359. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; de Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Alexopoulos, G.S.; Meyers, B.S.; Young, R.C.; Campbell, S.; Silbersweig, D.; Charlson, M. ‘Vascular depression’ hypothesis. Arch. Gen. Psychiatry 1997, 54, 915–922. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/risk-reduction-of-cognitive-decline-and-dementia (accessed on 20 November 2024).
- Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Marselli, G.; Favieri, F.; Forte, G.; Corbo, I.; Agostini, F.; Guarino, A.; Casagrande, M. The protective role of cognitive reserve: An empirical study in mild cognitive impairment. BMC Psychol. 2024, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- SHARE-ERIC. Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 8 [Dataset], Release version 9.0.0; SHARE-ERIC: Munich, Germany, 2024. [Google Scholar] [CrossRef]
- SHARE-ERIC. Survey of Health, Ageing and Retirement in Europe-Harmonized Cognitive Assessment Protocol (SHARE-HCAP1) [Dataset]; SHARE-ERIC: Munich, Germany, 2025; Version: 1.0.0. [Google Scholar] [CrossRef]
- Bethmann, A.; Bergmann, M.; Scherpenzeel, A. SHARE Sampling Guide–Wave 8; SHARE Working Paper Series; no. 33; SHARE-ERIC: Munich, Germany, 2019. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). International Standard Classification of Education: ISCED 1997; UNESCO Institute for Statistics: Montreal, QC, Canada, 2006; Available online: http://www.uis.unesco.org/Library/Documents/isced97-en.pdf (accessed on 17 February 2025).
- Prince, M.J.; Reischies, F.; Beekman, A.T.F.; Fuhrer, R.; Jonker, C.; Kivela, S.-L.; Lawlor, B.A.; Lobo, A.; Magnusson, H.; Fichter, M.; et al. Development of the EURO-D scale--a european, union initiative to compare symptoms of depression in 14 european centres. Br. J. Psychiatry 1999, 174, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Hyde, M.; Wiggins, R.D.; Higgs, P.; Blane, D.B. A measure of quality of life in early old age: The theory, development and properties of a needs satisfaction model (CASP-19). Aging Ment. Health 2003, 7, 186–194. [Google Scholar] [CrossRef]
- Hughes, M.E.; Waite, L.J.; Hawkley, L.C.; Cacioppo, J.T. A short scale for measuring loneliness in large surveys: Results from two population-based studies. Res. Aging 2004, 26, 655–672. [Google Scholar] [CrossRef]
- Russell, D.; Peplau, L.A.; Ferguson, M.L. Developing a measure of loneliness. J. Pers. Assess. 1978, 42, 290–294. [Google Scholar] [CrossRef]
- Russell, D.; Peplau, L.A.; Cutrona, C.E. The revised UCLA loneliness scale: Concurrent and discriminant validity evidence. J. Pers. Soc. Psychol. 1980, 39, 472–480. [Google Scholar] [CrossRef]
- Torres, Z.; Oliver, A.; Tomás, J.M. Mapping protective performance of social network types on health and quality of life in older people in european regions. J. Aging Health 2022, 35, 500–510. [Google Scholar] [CrossRef]
- Börsch-Supan, A.; Douhou, S.; Fernández, I.; Otero, M.C.; Release Note to Preliminary SHARE-HCAP Classification of Mild and Severe Cognitive Impairment in Five European Countries. Munich Research Institute for the Economics of Aging and SHARE Analyses. 2024. Available online: https://www.mea-share.eu/wp-content/uploads/2024/05/04-2024.pdf (accessed on 15 May 2025).
- IBM Corp. IBM SPSS Statistics for Windows, Version 28.0. [software]. IBM Corp: Armonk, NY, USA, 2021.
