The Development of Novel Therapies for Chronic Lymphocytic Leukaemia in the Era of Targeted Drugs
Abstract
1. Introduction
2. BTK Inhibitors
2.1. Covalent BTK Inhibitors
2.1.1. Ibrutinib
2.1.2. The Second-Generation BTK Inhibitors
Acalabrutinib
Zanubrutinib
Orelabrutinib
Tirabrutinib
2.2. Non-Covalent BTK Inhibitors
2.2.1. Pirtobrutinib
2.2.2. Nemtabrutinib
2.2.3. Rocbrutinib
3. BTK Degraders
3.1. BGB-16673
3.2. Bexobrutideg
3.3. NX-2127
3.4. AC676
3.5. NRX-0492
3.6. HZ-Q1060 and HZ-Q1070
3.7. ABBV-101
4. BCL-2 Inhibitors
4.1. Venetoclax
4.2. Combination of BTKi and Venetoclax
4.3. Second-Generation BCL-2 Inhibitors
4.3.1. Sonrotoclax
4.3.2. Lisaftoclax
4.3.3. Surzetoclax
4.3.4. LOXO-338
4.3.5. Mesutoclax
5. PI3K Inhibitors
5.1. Idelalisib
5.2. Duvelisib
5.3. Umbralisib
5.4. Novel PI3K Inhibitors
5.4.1. Zandelisib
5.4.2. Parsaclisib
5.4.3. BGB-10188
5.4.4. Tenalisib
5.4.5. ACP-319
5.4.6. Amdizalisib
5.4.7. SHC014748M
5.4.8. TQ-B3525
5.4.9. Linperlisib
6. Monoclonal Antibodies
6.1. Novel Monoclonal Antibodies
6.1.1. Belimumab
| Drug | Characteristics | Key Clinical Trials in CLL | Reference |
|---|---|---|---|
| Belimumab (Benlysta, GSK London, UK) | Recombinant human IgG-1λ mAb that inhibits BAFF | BeliVeR trial evaluated whether adding belimumab rituximab and venetoclax is more effective than using rituximab and venetoclax alone in RR CLL | #NCT05069051 |
| Tafasitamab-cxix (MOR00208, MONJUVI, MorphoSys US Inc., Boston, MA, USA) | Humanised CD19 mAb with an engineered Fc region to enhance Fcγ receptor binding affinity | Phase 1 trial demonstrated efficacy and an acceptable safety in RR CLL [131] Phase II COSMOS study evaluated tafasitamab combined with idelalisib or venetoclax in patients with RR CLL/SLL previously treatedwith BTKi [132] | [131,132] |
| CAP-100 (Catapult Therapeutics, Lelystad, The Netherlands) | Humanised IgG1 mAb against CCR7, with potential immunomodulating and antineoplastic activity | Phase 1b (CAP-100-1) study evaluated safety and preliminary activity of CAP-100 in RR CLL | #NCT04704323 |
| Cirmtuzumab (UC-961, University of California, San Diego, CA, USA) | Humanised mAb that inhibits the signalling of the ROR1 | Phase 1 study of cirmtuzumab alone in RR CLL [133] Phase 1/2 study of cirmtuzumab + ibrutinib in RR MCL and RR or TN CLL [134] | [133,134] #NCT02222688, #NCT03088878 |
| Zilovertamab vedotin (MK-2140, VLS-101, Merck & Co., Rahway, NJ, USA) | ADC that inhibits the signalling of the ROR1 | Phase 1/2 study evaluated zilovertamab vedotin with ibrutinib in patients with MCL and CLL | [135] #NCT03088878 |
6.1.2. Tafasitamab
6.1.3. CAP-100
6.1.4. ROR1 Inhibitors
Cirmutuzumab
Zilovertamab Vedotin
7. T-Cell Engagers
7.1. Epcoritamab
7.2. Mosunetuzumab
7.3. Glofitamab
7.4. Plamotamab
7.5. GB261
7.6. Other T-Cell Engagers Investigated in CLL
7.6.1. NVG-111
7.6.2. JNJ-75348780
7.6.3. AZD5492
7.6.4. C312
7.6.5. Nebratamig
8. Chimeric Antigen Receptor T-Cell Therapy
8.1. Lisocabtagene Maraleucel
8.2. Brexucabtagene Autoleucel
8.3. JCAR014
8.4. New Generation of CAR T-Cell Therapies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am. J. Hematol. 2025, 100, 450–480. [Google Scholar] [CrossRef] [PubMed]
- Robak, T.; Krawczyńska, A.; Cebula-Obrzut, B.; Urbaniak, M.; Iskierka-Jażdżewska, E.; Robak, P. Atypical chronic lymphocytic leukemia-the current status. Cancers 2023, 15, 4427. [Google Scholar] [CrossRef]
- Baliakas, P.; Jeromin, S.; Iskas, M.; Puiggros, A.; Plevova, K.; Nguyen-Khac, F.; Davis, Z.; Rigolin, G.M.; Visentin, A.; Xochelli, A.; et al. Cytogenetic complexity in chronic lymphocytic leukemia: Definitions, associations, and clinical impact. Blood 2019, 133, 1205–1216. [Google Scholar] [CrossRef]
- Hus, I.; Giannopoulos, K.; Jamroziak, K.; Wolowiec, D.; Roliński, J.; Robak, T. Diagnostic and therapeutic recommendations of the Polish Society of Haematologists and Transfusiologists and Polish Adult Leukemia Group-CLL for chronic lymphocytic leukemia in 2025. Acta Haematol. Pol. 2025, 56, 143–172. [Google Scholar] [CrossRef]
- Hallek, M.; Fischer, K.; Fingerle-Rowson, G.; Fink, A.M.; Busch, R.; Mayer, J.; Hensel, M.; Hopfinger, G.; Hess, G.; von Grunhagen, U.; et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010, 376, 1164–1174. [Google Scholar] [CrossRef]
- Thompson, P.A.; Bazinet, A.; Wierda, W.G.; Tam, C.S.; O’Brien, S.M.; Saha, S.; Peterson, C.B.; Plunkett, W.; Keating, M.J. Sustained remissions in CLL after frontline FCR treatment with very-long-term follow-up. Blood 2023, 142, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Bahlo, J.; Fink, A.M.; Goede, V.; Herling, C.D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016, 127, 208–215. [Google Scholar] [CrossRef]
- Robak, T. Is this the end for immunochemotherapy in relapsed/refractory chronic lymphocytic leukemia? Leuk. Lymphoma 2023, 64, 907–909. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Seymour, J.F. Update on the management of relapsed/refractory chronic lymphocytic leukemia. Blood Cancer J. 2024, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Iskierka-Jażdżewska, E.; Obracaj, A.; Urbaniak, M.; Robak, T. New Treatment options for newly-diagnosed and relapsed chronic lymphocytic leukemia. Curr. Treat. Options Oncol. 2022, 23, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Zygmunciak, P.; Robak, T.; Puła, B. Treatment of double-refractory chronic lymphocytic leukemia-an unmet clinical need. Int. J. Mol. Sci. 2024, 25, 1589. [Google Scholar] [CrossRef]
- Robak, T.; Witkowska, M.; Smolewski, P. The Role of Bruton’s Tyrosine Kinase Inhibitors in Chronic Lymphocytic Leukemia: Current Status and Future Directions. Cancers 2022, 14, 771. [Google Scholar] [CrossRef]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar] [CrossRef]
- Burger, J.A.; Barr, P.M.; Robak, T.P.; Owen, C.; Tedeschi, A.; Sarma, A.; Patten, P.E.; Grosicki, S.; McCarthy, H.D.; Offner, F.; et al. Final analysis of the RESONATE-2 study: Up to 10 years of follow-up of first-line ibrutinib treatment for CLL/SLL. Blood 2025, 146, 2168–2176. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’Brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib-rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet. Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Perez Burbano, G.; Ruppert, A.S.; Miller, C.; Heerema, N.A.; Zhao, W.; Wall, A.; Ding, W.; Bartlett, N.L.; Brander, D.M.; et al. Follow-up from the A041202 study shows continued efficacy of ibrutinib regimens for older adults with CLL. Blood 2024, 143, 1616–1627. [Google Scholar] [CrossRef]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Robak, T.; Stilgenbauer, S.; Tedeschi, A. Front-line treatment of CLL in the era of novel agents. Cancer Treat. Rev. 2017, 53, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): A randomised, controlled, phase 3 trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; de la Serna, J.; et al. ASCEND: Phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2849–2861. [Google Scholar] [CrossRef]
