Thoracic Electrical Bioimpedance in Pregnancy: Applications During Pregnancy with an Emphasis on the Management of Hypertensive Disorders
Abstract
1. Introduction
2. Methods
3. Hemodynamic Assessment in Hypertensive Disorders of Pregnancy
3.1. Maternal Hemodynamics in Normal Gestation and Hypertensive Disorders
3.2. Clinical Relevance of Hemodynamic Heterogeneity
4. Thoracic Electrical Bioimpedance (TEBCO) Technology
4.1. History/Development
4.2. Basic Principles of Thoracic Electrical Bioimpedance
- Cardiac Output (CO): The total volume of blood pumped by the heart per minute.
- Stroke Volume (SV): The amount of blood ejected with each ventricular contraction.
- Systemic Vascular Resistance (SVR): A derived measure of afterload, calculated from CO and mean arterial pressure.
- Thoracic Fluid Content (TFC): A surrogate marker of intrathoracic volume status, which increases with pulmonary congestion.
- Additional indices, including cardiac index (CI), velocity index, and left ventricular ejection time, provide complementary data [30].
4.3. Limitations of TEBCO
4.4. TEBCO in Pregnancy
5. Validation Studies in Pregnant Populations
5.1. Normotensive Pregnancies
5.2. Intrapartum Studies
5.3. Postpartum Studies
5.4. Studies in Hypertensive Disorders of Pregnancy
5.5. Our Own Experience
5.6. Limitations of Existing Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ghulmiyyah, L.; Sibai, B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 2012, 36, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Brown, M.C.; Best, K.E.; Pearce, M.S.; Waugh, J.; Robson, S.C.; Bell, R. Cardiovascular disease risk in women with pre-eclampsia: Systematic review and meta-analysis. BMJ 2013, 347, f6390. [Google Scholar] [CrossRef]
- Sanghavi, M.; Rutherford, J.D. Cardiovascular physiology of pregnancy. Circulation 2014, 130, 1003–1008. [Google Scholar] [CrossRef]
- Meah, V.L.; Cockcroft, J.R.; Backx, K.; Shave, R.; Stohr, E.J. Cardiac output and related haemodynamics during pregnancy: A series of meta-analyses. Heart 2016, 102, 518–526. [Google Scholar] [CrossRef]
- Valensise, H.; Vasapollo, B.; Gagliardi, G.; Novelli, G.P. Early and late preeclampsia: Two different maternal hemodynamic states in the latent phase of the disease. Hypertension 2008, 52, 873–880. [Google Scholar] [CrossRef]
- Easterling, T.R.; Watts, D.H.; Schmucker, B.C.; Benedetti, T.J. Measurement of cardiac output during pregnancy: Validation of Doppler technique and clinical observations in preeclampsia. Obstet. Gynecol. 1987, 69, 845–850. [Google Scholar] [CrossRef]
- McLaughlin, K.; Snelgrove, J.W.; Sienas, L.E.; Easterling, T.R.; Kingdom, J.C.; Albright, C.M. Phenotype-Directed Management of Hypertension in Pregnancy. J. Am. Heart Assoc. 2022, 11, e023694. [Google Scholar] [CrossRef]
- Sodolski, T.; Kutarski, A. Impedance cardiography: A valuable method of evaluating haemodynamic parameters. Cardiol. J. 2007, 14, 115–126. [Google Scholar] [PubMed]
- Cotter, G.; Moshkovitz, Y.; Kaluski, E.; Cohen, A.J.; Miller, H.; Goor, D.; Vered, Z. Accurate, noninvasive continuous monitoring of cardiac output by whole-body impedance cardiography. Chest 2004, 125, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Staelens, A.; Tomsin, K.; Grieten, L.; Oben, J.; Mesens, T.; Spaanderman, M.; Jacquemyn, Y.; Gyselaers, W. Non-invasive assessment of gestational hemodynamics: Benefits and limitations of impedance cardiography versus other techniques. Expert Rev. Med. Devices 2013, 10, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Robson, S.C.; Hunter, S.; Boys, R.J.; Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Physiol. 1989, 256 Pt 2, H1060–H1065. [Google Scholar] [CrossRef]
- Melchiorre, K.; Sharma, R.; Khalil, A.; Thilaganathan, B. Maternal cardiovascular function in normal pregnancy: Evidence of maladaptation to chronic volume overload. Hypertension 2016, 67, 754–762. [Google Scholar] [CrossRef]