- Chowdhury, S.R.; Das, D.C.; Sunna, T.C.; Beyene, J.; Hossain, A. Global and regional prevalence of multimorbidity in the adult population in community settings: A systematic review and meta-analysis. eClinicalMedicine 2023, 57, 101860. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, W.; Li, M.; Li, X.; Yang, T.; Li, C.; Yan, H.; Jia, X.; Hu, Z.; Wang, Y. Association between multimorbidity patterns and disability among older people covered by long-term care insurance in Shanghai, China. BMC Public Health 2021, 21, 418. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Zhou, Z.; Kan, M.M.; Chan, D.H.; Wong, A.C.; Mok, K.H.; Lam, F.M.; Chan, S.C.; Cheung, C.K.; Yeung, M.; et al. Modifiable risk factors for mild cognitive impairment among cognitively normal community-dwelling older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2024, 99, 102350. [Google Scholar] [CrossRef] [PubMed]
- Mura, T.; Coley, N.; Amieva, H.; Berr, C.; Gabelle, A.; Ousset, P.; Vellas, B.; Andrieu, S.; GuidAge/DSA Study Group. Cognitive decline as an outcome and marker of progression toward dementia, in early preventive trials. Alzheimers Dement. 2021, 18, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Payton, N.M.; Marseglia, A.; Grande, G.; Fratiglioni, L.; Kivipelto, M.; Bäckman, L.; Laukka, E.J. Trajectories of cognitive decline and dementia development: A 12-year longitudinal study. Alzheimers Dement. 2023, 19, 857–867. [Google Scholar] [CrossRef]
- Shimada, H.; Doi, T.; Lee, S.; Makizako, H. Reversible predictors of reversion from mild cognitive impairment to normal cognition: A 4-year longitudinal study. Alzheimers Res. Ther. 2019, 11, 24. [Google Scholar] [CrossRef]
- Lee, A.T.C.; Richards, M.; Chan, W.C.; Chiu, H.F.K.; Lee, R.S.Y.; Lam, L.C.W. Association of daily intellectual activities with lower risk of incident dementia among older Chinese adults. JAMA Psychiatry 2018, 75, 697–703. [Google Scholar] [CrossRef]
- Kelly, M.E.; Duff, H.; Kelly, S.; Power, J.E.M.; Brennan, S.; Lawlor, B.A.; Loughrey, D.G. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: A systematic review. Syst. Rev. 2017, 6, 259. [Google Scholar] [CrossRef]
- Fernández, R.F.; Martín, J.I.; Antón, M.A.M. Depression as a risk factor for dementia: A meta-analysis. J. Neuropsychiatry Clin. Neurosci. 2024, 36, 101–109. [Google Scholar] [CrossRef]
- Rahman, A.; Schelbaum, E.; Hoffman, K.; Diaz, I.; Hristov, H.; Andrews, R.; Jett, S.; Jackson, H.; Lee, A.; Sarva, H.; et al. Sex-driven modifiers of Alzheimer risk: A multimodality brain imaging study. Neurology 2020, 95, e166–e178. [Google Scholar] [CrossRef]
- Yoo, J.E.; Shin, D.W.; Han, K.; Kim, D.; Won, H.; Lee, J.; Kim, S.; Nam, G.E.; Park, H.S. Female reproductive factors and the risk of dementia: A nationwide cohort study. Eur. J. Neurol. 2020, 27, 1448–1458. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.; Ma, T.; He, S.; Li, J.; Sun, X. Association between air pollution and lifestyle with the risk of developing mild cognitive impairment and dementia in individuals with cardiometabolic diseases. Sci. Rep. 2025, 15, 2089. [Google Scholar] [CrossRef]