- Seymour, J.F.; Byrd, J.C.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Brown, J.R.; Munir, T.; Mato, A.; et al. Detailed safety profile of acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial. Blood 2023, 142, 687–699. [Google Scholar] [CrossRef]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Šimkovič, M.; Kriachok, I.; Illés, Á.; de la Serna, J.; Dolan, S.; Campbell, P.; et al. Acalabrutinib versus investigator’s choice in relapsed/refractory chronic lymphocytic leukemia: Final ASCEND trial Results. Hemasphere 2022, 6, e801. [Google Scholar] [CrossRef]
- Shadman, M.; Munir, T.; Robak, T.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Šimkovič, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in patients with treatment-naïve chronic lymphocytic leukemia/small lymphocytic lymphoma: Median 5-year follow-up of SEQUOIA. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2025, 43, 780–787. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhou, K.; Wang, T.; Yang, S.; Liu, L.; Hu, Y.; Zhang, W.; Ding, K.; Zhou, J.; Gao, S.; et al. Orelabrutinib in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma patients: Multi-center, single-arm, open-label, phase 2 study. Am. J. Hematol. 2023, 98, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Robak, P.; Witkowska, M.; Wolska-Washer, A.; Robak, T. The preclinical discovery and development of orelabrutinib as a novel treatment option for B-cell lymphoid malignancies. Expert Opin. Drug Discov. 2023, 18, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Kutsch, N.; Pallasch, C.; Tausch, E.; Böhme, V.; Ritgen, M.; Liersch, R.; Wacker, A.; Jacobs, G.; Trappe, R.U.; Dreger, P.; et al. Efficacy and Safety of the Combination of Tirabrutinib and Entospletinib With or Without Obinutuzumab in Relapsed Chronic Lymphocytic Leukemia. Hemasphere 2022, 6, e692. [Google Scholar] [CrossRef] [PubMed]
- Schaff, L.; Nayak, L.; Grommes, C. Bruton’s tyrosine kinase (BTK) inhibitors for the treatment of primary central nervous system lymphoma (PCNSL): Current progress and latest advances. Leuk. Lymphoma 2024, 65, 882–894. [Google Scholar] [CrossRef]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef]
- Woyach, J.A.; Stephens, D.M.; Flinn, I.W.; Bhat, S.A.; Savage, R.E.; Chai, F.; Eathiraj, S.; Reiff, S.D.; Muhowski, E.M.; Granlund, L.; et al. First-in-Human Study of the Reversible BTK Inhibitor Nemtabrutinib in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia and B-Cell Non-Hodgkin Lymphoma. Cancer Discov. 2024, 14, 66–75. [Google Scholar] [CrossRef]
- Kipps, T.; Awan, F.T.; Eichhorst, B.; Herishanu, Y.; Jurczak, W.; Lavie, D.; Martinez-Calle, N.; Masszi, A.; Owen, C.; Poulsen, C.; et al. Efficacy and safety of nemtabrutinib in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: Cohort J of the phase 2 BELLWAVE-003 study. J. Clin. Oncol. 2025, 43, TPS7088. [Google Scholar] [CrossRef]
- Tadmor, T.; Eyre, T.A.; Benjamini, O.; Chaudhry, A.; Shen, J.; Leng, S.; Farooqui, M.Z.H.; Lavie, D. Nemtabrutinib Versus Ibrutinib or Acalabrutinib for Untreated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: The Phase 3, Open-Label, Randomized Bellwave-011 Study. Blood 2024, 144, 1875.2. [Google Scholar] [CrossRef]
- Woyach, J.A.; Brander, D.M.; Hu, B.; Rogers, K.A.; Omer, Z.; Stephens, D.M.; Sitlinger, A.; Tan, F.; Chen, Y.; Anthony, S.P.; et al. LP-168 (Rocbrutinib), a Novel Covalent and Non-Covalent Next-Generation Inhibitor of Bruton’s Tyrosine Kinase: Updates on the Phase 1 Trial and Initial Results of the CLL Gatekeeper Mutation Cohort. Blood 2024, 144, 4622. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef]
- Quartermaine, C.; Ghazi, S.M.; Yasin, A.; Awan, F.T.; Fradley, M.; Wiczer, T.; Kalathoor, S.; Ferdousi, M.; Krishan, S.; Habib, A.; et al. Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2023, 5, 570–590. [Google Scholar] [CrossRef] [PubMed]
- Wolska-Washer, A.E.; Robak, T. Acalabrutinib in treatment of patients with chronic lymphocytic leukemia including those at high genetic risk. Acta Haematol. Pol. 2025, 56, 172–186. [Google Scholar] [CrossRef]
- Puła, B.; Iskierka-Jażdżewska, E.; Jamroziak, K.; Giannopoulos, K.; Wróbel, T.; Robak, T.; Hus, I. Expert opinion on use of acalabrutinib for chronic lymphocytic leukemia treatment. Acta Haematol. Pol. 2024, 55, 130–136. [Google Scholar] [CrossRef]
- Majeranowski, A.; Lebiedziński, F.; Okrój, M.; Osowski, J.; Mital, A. Zanubrutinib: A novel therapeutic option for the treatment of B-cell neoplasms. Acta Haematol. Pol. 2023, 54, 53–64. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Patel, K.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Hughes, M.; et al. Acalabrutinib ± Obinutuzumab Vs Obinutuzumab + Chlorambucil in Treatment-Naive Chronic Lymphocytic Leukemia: 6-Year Follow-up of Elevate-TN. Blood 2023, 142, 636. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Hillmen, P.; Eichhorst, B.; Brown, J.R.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Kazmierczak, M.; Zhou, K.; Šimkovič, M.; et al. Zanubrutinib Versus ibrutinib in relapsed/refractory chronic lymphocytic leukemia and small lymphocytic lymphoma: Interim analysis of a randomized phase III trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 1035–1045. [Google Scholar] [CrossRef]
- Byrd, J.C.; Hillmen, P.; O’Brien, S.; Barrientos, J.C.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; Barr, P.M.; et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood 2019, 133, 2031–2042. [Google Scholar] [CrossRef]
- Ahn, I.E.; Tian, X.; Wiestner, A. Ibrutinib for chronic lymphocytic leukemia with TP53 alterations. N. Engl. J. Med. 2020, 383, 498–500. [Google Scholar] [CrossRef]
- Szmit, S.; Hus, I.; Giannopoulos, K.; Jamroziak, K.; Robak, T. Recommendations on cardiac safety during ibrutinib therapy. Acta Haematol. Pol. 2023, 54, 3–5. [Google Scholar] [CrossRef]
- Walter, H.S.; Rule, S.A.; Dyer, M.J.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016, 127, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Lama, T.G.; Kyung, D.; O’Brien, S. Mechanisms of ibrutinib resistance in chronic lymphocytic leukemia and alternative treatment strategies. Expert Rev. Hematol. 2020, 13, 871–883. [Google Scholar] [CrossRef]
- Wiśniewski, K.; Puła, B. A review of resistance mechanisms to bruton’s kinase inhibitors in chronic lymphocytic leukemia. Int. J. Mol. Sci. 2024, 25, 5246. [Google Scholar] [CrossRef]