- Conrad, K.P.; Davison, J.M. The renal circulation in normal pregnancy and preeclampsia: Is there a place for relaxin? Am. J. Kidney Dis. 2014, 63, 118–133. [Google Scholar] [CrossRef]
- Hunter, S.; Robson, S.C. Adaptation of the maternal heart in pregnancy. Br. Heart J. 1992, 68, 540–543. [Google Scholar] [CrossRef]
- Chapman, A.B.; Abraham, W.T.; Zamudio, S.; Coffin, C.; Merouani, A.; Young, D.; Johnson, A.; Osorio, F.; Goldberg, C.; Moore, L.G.; et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998, 54, 2056–2063. [Google Scholar] [CrossRef]
- Savu, O.; Jurcuţ, R.; Giuşcă, S.; van Mieghem, T.; Gussi, I.; Popescu, B.A.; Ginghină, C.; Rademakers, F.; Deprest, J.; Voigt, J.-U. Morphological and functional adaptation of the maternal heart during pregnancy. Circ. Cardiovasc. Imaging 2012, 5, 289–297. [Google Scholar] [CrossRef]
- Easterling, T.R.; Benedetti, T.J.; Schmucker, B.C.; Millard, S.P. Maternal hemodynamics in normal and preeclamptic pregnancies: A longitudinal study. Obstet. Gynecol. 1990, 76, 1061–1069. [Google Scholar]
- Easterling, T.R.; Benedetti, T.J.; Schmucker, B.C.; Carlson, K.L. Antihypertensive therapy in pregnancy directed by noninvasive hemodynamic monitoring. Am. J. Perinatol. 1989, 6, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Gyselaers, W. Hemodynamic pathways of gestational hypertension and preeclampsia. Am. J. Obs. Gynecol. 2022, 226 (Suppl. 2), S988–S1005. [Google Scholar] [CrossRef]
- Committee on Practice Bulletins—Obstetrics. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin No. 222. Obstet. Gynecol. 2020, 135, e237–e260. [Google Scholar] [CrossRef]
- Schrier, R.W.; Briner, V.A. Peripheral arterial vasodilation hypothesis of sodium and water retention in pregnancy: Implications for pathogenesis of preeclampsia–eclampsia. Obstet. Gynecol. 1991, 77, 632–639. [Google Scholar]
- Dennis, A.T.; Solnordal, C.B. Acute pulmonary oedema in pregnant women. Anaesthesia 2012, 67, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Philippson, M. Principles of the Electrical Resistance of Living Tissue. Bull. Acad. R. Belg. Clinic. Sci. 1921, 7, 387–403. [Google Scholar]
- Ward, L.C. Electrical bioimpedance: From the past to the future. J. Electr. Bioimpedance 2021, 12, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Thomasset, A. Bioelectric properties of tissue. Impedance measurement in clinical medicine. Significance of curves obtained. Lyon Med. 1962, 94, 107–118. [Google Scholar]
- Hoffer, E.C.; Meador, C.K.; Simpson, D.C. Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 1969, 27, 531–534. [Google Scholar] [CrossRef]
- Jensen, L.; Yakimets, J.; Teo, K.K. A review of impedance cardiography. Heart Lung J. Crit. Care 1995, 24, 183–193. [Google Scholar] [CrossRef]
- Summers, R.L.; Shoemaker, W.C.; Peacock, W.F.; Ander, D.S.; Coleman, T.G. Bench to bedside: Electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad. Emerg. Med. 2003, 10, 669–680. [Google Scholar] [CrossRef]
- Keren, H.; Burkhoff, D.; Squara, P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H583–H589. [Google Scholar] [CrossRef]
- Ganz, W.; Donoso, R.; Marcus, H.S.; Forrester, J.S.; Swan, H.J. A new technique for measurement of cardiac output by thermodilution in man. Am. J. Cardiol. 1971, 27, 392–396. [Google Scholar] [CrossRef]
- Bernstein, D.P.; Lemmens, H.J.M.; Brodsky, J.B. Limitations of impedance cardiography. Obes. Surg. 2005, 15, 659–660. [Google Scholar] [CrossRef]
- Teefy, P.; Bagur, R.; Phillips, C.; Karimi-Shahri, K.; Teefy, J.; Sule, R.; Dempsey, A.A.; Norozi, K. Impact of obesity on noninvasive cardiac hemodynamic measurement by electrical cardiometry in adults with aortic stenosis. J. Am. Soc. Echocardiogr. 2018, 32, 2505–2511. [Google Scholar] [CrossRef]
- Lagrand, W.K.; van Slobbe-Bijlsma, E.R.; Schultz, M.J. Haemodynamic monitoring of morbidly obese intensive care unit patients. Neth. J. Med. 2013, 71, 234–242. [Google Scholar]