- Shen, C.; Rolls, E.T.; Cheng, W.; Kang, J.; Dong, G.; Xie, C.; Zhao, X.-M.; Sahakian, B.J.; Feng, J. Associations of social isolation and loneliness with later dementia. Neurology 2022, 99, e164–e175. [Google Scholar] [CrossRef]
- Thorp, J.G.; Mitchell, B.L.; Gerring, Z.F.; Ong, J.-S.; Gharahkhani, P.; Derks, E.M.; Lupton, M.K. Genetic evidence that the causal association of educational attainment with reduced risk of Alzheimer’s disease is driven by intelligence. Neurobiol. Aging 2022, 119, 127–135. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, T.; Li, X.; Maraganore, D.; Heianza, Y.; Qi, L. Early-life educational attainment, APOE ε4 alleles, and incident dementia risk in late life. Geroscience 2022, 44, 1479–1488. [Google Scholar] [CrossRef]
- Bergmann, M.; Wagner, M.; Börsch-Supan, A. SHARE Wave 9 Methodology: From the SHARE Corona Survey 2 to the SHARE Main Wave 9 Interview; SHARE-ERIC: Munich, Germany, 2024. [Google Scholar] [CrossRef]
- Pardo, A.; Ruiz, M.A. Análisis de Datos en Ciencias Sociales y de la Salud III; Editorial Síntesis: Madrid, Spain, 2012. [Google Scholar]
| (a) | |
|---|---|
| Variable | n (%) |
| Gender (Male) | 964 (45.7) |
| Educational level (ISCED-97 coding) | 2097 (94.4) |
| None | 67 (3.2) |
| Code 1: primary education | 367 (17.4) |
| Code 2: lower secondary education | 274 (13.0) |
| Code 3: upper secondary education | 797 (37.8) |
| Code 4: post-secondary non-tertiary education | 28 (1.3) |
| Code 5: first stage of tertiary education | 542 (25.7) |
| Code 6: second stage of tertiary education | 22 (1.0) |
| Missing data | 12 (0.6) |
| Country | |
| Germany | 478 (22.7) |
| Italy | 309 (14.7) |
| France | 468 (22.2) |
| Denmark | 450 (21.3) |
| Czech Republic | 404 (19.2) |
| Smoking behaviour | |
| Non-smoker | 1178 (55.9) |
| Ex-smoker | 693 (32.9) |
| Smoker | 238 (11.3) |
| Vigorous sport or activities | |
| More than once a week | 625 (29.6) |
| Once a week | 288 (13.5) |
| One to three times a month | 150 (7.1) |
| Hardly ever or never | 1050 (49.8) |
| Heart attack (yes) | 328 (15.6) |
| Hypertension (yes) | 1053 (49.9) |
| Hypercholesterolemia (yes) | 587 (27.8) |
| Stroke (yes) | 93 (4.4) |
| Diabetes (yes) | 346 (16.4) |
| (b) | |
| Variable | M ± SD |
| Age (wave 8) | 73.57 ± 7.48 |
| Alcohol intake (units) | 4.80 ± 8.17 |
| Verbal fluency | 20.45 ± 7.51 |
| Social activity participation | 0.73 ± 0.91 |
| Intellectual activity participation | 1.66 ± 1.00 |
| Social Network Index (SNI) | 9.61 ± 3.48 |
| Quality of life (QoL) | 38.29 ± 6.10 |
| Immediate recall | 4.86 ± 1.77 |
| Delayed recall | 3.34 ± 2.19 |
| Depression | 2.34 ± 2.19 |
| Loneliness | 3.97 ± 1.38 |
| Numeracy | 4.07 ± 1.43 |
| Predictor | −2LL | χ2 | df | p |
|---|---|---|---|---|
| Removed from the model | ||||
| Hypertension | 2362.64 | 0.13 | 2 | 0.936 |
| Hypercholesterolemia | 2362.76 | 0.13 | 2 | 0.938 |