- Woyach, J.A.; Jones, D.; Jurczak, W.; Robak, T.; Illés, A.; Kater, A.P.; Ghia, P.; Byrd, J.C.; Seymour, J.F.; Long, S.; et al. Characterization of mechanisms of resistance in previously treated chronic lymphocytic leukemia (CLL) from a head-to-head trial of acalabrutinib versus ibrutinib. Hematol. Oncol. 2023, 41, 249–250. [Google Scholar] [CrossRef]
- Cool, A.; Nong, T.; Montoya, S.; Taylor, J. BTK inhibitors: Past, present, and future. Trends Pharmacol. Sci. 2024, 45, 691–707. [Google Scholar] [CrossRef]
- Sabakhtarishvili, G.; Alshebli, M.; Bajwa, O.; Tabbara, I.A. Bruton Tyrosine Kinase Degraders: Current Concepts. Am. J. Clin. Oncol. 2025, 48, 257–261. [Google Scholar] [CrossRef]
- Salvaris, R.T.; Brennan, J.; Lewis, K.L. BTK is the target that keeps on giving: A review of BTK-degrader drug development, clinical data, and future directions in CLL. Cancers 2025, 17, 557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Harris, H.M.; Chen, J.; Judy, J.; James, G.; Kelly, A.; McIntosh, J.; Tenn-McClellan, A.; Ambing, E.; Tan, Y.S.; et al. NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts. Blood 2023, 141, 1584–1596. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, J.; Jiang, Y.; Li, J.; Shi, W. Next-generation Bruton tyrosine kinase inhibitors and degraders in the treatment of B-cell malignancies: Advances and challenges. Ann. Hematol. 2025, 104, 3929–3941. [Google Scholar] [CrossRef]
- Thompson, M.C.; Parrondo, R.D.; Frustaci, A.M.; Allan, J.N.; Ghia, P.; Mocanu, I.; Tam, C.S.; Trotman, J.; Ahn, I.E.; Stilgenbauer, S.; et al. Preliminary efficacy and safety of the bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: Results from the phase 1 CaDAnCe-101 Study. Blood 2024, 144, 885. [Google Scholar] [CrossRef]
- Shah, N.N.; Omer, Z.; Collins, G.P.; Forconi, F.; Danilov, A.; Byrd, J.C.; El-Sharkawi, D.; Searle, E.; Alencar, A.J.; Ma, S.; et al. Efficacy and safety of the Bruton’s tyrosine kinase (BTK)degrader NX-5948 in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL): Updated results from an ongoing phase 1a/b study. Blood 2024, 144, 884. [Google Scholar] [CrossRef]
- Robbins, D.W.; Noviski, M.A.; Tan, Y.S.; Konst, Z.A.; Kelly, A.; Auger, P.; Brathaban, N.; Cass, R.; Chan, M.L.; Cherala, G.; et al. Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton’s Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. J. Med. Chem. 2024, 67, 2321–2336. [Google Scholar] [CrossRef]
- Montoya, S.; Bourcier, J.; Noviski, M.; Lu, H.; Thompson, M.C.; Chirino, A.; Jahn, J.; Sondhi, A.K.; Gajewski, S.; Tan, Y.S.M.; et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024, 383, eadi5798. [Google Scholar] [CrossRef]
- Mato, A.R.; Wierda, W.G.; Ai, W.Z.; Flinn, I.W.; Tees, M.; Patel, M.R.; Patel, K.; O’Brien, S.; Bond, D.A.; Roeker, L.E.; et al. NX-2127-001, a First-in-Human Trial of NX-2127, a Bruton’s Tyrosine Kinase-Targeted Protein Degrader, in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia and B-Cell Malignancies. Blood 2022, 140, 2329–2332. [Google Scholar] [CrossRef]
- Tees, M.T.; Bond, D.A.; Khan, N.; Awan, F.T.; Xu, Q.; Zhang, H.; Brown, G.; Woyach, J.A.; Patel, M. Aphase 1 study of AC676, a novel BTK chimeric degrader, in patients with B-cell malignancies. Blood 2024, 144, 4422.1. [Google Scholar] [CrossRef]
- Song, Y.; Lin, N.; Liu, X.; Zhou, Y.; Wu, Y.; Luo, X.; Xie, J.; Ma, X.; Hu, M.; Zhang, Y.; et al. Preclinical and first-in-human phase I study of Bruton tyrosine kinase degrader HZ-Q1070 in patients with recurrent or refractory B-cell malignancies. Blood 2024, 144, 6286. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Wu, Y.; Luo, X.; Xie, J.; Jin, X.; Li, J.; Zhou, X. Abstract 3450: Discovery and preclinical study of novel BTK degrader HZ-Q1070. Cancer Res. 2023, 83, 3450. [Google Scholar] [CrossRef]
- Chong, E.A.; Yuda, J.; Izutsu, K.; Fletcher, L.B.; Assaily, W.; Sahtout, M.; Badawi, M.; Burke, J.M.; Dean, J.P.; Stevenson, C.; et al. A first-in-human study of the potent and highly selective BTK degrader ABBV-101 in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 2024, 42, TPS7091. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Wu, Y.; Luo, X.; Xie, J.; Jin, X.; Yang, H.; Jia, L.; Zhou, X. Discovery and Preclinical Study of Novel BTK Degrader HZ-Q1060. Blood 2022, 140, 4942. [Google Scholar] [CrossRef]
- Kater, A.P.; Harrup, R.; Kipps, T.J.; Eichhorst, B.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. The MURANO study: Final analysis and retreatment/crossover substudy results of VenR for patients with relapsed/refractory CLL. Blood 2025, 145, 2733–2745. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Robrecht, S.; Zhang, C.; Olivieri, S.; Chang, Y.M.; Fink, A.M.; Tausch, E.; Schneider, C.; Ritgen, M.; Kreuzer, K.A.; et al. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood 2024, 144, 1924–1935. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Cheah, C.Y.; Anderson, M.A.; Lasica, M.; Verner, E.; Opat, S.S.; Ma, S.; Weinkove, R.; Cordoba, R.; Ghia, P.; et al. Sonrotoclax and Zanubrutinib as frontline treatment for CLL demonstrates high MRD clearance rates with good tolerability: Data from an ongoing phase 1/1b Study BGB-11417-101. Blood 2024, 144, 1012. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Chen, Z.; Huang, B.; Paulus, A.; Collins, M.C.; Fu, L.T.; Li, M.; Ahmad, M.; Men, L.; Wang, H.; et al. Novel BCL-2 Inhibitor lisaftoclax in relapsed or refractory chronic lymphocytic leukemia and other hematologic malignancies: First-in-human open-label trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 2385–2393. [Google Scholar] [CrossRef]
- Phillips, D.C.; Robles-Cardona, L.; Alvey, C.; Ingram, J.; Lam, L.T.; Yang, Z.; Riehm, J.J.; Chen, J.; Kurnick, M.; Kovar, P.; et al. Abbv-453: A highly potent and selective next generation small molecule inhibitor of BCL-2. Blood 2024, 144, 4966. [Google Scholar] [CrossRef]
- Kwiatek, M.; Murthy, G.S.G.; Hoffmann, M.; Tessoulin, B.; Danilov, A.; Alencar, A.J.; Shah, N.N.; Ghesquieres, H.; Le Gouill, S.; Jurczak, W.; et al. A First-in-human phase I study of LOXO-338, an oral selective Bcl-2 inhibitor, in patients with advanced hematologic malignancies. Clin. Lymphoma Myeloma Leuk. 2025, 25, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, Z.; Liao, A.; Yu, W.; Peng, H.; Zhou, F.; Huang, X.; Cui, G.; Ge, J.; Li, F.; et al. MRD guided mesutoclax plus orelabrutinib for CLL/SLL demonstrates high response and early mrd clearance with good tolerability: Preliminary analysis from an ongoing phase II dose optimization study. In Proceedings of the European Hematology Association (EHA) 2025 Congress, Milan, Italy, 12–15 June 2025. [Google Scholar]