- Woltjer, H.H.; Bogaard, H.J.; van der Spoel, H.I.; de Vries, P.M. The influence of weight on stroke volume determination by means of impedance cardiography in cardiac surgery patients. Intensive Care Med. 1996, 22, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Easterling, T.R.; Benedetti, T.J.; Carlson, K.L.; Watts, D.H. Measurement of cardiac output in pregnancy by thermodilution and impedance techniques. Br. J. Obstet. Gynaecol. 1989, 96, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Moertl, M.G.; Schlembach, D.; Papousek, I.; Hinghofer-Szalkay, H.; Weiss, E.M.; Lang, U.; Lackner, H.K. Hemodynamic evaluation in pregnancy: Limitations of impedance cardiography. Physiol. Meas. 2012, 33, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Tomsin, K.; Mesens, T.; Molenberghs, G.; Gyselaers, W. Impedance cardiography in uncomplicated pregnancy and pre-eclampsia: A reliability study. J. Obstet. Gynaecol. 2012, 32, 630–634. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Myhrman, P.; Granerus, G.; Karlsson, K.; Lundgren, Y. Cardiac output in normal pregnancy measured by impedance cardiography. Scand. J. Clin. Lab. Investig. 1982, 42, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Vårtun, Å.; Flo, K.; Wilsgaard, T.; Acharya, G. Maternal functional hemodynamics in the second half of pregnancy: A longitudinal study. PLoS ONE 2015, 10, e0135300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andreas, M.; Kuessel, L.; Kastl, S.P.; Wirth, S.; Gruber, K.; Rhomberg, F.; Gomari-Grisar, F.A.; Franz, M.; Zeisler, H.; Gottsauner-Wolf, M. Bioimpedance cardiography in pregnancy: A prospective longitudinal cohort study on hemodynamic pattern and outcome. BMC Pregnancy Childbirth 2016, 16, 128. [Google Scholar] [CrossRef][Green Version]
- Tihtonen, K.M.; Kööbi, T.; Yli-Hankala, A.; Uotila, J.T. Maternal hemodynamics during cesarean delivery assessed by whole-body impedance cardiography. Acta Obstet. Gynecol. Scand. 2005, 84, 355–361. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, A.; Cotoia, A.; Beck, R.; Salatto, P.; Zibar, L.; Cinnella, G. Impedance cardiography as tool for continuous hemodynamic monitoring during cesarean section: Randomized, prospective double blind study. BMC Anesthesiol. 2018, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- San-Frutos, L.; Engels, V.; Zapardiel, I.; Pérez-Medina, T.; Almagro, J.; Fernández, R.; Bajo, J. Hemodynamic changes during pregnancy and postpartum: A prospective study using thoracic electrical bioimpedance. J. Matern. Fetal Neonatal Med. 2011, 24, 1333–1340. [Google Scholar] [CrossRef]
- San-Frutos, L.M.; Fernández, R.; Almagro, J.; Barbancho, C.; Salazar, F.; Pérez-Medina, T.; Bueno, B.; Bajo, J. Measure of hemodynamic patterns by thoracic electrical bioimpedance in normal pregnancy and in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 121, 149–153. [Google Scholar] [CrossRef]
- Morris, R.; Sunesara, I.; Rush, L.; Anderson, B.; Blake, P.G.; Darby, M.; Sawardecker, S.; Novotny, S.; Bofill, J.A.; Martin, J.N., Jr. Maternal hemodynamics by impedance cardiography for normal pregnancy and the postpartum period. Obstet. Gynecol. 2014, 123 Pt 1, 318–324. [Google Scholar] [CrossRef]
- Melchiorre, K.; Sutherland, G.R.; Liberati, M.; Thilaganathan, B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension 2011, 58, 709–715. [Google Scholar] [CrossRef]
- Masaki, D.I.; Greenspoon, J.S.; Ouzounian, J.G. Measurement of cardiac output in pregnancy by thoracic electrical bioimpedance and thermodilution: A preliminary report. Am. J. Obs. Gynecol. 1989, 161, 680–684. [Google Scholar] [CrossRef]
- Newman, R.B.; Pierre, H.; Scardo, J. Thoracic-fluid conductivity in peripartum women with pulmonary edema. Obstet. Gynecol. 1999, 94, 48–51. [Google Scholar] [PubMed]
- Scardo, J.A.; Ellings, J.; Vermillion, S.T.; Chauhan, S.P. Validation of noninvasive cardiac output in preeclampsia. Am. J. Obstet. Gynecol. 2000, 183, 911–914. [Google Scholar] [CrossRef]