| Smoking | 2363.64 | 0.87 | 4 | 0.929 |
| Heart attack | 2364.50 | 0.86 | 2 | 0.649 |
| Vigorous activities | 2369.12 | 4.62 | 6 | 0.594 |
| Diabetes | 2370.03 | 0.91 | 2 | 0.634 |
| Intellectual activities | 2371.83 | 1.81 | 2 | 0.406 |
| Loneliness | 2374.32 | 2.49 | 2 | 0.289 |
| Stroke | 2377.70 | 3.38 | 2 | 0.185 |
| Quality of life (QoL) | 2381.90 | 4.21 | 2 | 0.122 |
| Alcohol use | 2386.23 | 4.33 | 2 | 0.115 |
| Included in the final model | ||||
| Gender | 2391.97 | 5.74 | 2 | 0.057 |
| Educational level | 2410.31 | 24.07 | 12 | 0.020 |
| Age | 2393.12 | 6.88 | 2 | 0.032 |
| Depression | 2413.04 | 26.81 | 2 | <0.001 |
| Social activities | 2395.54 | 9.31 | 2 | 0.010 |
| Social network | 2393.95 | 7.72 | 2 | 0.021 |
| Immediate recall | 2391.35 | 5.12 | 2 | 0.077 |
| Delayed recall | 2442.02 | 55.79 | 2 | <0.001 |
| Orientation | 2401.56 | 15.33 | 2 | <0.001 |
| Numeracy | 2395.11 | 8.87 | 2 | 0.012 |
| Verbal fluency | 2451.25 | 65.02 | 2 | <0. 001 |
| Predictors | Odds Ratio (95% CI) | |
|---|---|---|
| MCI | SCI | |
| Gender (reference: female) | 0.81 (0.63–1.04) | 0.63 * (0.42–0.96) |
| Age | 0.99 (0.97–1.01) | 1.03 (0.99–1.06) |
| Educational Level (ISCED-97 coding) | ||
| None | 0.62 (0.13–2.84) | 0.13 (0.01–1.93) |
| Primary education (code 1) | 0.58 (0.14–2.36) | 0.35 (0.03–4.36) |
| Lower secondary education (code 2) | 1.16 (0.29–4.67) | 0.58 (0.05–7.25) |
| Upper secondary education (code 3) | 0.95 (0.24–3.73) | 0.83 (0.07–9.98) |
| Post-secondary education (code 4) | 0.62 (0.11–3.61) | 0.69 (0.03–14.94) |
| Tertiary education first stage (code 5) | 1.04 (0.26–4.09) | 0.74 (0.06–9.20) |
| Depression | 1.15 * (1.08–1.22) | 1.19 * (1.09–1.31) |
| Social activity participation | 0.79 * (0.68–0.92) | 0.95 (0.71–1.26) |
| Social network | 1.05 * (1.01–1.09) | 1.05 (0.99–1.11) |
| Immediate recall | 0.88 * (0.79–0.99) | 0.91 (0.76–1.08) |
| Delayed recall | 0.80 * (0.73–0.87) | 0.60 * (0.51–0.70) |
| Orientation | 0.99 (0.73–1.34) | 0.54 * (0.37–0.77) |
| Numeracy | 0.90 * (0.82–0.99) | 0.81 * (0.71–0.94) |
| Verbal fluency | 0.95 * (0.93–0.97) | 0.85 * (0.81–0.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz, A.; Galiana, L.; Fernández, I. Cognitive Status Classification Among Older Adults: A Study from SHARE-HCAP. J. Clin. Med. 2025, 14, 8625. https://doi.org/10.3390/jcm14248625
Sanz A, Galiana L, Fernández I. Cognitive Status Classification Among Older Adults: A Study from SHARE-HCAP. Journal of Clinical Medicine. 2025; 14(24):8625. https://doi.org/10.3390/jcm14248625
Chicago/Turabian StyleSanz, Aitana, Laura Galiana, and Irene Fernández. 2025. "Cognitive Status Classification Among Older Adults: A Study from SHARE-HCAP" Journal of Clinical Medicine 14, no. 24: 8625. https://doi.org/10.3390/jcm14248625
APA StyleSanz, A., Galiana, L., & Fernández, I. (2025). Cognitive Status Classification Among Older Adults: A Study from SHARE-HCAP. Journal of Clinical Medicine, 14(24), 8625. https://doi.org/10.3390/jcm14248625