- YI, S.; Zhou, K.; Jin, J.; Li, Z.; Zou, L.; Li, Z.; Ge, J.; Wang, L.; Mi, J.-Q.; Yang, Y.; et al. Preliminary safety and efficacy data of ICP-248, a novel BCL2 inhibitor, in patients with relapsed or refractory B-cell malignancies. J. Clin. Oncol. 2025, 43, 7038. [Google Scholar] [CrossRef]
- Korycka-Wolowiec, A.; Wolowiec, D.; Kubiak-Mlonka, A.; Robak, T. Venetoclax in the treatment of chronic lymphocytic leukemia. Expert Opin. Drug Metab. Toxicol. 2019, 15, 353–366. [Google Scholar] [CrossRef]
- Borg, M.A.; Clemmons, A. Venetoclax: A novel treatment for patients with del(17p) chronic lymphocytic leukemia. J. Adv. Pract. Oncol. 2017, 8, 647–652. [Google Scholar]
- Soboń, A.; Drozd-Sokołowska, J.; Paszkiewicz-Kozik, E.; Popławska, L.; Morawska, M.; Tryc-Szponder, J.; Bołkun, Ł.; Rybka, J.; Pruszczyk, K.; Juda, A.; et al. Clinical efficacy and tolerability of venetoclax plus rituximab in patients with relapsed or refractory chronic lymphocytic leukemia-a real-world analysis of the Polish Adult Leukemia Study Group. Ann. Hematol. 2023, 102, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; D’Rozario, J.; Owen, C.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood 2022, 140, 839–850. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: Primary analysis of the CAPTIVATE FD cohort. Blood 2022, 139, 3278–3289. [Google Scholar] [CrossRef]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-duration ibrutinib-venetoclax in patients with chronic lymphocytic leukemia and comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar] [CrossRef]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet. Oncol. 2023, 24, 1423–1433. [Google Scholar] [CrossRef]
- Munir, T.; Moreno, C.; Owen, C.; Follows, G.; Benjamini, O.; Janssens, A.; Levin, M.D.; Osterborg, A.; Robak, T.; Simkovic, M.; et al. Impact of Minimal Residual Disease on Progression-Free Survival Outcomes After Fixed-Duration Ibrutinib-Venetoclax Versus Chlorambucil-Obinutuzumab in the GLOW Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3689–3699. [Google Scholar] [CrossRef]
- Fürstenau, M.; Kater, A.P.; Robrecht, S.; von Tresckow, J.; Zhang, C.; Gregor, M.; Thornton, P.; Staber, P.B.; Tadmor, T.; Lindström, V.; et al. First-line venetoclax combinations versus chemoimmunotherapy in fit patients with chronic lymphocytic leukaemia (GAIA/CLL13): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet. Oncol. 2024, 25, 744–759. [Google Scholar] [CrossRef]
- Munir, T.; Hillmen, P. Chronic lymphocytic leukemia therapy guided by measurable residual disease. Reply. N. Engl. J. Med. 2024, 390, 1634–1635. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic lymphocytic leukemia therapy guided by measurable residual disease. N. Engl. J. Med. 2024, 390, 326–337. [Google Scholar] [CrossRef]
- Brown, J.R.; Miller, K.; Munugalavadla, V. fixed-duration acalabrutinib combinations in untreated chronic lymphocytic leukemia. Reply. N. Engl. J. Med. 2025, 392, 2181. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.N.; Helbig, D.; Mulvey, E.; Nazir, S.; Stewart, S.; Lapinta, M.L.; Rutherford, S.C.; Ruan, J.; Leonard, J.P.; Martin, P.; et al. Zanubrutinib and venetoclax as initial therapy for CLL/SLL with obinutuzumab triplet consolidation in patients with minimal residual disease positivity (BruVenG). Blood 2023, 142, 3285. [Google Scholar] [CrossRef]
- Guo, Y.; Xue, H.; Hu, N.; Liu, Y.; Sun, H.; Yu, D.; Qin, L.; Shi, G.; Wang, F.; Xin, L.; et al. Discovery of the Clinical Candidate Sonrotoclax (BGB-11417), a Highly Potent and Selective Inhibitor for Both WT and G101V Mutant Bcl-2. J. Med. Chem. 2024, 67, 7836–7858. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Wang, Q.; Feng, Y.; Xing, H.; Yang, X.; Guo, Y.; Guo, Y.; Sun, H.; Liu, X.; et al. Sonrotoclax overcomes BCL2 G101V mutation–induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024, 143, 1825–1836. [Google Scholar] [CrossRef]
- Tam, C.S.; Anderson, M.A.; Lasica, M.; Verner, E.; Opat, S.S.; Ma, S.; Weinkove, R.; Cordoba, R.; Soumerai, J.; Ghia, P.; et al. Combination treatment with sonrotoclax (BGB-11417), a second-generation BCL2 Inhibitor, and zanubrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is well tolerated and achieves deep responses in patients with treatment-naïve chronic lymphocytic leukemia/small lymphocytic lymphoma (TN-CLL/SLL): Data from an ongoing phase 1/2 study. Blood 2023, 142, 327. [Google Scholar] [CrossRef]
- Deng, J.; Paulus, A.; Fang, D.D.; Manna, A.; Wang, G.; Wang, H.; Zhu, S.; Chen, J.; Min, P.; Yin, Y.; et al. Lisaftoclax (APG-2575) Is a novel BCL-2 inhibitor with robust antitumor activity in preclinical models of hematologic malignancy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 5455–5468. [Google Scholar] [CrossRef]
- Zhou, K.; Sun, M.; Wei, X.; Yi, S.; Qi, J.; Nian, W.; Cui, G.; Wang, J.; Zhang, X.; Cen, H.; et al. Updated efficacy and safety results of lisaftoclax (APG-2575) inpatients (Pts) with Heavily pretreated chronic lymphocytic leukemia (CLL): Pooled Analyses of Two Clinical Trials. Blood 2023, 142, 1900. [Google Scholar] [CrossRef]
- Davids, M.S.; Chanan-Khan, A.; Mudenda, B.; Nogaieva, L.; Kriachok, I.; Usenko, H.; Ivanov, V.; Kyselova, O.; Perekhrestenko, T.; Muzhychuk, I.; et al. Lisaftoclax (APG-2575) Safety and activity as monotherapy or combined with acalabrutinib or rituximab in patients (pts) with treatment-naïve, relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (R/R CLL/SLL): Initial data from a phase 2 global study. Blood 2022, 140, 2326–2328. [Google Scholar] [CrossRef]
- Skånland, S.S.; Brown, J.R. PI3K inhibitors in chronic lymphocytic leukemia: Where do we go from here? Haematologica 2023, 108, 9–21. [Google Scholar] [CrossRef]
- Hus, I.; Puła, B.; Robak, T. PI3K Inhibitors for the treatment of chronic lymphocytic leukemia: Current status and future perspectives. Cancers 2022, 14, 1571. [Google Scholar] [CrossRef]
- Sharman, J.P.; Coutre, S.E.; Furman, R.R.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.W.; et al. Final results of a randomized, phase III Study of rituximab with or without idelalisib followed by open-label idelalisib in patients with relapsed chronic lymphocytic leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1391–1402. [Google Scholar] [CrossRef]
- Flinn, I.W.; Miller, C.B.; Ardeshna, K.M.; Tetreault, S.; Assouline, S.E.; Mayer, J.; Merli, M.; Lunin, S.D.; Pettitt, A.R.; Nagy, Z.; et al. DYNAMO: A Phase II Study of Duvelisib (IPI-145) in Patients With Refractory Indolent Non-Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Flinn, I.W.; Cherry, M.A.; Maris, M.B.; Matous, J.V.; Berdeja, J.G.; Patel, M. Combination trial of duvelisib (IPI-145) with rituximab or bendamustine/rituximab in patients with non-Hodgkin lymphoma or chronic lymphocytic leukemia. Am. J. Hematol. 2019, 94, 1325–1334. [Google Scholar] [CrossRef]