- Laye, M.R.; Parrish, M.; Martin, J.; Keiser, S.; Cushman, J.; Veillon, E.; May, W.; Wood, T. 753: Noninvasive hemodynamic-impedance cardiography (ICG) assessment of hypertensive third trimester patients: Correlation with disease severity and final diagnosis. Am. J. Obstet. Gynecol. 2008, 199 (Suppl A), S214. [Google Scholar] [CrossRef]
- Chaffin, D.G.; Pridjian, G.; Morrison, J.C. Antihypertensive therapy guided by impedance cardiography in pregnancies at risk for hypertensive complications: Retrospective outcomes of 318 singleton pregnancies. Am. J. Perinatol. 2009, 26, 655–660. [Google Scholar] [CrossRef]
- Parrish, M.R.; Laye, M.R.; Wood, T.; Keiser, S.D.; Owens, M.Y.; May, W.L.; Martin, J.N., Jr. Impedance cardiography facilitates differentiation of severe and superimposed preeclampsia from other hypertensive disorders. Hypertens. Pregnancy 2012, 31, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Hammad, Y.; Hasanin, A.; Elsakka, A.; Refaie, A.; Abdelfattah, D.; Rahman, S.A.; Zayed, M.; Hassabelnaby, Y.; Mukhtar, A.; Omran, A. Thoracic fluid content: A novel parameter for detection of pulmonary edema in parturients with preeclampsia. J. Clin. Monit. Comput. 2019, 33, 413–418. [Google Scholar] [CrossRef]
- Cottrell, J.; Cummings, K.; Jude, D.; Chaffin, D. The effect of impedance cardiography directed antihypertensive therapy on fetal growth restriction rates and perinatal mortality in women with chronic hypertension. Pregnancy Hypertens. 2022, 28, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Baztán Ilundain, M.; Buades Lucas, G.; de Mateo, F.; Lavilla, J.; Mora-Gutiérrez, J.M.; Garcia-Fernandez, N.; Martin-Moreno, P.L.; Villa-Hurtado, D.; Ulloa, C.; Castañeda-Infante, L.J. Hemodynamic study of hypertensive disorders in pregnancy using cardiothoracic bioimpedance. Nephrol. Dial. Transplant. 2024, 39 (Suppl. 1), gfae069-1762-3050. [Google Scholar] [CrossRef]
- Gei, A.F.; Sabido Gonzalez, L.D.; Palacios Gutierrez, D.; Castillo, B. Cardiac output by thoracic electrical bioimpedance (TEB-CO) in the evaluation and management of severe hypertension during pregnancy: A case series. In Proceedings of the FIGO XXIII World Congress of Gynecology and Obstetrics, Virtual Congress, 21–28 October 2021. [Google Scholar]



| Author (Year) | Population | Study Design | Comparator | Main Findings | Clinical Implication |
|---|---|---|---|---|---|
| Masaki et al. (1989) [49] | Peripartum women, incl. hypertensive (N ≈ 20) | Observational feasibility | — | Demonstrated feasibility of cardiac output measurement using impedance methods in obstetric patients | Established proof of concept that TEBCO can be applied in pregnancy including hypertensive states |
| Newman et al. (1999) [50] | Peripartum women (N = 134) | Observational study | Thoracic fluid conductivity vs. clinical severity | Preeclampsia associated with increased thoracic fluid conductivity stratified by severity; values ≥ 65 kΩ−1 strongly linked to peripartum pulmonary edema | Suggested that women with elevated conductivity may require early intervention even without overt symptoms |
| Scardo et al. (2000) [51] | Women with preeclampsia (N = 15) | Validation study | M-mode echocardiography | Good agreement between impedance-derived and echocardiographic cardiac output | Supported use of TEBCO as a reliable hemodynamic monitor in preeclampsia |
| San-Frutos et al. (2005) [46] | Normotensive vs. preeclamptic pregnancies (N = 45) | Cross-sectional comparison | Normotensive controls | Confirmed reduced cardiac output and increased systemic vascular resistance in preeclampsia | Demonstrated ability of TEBCO to differentiate hemodynamic profiles between normal and hypertensive pregnancies |