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef]
- Mato, A.R.; Ghosh, N.; Schuster, S.J.; Lamanna, N.; Pagel, J.M.; Flinn, I.W.; Barrientos, J.C.; Rai, K.R.; Reeves, J.A.; Cheson, B.D.; et al. Phase 2 study of the safety and efficacy of umbralisib in patients with CLL who are intolerant to BTK or PI3Kδ inhibitor therapy. Blood 2021, 137, 2817–2826. [Google Scholar] [CrossRef]
- Maharaj, K.; Powers, J.J.; Achille, A.; Mediavilla-Varela, M.; Gamal, W.; Burger, K.L.; Fonseca, R.; Jiang, K.; Miskin, H.P.; Maryanski, D.; et al. The dual PI3Kδ/CK1ε inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells. Blood Adv. 2020, 4, 3072–3084. [Google Scholar] [CrossRef]
- Burris, H.A., III; Flinn, I.W.; Patel, M.R.; Fenske, T.S.; Deng, C.; Brander, D.M.; Gutierrez, M.; Essell, J.H.; Kuhn, J.G.; Miskin, H.P.; et al. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: An open-label, phase 1, dose-escalation, first-in-human study. Lancet. Oncol. 2018, 19, 486–496. [Google Scholar] [CrossRef]
- Moreno, O.; Wood, J. Absorption, distribution, and binding profile of ME-401, a potent and selective oral small-molecule inhibitor of phosphatidylinositol 3-Kinase δ (PI3Kδ) inanimal and B-cell lymphoma models. Target. Oncol. 2019, 14, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Munakata, W.; Kumode, T.; Goto, H.; Fukuhara, N.; Shimoyama, T.; Takeuchi, M.; Kawakita, T.; Kubo, K.; Sawa, M.; Uchida, T.; et al. A phase II study of zandelisib in patients with relapsed or refractory indolent non-Hodgkin lymphoma: ME-401-K02 study. Br. J. Haematol. 2025, 206, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Zelenetz, A.D.; Reddy, N.; Jagadeesh, D.; Stathis, A.; Salman, H.S.; Soumerai, J.D.; Kenkre, V.P.; Asch, A.S.; Llorin-Sangalang, J.; Li, J.; et al. Tolerability and durable respones of the PI3Kδ inhibitor ME-401 administered on an intermittent schedule in relapsed/refractory (R/R) follicular lymphoma (FL) and other B-cell malignancies. J. Clin. Oncol. 2020, 38, 8016. [Google Scholar] [CrossRef]
- Phillips, T.J.; Avigdor, A.; Gurion, R.; Patti, C.; Corradini, P.; Tani, M.; Mehta, A.; Lossos, I.S.; Zinzani, P.L.; Thieblemont, C.; et al. A phase 2 study of the PI3Kδ inhibitor parsaclisib in relapsed and refractory marginal zone lymphoma (CITADEL-204). Blood Adv. 2024, 8, 867–877. [Google Scholar] [CrossRef]
- Forero-Torres, A.; Ramchandren, R.; Yacoub, A.; Wertheim, M.S.; Edenfield, W.J.; Caimi, P.; Gutierrez, M.; Akard, L.; Escobar, C.; Call, J.; et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood 2019, 133, 1742–1752. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Cui, X.; Su, D.; Wu, Y.; Sun, X.; Wang, J.; Bai, H.; Wei, W.; Li, J.; et al. Abstract 664: BGB-10188, a highly selective PI3Kδ inhibitor with improved safety profile and superior anti-tumor activities in vivo. Cancer Res. 2020, 80, 664. [Google Scholar] [CrossRef]
- Lewis, J.; Girardi, M.; Vakkalanka, S.; Viswanadha, S.; Bertoni, F. RP6530, a dual PI3Kδ/γ inhibitor, attenutates AKT phosphorylation and induces apoptosis in primary cutaneous T cell lymphoma (CTCL) cells. Blood 2013, 122, 4418. [Google Scholar] [CrossRef]
- Lanasa, M.; Glenn, M.; Mato, A.; Allgood, S.; Wong, S.; Amore, B.; Means, G.; Stevens, E.; Yan, C.; Friberg, G.; et al. First-In-Human Study of AMG 319, a Highly Selective, Small Molecule Inhibitor of PI3Kδ, In Adult Patients With Relapsed Or Refractory Lymphoid Malignancies. Blood 2013, 122, 678. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Dai, X.; He, J.; Liang, J.; Yu, Y.; Yu, J.; Yang, N.; Wang, L.; Cai, Y.; et al. Abstract 5454: Amdizalisib (HMPL-689), a highly selective PI3Kδ inhibitor, exhibits potent anti-tumor activity in pre-clinical B-cell lymphoma models. Cancer Res. 2022, 82, 5454. [Google Scholar] [CrossRef]
- Guo, F.; Liu, B.; Li, X.; Wang, H.; Zhu, X.; Su, Y.; He, C.; Zhu, M.; Ding, J.; Xu, Y.; et al. Mass balance, metabolic disposition, and pharmacokinetics of a novel selective inhibitor of PI3Kδ [(14)C] SHC014748M in healthy Chinese subjects following oral administration. Cancer Chemother. Pharmacol. 2023, 91, 143–156. [Google Scholar] [CrossRef]
- Fan, L.; Wang, C.; Zhao, L.; Wang, Z.; Zhang, X.; Liu, X.; Cao, L.; Xu, W.; Li, J. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia. Neoplasia 2020, 22, 714–724. [Google Scholar] [CrossRef]
- Wang, H.; Feng, J.; Liu, Y.; Qian, Z.; Gao, D.; Ran, X.; Zhou, H.; Liu, L.; Wang, B.; Fang, M.; et al. Phase II study of novel orally PI3Kα/δ inhibitor TQ-B3525 in relapsed and/or refractory follicular lymphoma. Signal Transduct. Target. Ther. 2024, 9, 99. [Google Scholar] [CrossRef]
- Jiang, B.; Qi, J.; Song, Y.; Li, Z.; Tu, M.; Ping, L.; Liu, Z.; Bao, H.; Xu, Z.; Qiu, L. Phase 1 clinical trial of the PI3Kδ inhibitor YY-20394 in patients with B-cell hematological malignancies. J. Hematol. Oncol. 2021, 14, 130. [Google Scholar] [CrossRef]
- Coutre, S.E.; Barrientos, J.C.; Brown, J.R.; de Vos, S.; Furman, R.R.; Keating, M.J.; Li, D.; O’Brien, S.M.; Pagel, J.M.; Poleski, M.H.; et al. Management of adverse events associated with idelalisib treatment: Expert panel opinion. Leuk. Lymphoma 2015, 56, 2779–2786. [Google Scholar] [CrossRef]
- Flinn, I.W.; Hillmen, P.; Montillo, M.; Nagy, Z.; Illés, Á.; Etienne, G.; Delgado, J.; Kuss, B.J.; Tam, C.S.; Gasztonyi, Z.; et al. The phase 3 DUO trial: Duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018, 132, 2446–2455. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kuss, B.J.; Hillmen, P.; Montillo, M.; Moreno, C.; Essell, J.; Lamanna, N.; Nagy, Z.; Tam, C.S.; Stilgenbauer, S.; et al. Efficacy and Safety of Duvelisib Following Disease Progression on Ofatumumab in Patients with Relapsed/Refractory CLL or SLL in the DUO Crossover Extension Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2096–2103. [Google Scholar] [CrossRef]
- Gribben, J.G.; Jurczak, W.; Jacobs, R.W.; Grosicki, S.; Giannopoulos, K.; Wrobel, T.; Zafar, S.F.; Cultrera, J.L.; Kambhampati, S.; Danilov, A.; et al. Umbralisib Plus Ublituximab (U2) Is Superior to Obinutuzumab Plus Chlorambucil (O+Chl) in Patients with Treatment Naïve (TN) and Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL): Results from the Phase 3 Unity-CLL Study. Blood 2020, 136, 37–39. [Google Scholar] [CrossRef]
- Yang, X.; Bai, H.; Yuan, X.; Yang, X.; Liu, Y.; Guo, M.; Hu, N.; Jiang, B.; Lian, Z.; Ma, Z.; et al. A highly selective PI3Kδ inhibitor BGB-10188 shows superior preclinical anti-tumor activities and decreased on-target side effects on colon. Neoplasia 2024, 57, 101053. [Google Scholar] [CrossRef]
- Cao, J.; Li, Z.; Zhou, J.; Zhang, Q.; Chen, Y.; Zhu, Z.; Li, L.; Feng, R.; Li, F.; Xu, B.; et al. A phase Ib study result of HMPL-689, a PI3Kδ inhibitor, in Chinese patients with relapsed/refractory lymphoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 773–785. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, W.; Li, S.; Wang, Y.; Sun, P.; Zhou, P.; Zheng, Y.; Zhan, J.; Li, Z. Safety and efficacy of TQ-B3525, a novel and selective oral PI3K α/δ inhibitor, in Chinese patients with advanced malignancies: A phase I dose-escalation and expansion trial. J. Clin. Oncol. 2020, 38, 8058. [Google Scholar] [CrossRef]
- Witkowska, M.; Majchrzak, A.; Robak, P.; Wolska-Washer, A.; Robak, T. The role of antibody therapies in treating relapsed chronic lymphocytic leukemia: A review. Expert Opin. Biol. Ther. 2024, 24, 1233–1244. [Google Scholar] [CrossRef]
- Stohl, W.; Metyas, S.; Tan, S.M.; Cheema, G.S.; Oamar, B.; Xu, D.; Roschke, V.; Wu, Y.; Baker, K.P.; Hilbert, D.M. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: Longitudinal observations. Arthritis Rheum. 2003, 48, 3475–3486. [Google Scholar] [CrossRef]
- Woyach, J.A.; Awan, F.; Flinn, I.W.; Berdeja, J.G.; Wiley, E.; Mansoor, S.; Huang, Y.; Lozanski, G.; Foster, P.A.; Byrd, J.C. A phase 1 trial of the Fc-engineered CD19 antibody XmAb5574 (MOR00208) demonstrates safety and preliminary efficacy in relapsed CLL. Blood 2014, 124, 3553–3560. [Google Scholar] [CrossRef] [PubMed]
- Staber, P.B.; Jurczak, W.; Greil, R.; Vucinic, V.; Middeke, J.M.; Montillo, M.; Munir, T.; Neumeister, P.; Schetelig, J.; Stilgenbauer, S.; et al. Tafasitamab combined with idelalisib or venetoclax in patients with CLL previously treated with a BTK inhibitor. Leuk. Lymphoma 2021, 62, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.Y.; Widhopf, G.F., II; Ghia, E.M.; Kidwell, R.L.; Hasan, M.K.; Yu, J.; Rassenti, L.Z.; Chen, L.; Chen, Y.; Pittman, E.; et al. Phase I Trial: Cirmtuzumab Inhibits ROR1 Signaling and Stemness Signatures in Patients with Chronic Lymphocytic Leukemia. Cell Stem Cell 2018, 22, 951–959.e953. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, M.Y.; Siddiqi, T.; Barrientos, J.C.; Wierda, W.G.; Isufi, I.; Tuscano, J.M.; Lamanna, N.; Subbiah, S.; Koff, J.L.; et al. Phase 1/2 study of cirmtuzumab and ibrutinib in mantle cell lymphoma (MCL) or chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 2021, 39, 7556. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, M.Y.; Siddiqi, T.; Rhodes, J.M.; Wierda, W.G.; Isufi, I.; Tuscano, J.M.; Lamanna, N.; Subbiah, S.; Koff, J.L.; et al. Phase 1/2 Study of Zilovertamab and ibrutinib in mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), or marginal zone lymphoma (MZL). Blood 2022, 140, 566–568. [Google Scholar] [CrossRef]
- Jurczak, W.; Zinzani, P.L.; Gaidano, G.; Goy, A.; Provencio, M.; Nagy, Z.; Robak, T.; Maddocks, K.; Buske, C.; Ambarkhane, S.; et al. Phase IIa study of the CD19 antibody MOR208 in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1266–1272. [Google Scholar] [CrossRef]
- Förster, R.; Davalos-Misslitz, A.C.; Rot, A. CCR7 and its ligands: Balancing immunity and tolerance. Nat. Rev. Immunol. 2008, 8, 362–371. [Google Scholar] [CrossRef]
- Cuesta-Mateos, C.; Brown, J.R.; Terrón, F.; Muñoz-Calleja, C. Oflymph nodes and CLL cells: Deciphering therole of CCR7 in the pathogenesis of CLL and understanding its potential as therapeutic target. Front. Immunol. 2021, 12, 662866. [Google Scholar] [CrossRef]
- Cuesta-Mateos, C.; Juárez-Sánchez, R.; Mateu-Albero, T.; Loscertales, J.; Mol, W.; Terrón, F.; Muñoz-Calleja, C. Targeting cancer homing into the lymph node with a novel anti-CCR7 therapeutic antibody: The paradigm of CLL. mAbs 2021, 13, 1917484. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Albero, T.; Marcos-Jimenez, A.; Delgado-Wicke, P.; Terrón, F.; Loscertales, J.; López-Matencio, J.M.S.; Muñoz-Calleja, C.; Cuesta-Mateos, C. Evaluation of the novel therapeutic anti-CCR7 antibody CAP-100 as an add-on therapy in chronic lymphocytic leukemia patients receiving venetoclax. Hematol. Oncol. 2023, 41, 869–876. [Google Scholar] [CrossRef]
- Mateu-Albero, T.; Juárez-Sánchez, R.; Loscertales, J.; Mol, W.; Terrón, F.; Muñoz-Calleja, C.; Cuesta-Mateos, C. Effect of ibrutinib on CCR7 expression and functionality in chronic lymphocytic leukemia and its implication for the activity of CAP-100, a novel therapeutic anti-CCR7 antibody. Cancer Immunol. Immunother. 2022, 71, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Kipps, T.J. ROR1: An orphan becomes apparent. Blood 2022, 140, 1583–1591. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ghia, E.M.; Rassenti, L.Z.; Widhopf, G.F., II; Kipps, T.J. Wnt5a enhances proliferation of chronic lymphocytic leukemia and ERK1/2 phosphorylation via a ROR1/DOCK2-dependent mechanism. Leukemia 2021, 35, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Xian, J.; Sinha, N.; Girgis, C.; Oh, C.S.; Cring, M.R.; Widhopf, G.F., II; Kipps, T.J. Variant Transcript of ROR1 ENST00000545203 Does Not Encode ROR1 Protein. Biomedicines 2024, 12, 1573. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.K.; Widhopf, G.F., II; Kipps, T.J. Combined Therapy of Zanubrutinib and Zilovertamab in the Inhibition of Invasive Capability of Chronic Lymphocytic Leukemia Cells. Blood 2023, 142, 6517. [Google Scholar] [CrossRef]
- Wang, M.L.; Barrientos, J.C.; Furman, R.R.; Mei, M.; Barr, P.M.; Choi, M.Y.; de Vos, S.; Kallam, A.; Patel, K.; Kipps, T.J.; et al. Zilovertamab Vedotin targeting of ROR1 as therapy for lymphoid cancers. NEJM Evid. 2022, 1, EVIDoa2100001. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Y.; Ma, J.; Zhang, Y. Immunotherapy in chronic lymphocytic leukemia: Advances and challenges. Exp. Hematol. Oncol. 2025, 14, 53. [Google Scholar] [CrossRef]
- Danecki, M.; Jurczak, W. Bispecific antibodies in relapsed/refractory diffuse large B-cell lymphoma. Acta Haematol. Pol. 2024, 55, 186–191. [Google Scholar] [CrossRef]
- Visentin, A.; Frazzetto, S.; Trentin, L.; Chiarenza, A. Innovative combinations, cellular therapies and bispecific antibodies for chronic lymphocytic leukemia: A narrative review. Cancers 2024, 16, 1290. [Google Scholar] [CrossRef]
- Shahzad, M.; Basharat, A.; Irfan, S.; Sadiq, M.H.; Amin, M.K.; Jaglal, M.V. Future landscapes of bispecific antibodies in chronic lymphocytic leukemia (CLL). Systematic review of ongoing trials. Blood 2024, 144, 6804. [Google Scholar] [CrossRef]