| Laye et al. (2008) [52] | Women evaluated for acute or chronic hypertension (N = 129) | Abstract | — | Elevated systemic vascular resistance index and thoracic fluid content associated with severe and superimposed preeclampsia | Suggested thresholds of impedance indices may stratify risk of severe disease |
| Chaffin et al. (2009) [53] | Singleton pregnancies with chronic hypertension or prior preterm delivery due to preeclampsia (N = 318) | Retrospective cohort with impedance-guided therapy | Hemodynamic subsets compared; all received atenolol, 24% vasodilator | ICG-guided therapy associated with mean GA at delivery of 37 ± 2 weeks; PE incidence 14%; BW < 10th % in 10%; no perinatal deaths. Hyperdynamic patients had less severe PE, fewer preterm births, fewer NICU days | Showed that tailoring therapy by impedance profile optimizes maternal and neonatal outcomes |
| Parrish et al. (2012) [54] | Women with hypertensive disorders (N = 129) | Cross-sectional diagnostic study | Comparison among hypertensive subgroups | Severe/superimposed PE cases showed depressed cardiac function, higher BP, MAP, SVR, and TFC vs. non-severe hypertensive disease | ICG hemodynamic profiling rapidly identifies severe or superimposed PE, aiding risk stratification |
| Andreas et al. (2016) [42] | Healthy pregnancies (N = 242) | Longitudinal cohort | — | Documented normative trajectories of CO and SVR. Women at risk for PE or low birthweight showed altered adaptation patterns detectable early in pregnancy | Demonstrated that TEBCO can identify abnormal cardiovascular adaptation early at low cost and without risk |
| Hammad et al. (2019) [55] | Parturients with preeclampsia (N = 60) | Diagnostic comparison | Lung ultrasound | Thoracic fluid content correlated with pulmonary edema in PE patients | Supported role of TEBCO as a bedside tool for noninvasive detection of pulmonary complications |
| Cottrell et al. (2022) [56] | Women with chronic hypertension (N = 958) | Retrospective cohort with impedance-guided therapy | Therapy guided by CO and SVR indices | Vasodilators used for high SVR; beta-blockers for high CO. Associated with reduced FGR and perinatal mortality | Confirmed that ICG-directed therapy improves outcomes in chronic hypertension and is relevant to HDP care pathways |
| Baztán Ilundain et al. (2024) [57] | Pregnant and postpartum women with HDP (N = 55) | Retrospective observational study | Comparisons across HDP subtypes | Median LCWI 5.05 kg·m/m2; CO 6352 mL/min; TFCI 17.9 L/kΩ/m2; SVRI 2168 dyn·s·cm−5·m2. SVRI correlated with BP; no correlation between TFCI and BP; no significant differences between GH and PE groups | Suggested elevated SVR measured by TEBCO may serve as early diagnostic marker of HDP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gei, A.F.; Martínez Tobar, N.; Hernández Martínez, G.; Bischoff Ogas, T.N. Thoracic Electrical Bioimpedance in Pregnancy: Applications During Pregnancy with an Emphasis on the Management of Hypertensive Disorders. J. Clin. Med. 2025, 14, 8463. https://doi.org/10.3390/jcm14238463
Gei AF, Martínez Tobar N, Hernández Martínez G, Bischoff Ogas TN. Thoracic Electrical Bioimpedance in Pregnancy: Applications During Pregnancy with an Emphasis on the Management of Hypertensive Disorders. Journal of Clinical Medicine. 2025; 14(23):8463. https://doi.org/10.3390/jcm14238463
Chicago/Turabian StyleGei, Alfredo F., Nathalia Martínez Tobar, Gustavo Hernández Martínez, and Thomas N. Bischoff Ogas. 2025. "Thoracic Electrical Bioimpedance in Pregnancy: Applications During Pregnancy with an Emphasis on the Management of Hypertensive Disorders" Journal of Clinical Medicine 14, no. 23: 8463. https://doi.org/10.3390/jcm14238463
APA StyleGei, A. F., Martínez Tobar, N., Hernández Martínez, G., & Bischoff Ogas, T. N. (2025). Thoracic Electrical Bioimpedance in Pregnancy: Applications During Pregnancy with an Emphasis on the Management of Hypertensive Disorders. Journal of Clinical Medicine, 14(23), 8463. https://doi.org/10.3390/jcm14238463