- Danilov, A.; Fakhri, B.; Awan, F.T.; Bentzen, H.H.; Eradat, H.A.; Niemann, C.U.; Offner, F.; Poulsen, C.B.; Hoeyer, T.; Bellido, M.; et al. Epcoritamab monotherapy in patients (Pts) with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL): Results from CLL expansion and optimization cohorts of Epcore CLL-1. Blood 2024, 144, 883. [Google Scholar] [CrossRef]
- Kater, A.P.; Christensen, J.H.; Bentzen, H.H.; Niemann, C.U.; Hutchings, M.; Chen, J.; Rios, M.; Palenski, T.; Li, T.; Mato, A.R. Subcutaneous epcoritamab in patients with relapsed/refractory chronic lymphocytic leukemia: Preliminary results from the Epcore CLL-1 Trial. Blood 2021, 138, 2627. [Google Scholar] [CrossRef]
- Mhibik, M.; Gaglione, E.M.; Eik, D.; Herrick, J.; Le, J.; Ahn, I.E.; Chiu, C.; Wielgos-Bonvallet, M.; Hiemstra, I.H.; Breij, E.C.W.; et al. Cytotoxicity of the CD3×CD20 bispecific antibody epcoritamab in CLL is increased by concurrent BTK or BCL-2 targeting. Blood Adv. 2023, 7, 4089–4101. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Assouline, S.; Baker, R.; Bartlett, N.L.; El-Sharkawi, D.; Giri, P.; Ku, M.; Schuster, S.J.; Matasar, M.; Radford, J.; et al. Mosunetuzumab Monotherapy Demonstrates Activity and a Manageable Safety Profile in Patients with Relapsed or Refractory Richter’s Transformation. Blood 2023, 142, 614. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhang, H.L.; Huang, H.Q.; Zhang, Q.Y.; Jing, H.M.; Wang, C.; Wu, C.; Li, D.H.; Dai, Y.; Humphrey, K.; et al. Glofitamab monotherapy induces high complete response rates and manageable safety in Chinese patients with heavily pretreated relapsed or refractory diffuse large B-cell lymphoma. Haematologica 2024, 109, 1269–1273. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Hutchings, M.; Offner, F.; Mulvihill, E.; Relf, J.; Byrne, B.; Lundberg, L.; Dickinson, M. Glofitamab monotherapy induces durable complete remissions and has a manageable safety profile in patients with Richter’s transformation. Hematol. Oncol. 2023, 41, 63–65. [Google Scholar] [CrossRef]
- Patel, K.; Riedell, P.A.; Tilly, H.; Ahmed, S.; Michot, J.-M.; Ghesquieres, H.; Schiano de Collela, J.M.; Chanan-Khan, A.; Bouabdallah, K.; Tessoulin, B.; et al. A Phase 1 study of plamotamab, an anti-CD20 x anti-CD3 bispecific antibody, in patients with relapsed/refractory non-Hodgkin’s lymphoma: Recommended dose safety/efficacy update and escalation exposure-response analysis. Blood 2022, 140, 9470–9472. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Li, L.; Qian, Z.; Zhou, K.; Fan, L.; Tan, P.; Giri, P.; Li, Z.; Kenealy, M.; et al. GB261, an Fc-function enabled and CD3 affinity De-Tuned CD20/CD3 bispecific antibody, demonstrated a highly advantageous safety/efficacy balance in an ongoing first-in-human dose-escalation study in patients with relapsed/refractory non-Hodgkin lymphoma. Blood 2023, 142, 1719. [Google Scholar] [CrossRef]
- Townsend, W.; Leong, S.; Tucker, D.; Pottinger, B.; Paneesha, S.; El-Sharkawi, D.; Eyre, T.A.; Batten, T.; Shah, M.; Cook, S.; et al. First-in-human phase I trial of a ROR1 targeting bispecific t cell engager (NVG-111) in combination with ibrutinib or as monotherapy in subjects with relapsed refractory chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL). Blood 2022, 140, 4162–4163. [Google Scholar] [CrossRef]
- Shin, H.G.; Yang, H.R.; Yoon, A.; Lee, S. Bispecific antibody-based immune-cell engagers and their emerging therapeutic targets in cancer immunotherapy. Int. J. Mol. Sci. 2022, 23, 5686. [Google Scholar] [CrossRef] [PubMed]
- Shadman, M.; Thompson, P.; Heyman, B.; Hutchings, M.; Lori, L.A.; Yuda, J.; Zinzani, P.L.; Colton, D.; Hoehn, D.; Izuzquiza, M.; et al. TITANium: An open-label, global multicenter phase 1/2 study of AZD5492, a first-in-class subcutaneous CD8-guided tri-specific T-cell engager (TCE), in patients (pts) with relapsed or refractory (r/r) B-cell malignancies. J. Clin. Oncol. 2025, 43, TPS7091. [Google Scholar] [CrossRef]
- Khalili, J.S.; Xiao, S.; Zhu, Y. Abstract 5679: Tetra-specific antibody GNC-035: Guidance and navigation control (GNC) molecule development for treatment of ROR1+ malignancies. Cancer Res. 2023, 83, 5679. [Google Scholar] [CrossRef]
- Cai, W.; Dong, J.; Gallolu Kankanamalage, S.; Titong, A.; Shi, J.; Jia, Z.; Wang, B.; Huang, C.; Zhang, J.; Lin, J.; et al. Biological activity validation of a computationally designed Rituximab/CD3 T cell engager targeting CD20+ cancers with multiple mechanisms of action. Antib. Ther. 2021, 4, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.; Cayatte, C.; Izuzquiza Fernandez, M.; Rata, S.; Ciucci, T.; Lin, W.; Lara, A.; Jafarzadeh, N.; Foreman, T.; Payne, S.; et al. Pre-clinical evaluation of AZD5492, a novel CD8-guided T cell engager, for B-non Hodgkin lymphoma indications. Blood 2024, 144, 959. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, R.; Zhang, X.; Jing, Z.; Zhao, C.; Pan, F.; Zheng, B.; Dai, R.; Zeng, L. Abstract 3513: CC312, a trispecific CD19-targeting co-stimulatory T cell engager, for the treatment of B cell malignancies and autoimmune diseases. Cancer Res. 2025, 85, 3513. [Google Scholar] [CrossRef]
- Abbasi, S.; Totmaj, M.A.; Abbasi, M.; Hajazimian, S.; Goleij, P.; Behroozi, J.; Shademan, B.; Isazadeh, A.; Baradaran, B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med. 2023, 12, 7844–7858. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, Z.; Todorovic, D.; Markovic, V.; Ladjevac, N.; Zdravkovic, N.; Djurdjevic, P.; Arsenijevic, N.; Milovanovic, M.; Arsenijevic, A.; Milovanovic, J. CAR T cell therapy for chronic lymphocytic leukemia: Successes and shortcomings. Curr. Oncol. 2022, 29, 3647–3657. [Google Scholar] [CrossRef]
- Bogacz, A.; Bukowska, A.; Bukowska, M.; Olbromski, K.; Łaba, A.; Klupieć, R.; Jopek, K. Modern immunotherapy using CAR-T cells in haemato-oncology and solid tumors. Acta Haematol. Pol. 2024, 55, 34–41. [Google Scholar] [CrossRef]
- Bock, T.J.; Colonne, C.K.; Fiorenza, S.; Turtle, C.J. Outcome correlates of approved CD19-targeted CAR T cells for large B cell lymphoma. Nat. Rev. Clin. Oncol. 2025, 22, 241–261. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Chavez, J.C.; Sehgal, A.R.; Epperla, N.; Ulrickson, M.; Bachy, E.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Three-year follow-up analysis of axicabtagene ciloleucel in relapsed/refractory indolent non-Hodgkin lymphoma (ZUMA-5). Blood 2024, 143, 496–506. [Google Scholar] [CrossRef]
- Siddiqi, T.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Dorritie, K.; Soumerai, J.; Riedell, P.A.; Shah, N.N.; Nath, R.; Fakhri, B.; et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): A multicentre, open-label, single-arm, phase 1-2 study. Lancet 2023, 402, 641–654. [Google Scholar] [CrossRef]
- Siddiqi, T.; Soumerai, J.D.; Dorritie, K.A.; Stephens, D.M.; Riedell, P.A.; Arnason, J.E.; Kipps, T.J.; Gillenwater, H.H.; Gong, L.; Yang, L.; et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood 2021, 139, 1794–1806. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Maloney, D.G.; Kenderian, S.S.; Brander, D.M.; Papp, E.; Ray, P.; Okal, A.; Perna, S.K.; Tuazon, S.A.; Ou, S.-S.; et al. CLL-184 characteristics associated with response to lisocabtagene maraleucel (liso-cel) in patients with R/R CLL/SLL: Exploratory analyses from the phase 1/2 TRANSCEND CLL 004 Study. Clin. Lymphoma Myeloma Leuk. 2024, 24, S346. [Google Scholar] [CrossRef]
- Melenhorst, J.J.; Chen, G.M.; Wang, M.; Porter, D.L.; Chen, C.; Collins, M.A.; Gao, P.; Bandyopadhyay, S.; Sun, H.; Zhao, Z.; et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 2022, 602, 503–509. [Google Scholar] [CrossRef]
- Gauthier, J.; Hirayama, A.V.; Purushe, J.; Hay, K.A.; Lymp, J.; Li, D.H.; Yeung, C.C.S.; Sheih, A.; Pender, B.S.; Hawkins, R.M.; et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 2020, 135, 1650–1660. [Google Scholar] [CrossRef]
- Gill, S.; Vides, V.; Frey, N.V.; Hexner, E.O.; Metzger, S.; O’Brien, M.; Hwang, W.T.; Brogdon, J.L.; Davis, M.M.; Fraietta, J.A.; et al. Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia. Blood Adv. 2022, 6, 5774–5785. [Google Scholar] [CrossRef]
- Davids, M.S.; Kenderian, S.S.; Flinn, I.; Hill, B.T.; Maris, M.; Ghia, P.; Byrne, M.; Bartlett, N.L.; Pagel, J.M.; Zheng, Y.; et al. ZUMA-8: A phase 1 study of brexucabtagene autoleucel in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 2025, 146, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kenderian, S.S.; Flinn, I.W.; Hill, B.T.; Maris, M.; Ghia, P.; Byrne, M.; Bartlett, N.L.; Pagel, J.M.; Zheng, Y.; et al. ZUMA-8: A phase 1 study of KTE-X19, an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in Patients With Relapsed/Refractory Chronic Lymphocytic Leukemia. Blood 2022, 140, 7454–7456. [Google Scholar] [CrossRef]
- Liang, E.C.; Albittar, A.; Huang, J.J.; Hirayama, A.V.; Kimble, E.L.; Portuguese, A.J.; Chapuis, A.; Shadman, M.; Till, B.G.; Cassaday, R.D.; et al. Factors associated with long-term outcomes of CD19 CAR T-cell therapy for relapsed/refractory CLL. Blood Adv. 2023, 7, 6990–7005. [Google Scholar] [CrossRef] [PubMed]
- Derigs, P.; Schubert, M.L.; Dreger, P.; Schmitt, A.; Yousefian, S.; Haas, S.; Röthemeier, C.; Neuber, B.; Hückelhoven-Krauss, A.; Brüggemann, M.; et al. Third-generation anti-CD19 CAR T cells for relapsed/refractory chronic lymphocytic leukemia: A phase 1/2 study. Leukemia 2024, 38, 2419–2428. [Google Scholar] [CrossRef]
- Schubert, M.L.; Schmitt, A.; Sellner, L.; Neuber, B.; Kunz, J.; Wuchter, P.; Kunz, A.; Gern, U.; Michels, B.; Hofmann, S.; et al. Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: A unicentre phase I/II clinical trial protocol. BMJ Open 2019, 9, e026644. [Google Scholar] [CrossRef]
- Braun, T.; Kuschel, F.; Reiche, K.; Merz, M.; Herling, M. Emerging T-cell lymphomas after CAR T-cell therapy. Leukemia 2025, 39, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, T.; Puła, A.; Gołos, A.; Bołkun, Ł.; Puła, B. Indicators of an increased risk of therapy-related myeloid neoplasms in lymphoma patients: How can we best evaluate severe impairment of bone marrow function? Expert Rev. Hematol. 2025, 18, 923–934. [Google Scholar] [CrossRef] [PubMed]

| Drug | Characteristics | Selected Clinical Trials in CLL | FDA Approval for CLL | Reference |
|---|---|---|---|---|
| Ibrutinib (PCYC-1102, Imbruvica, Johnson & Johnson, New Brunswick, NJ, USA) | First in class covalent, irreversible BTKi | Phase 3 RESONATE study: Ibr vs. Ofa in RR CLL [16] Phase 3 RESONATE2 study: Ibr vs. Chl in TN CLL [17] Phase 3 E1912 and FLAIR studies: in TN CLL Ibru + R vs. FCR I + V vs. FCR [18,19]. Phase 3 A041202: Ibru + R vs. BR in TN CLL [20] | 2014: Ibr-RR 2016: Ibr-TN 2019: Ibr + R-TN 2020: Ibru + Obi-TN | [18,19,20,21,22,23] |
| Acalabrutinib (ACP-196, Calquence, AstraZeneca, Cambridge, UK) | Next-generation covalent, irreversible BTKi more selective and less toxic than ibrutinib | Phase 3 ELEVATE-TN study, Acala + Obi vs. Acala vs. Chl + Obi in TN CLL [24] Phase 3 ASCEND: Acala vs. Idela + R or BR in RR CLL [25] Phase 3 ELEVATE-RR study, Acala vs. Ibru in RR CLL [26] | 2019: Acala +/− Obi for CLL | [24,25,26,27] |
| Zanubrutinib (BGB-3111, Brukinsa, BeOne Medicines, Cambridge, MA, USA) | Next-generation covalent, irreversible BTKi with greater specificity and better bioavailability compared with ibrutinib | Phase 3 SEQUOIA study: Zanu vs. BR in TN CLL [28] Phase 3 ALPINE study: Zanu vs. Ibru in RR CLL [29] | 2023: Zanu for TN CLL/SLL | [28,29] |
| Orelabrutinib (ICP-022, Hibruka, InnoCare, Beijing, China) | Highly selective, covalent, irreversible BTKi Greater specificity and better bioavailability compared with ibrutinib | Phase 2 study: Orelabrutinib for RR CLL [30] | Not approved by FDA, approved in China for R/R CLL/SLL | [30,31] |
| Tirabrutinib (Velexbru, ONO/GS-4059, Ono Pharmaceutical Co., Ltd., Osaka, Japan) | Second-generation, highly selective, covalent, irreversible oral BTKi with the ability to cross the blood–brain barrier | Phase 1 study: Tirabrutinib in RR CLL and NHL [32] Phase 2 study: Tirabrutinib + entospletinib or Tirabrutinib + entospletinib + Obi [33] | Not approved by FDA, approved in Japan to treat primary central nervous system lymphoma | [32,33] |
| Pirtobrutinib (LOXO-305, Jaypirca, Eli Lilly, Indianapolis, IN, USA) | Highly selective, non-covalent, reversible next-generation BTKi, inhibiting diverse BTK C481 substitution mutations | Phase 1/2 BRUIN study: RR CLL previously treated with BTKi: ORR 73.3%, most common AEs-infections (in 71.0%), bleeding (in 42.6%), and neutropenia (in 32.5%) [34] | Approved in 2023 for patients with RR previously been treated with covalent BTKi and a BCL-2 | [34] |
| Nemtabrutinib (MK1026, Merck, Rahway, NJ, USA) | Non-covalent, reversible inhibitor of both the wild-type and the mutation C481S of BTK | Phase 1 study in R/R CLL, NHL, and WM [35] | Not approved by FDA | [35,36,37] |
| Rocbrutinib (LP-168, Hansoh Pharma (Lianyungang, Jiangsu, China) | Selective next-generation BTKi that reversibly targets C481 mutant BTK and irreversibly other non-C481 mutations, including T474I | Phase 1 Trial in RR CLL with Gatekeeper mutation [38] | Not approved by FDA | [38] |
| Drug | Characteristics | Key Clinical Trials in CLL | Reference |
|---|---|---|---|
| BGB-16673 (BeOne Medicines, Cambridge, MA, USA) | Bivalent BTK degrader specifically binding to BTK and the E3 ligase | Phase 1 trial RR CLL/SLL (CaDAnCe-101): ORR 38/49 (78%), CR 2/49 (4%), AEs: fatigue, contusion, anemia, diarrhea, neutropenia, No AF, No G ≥ 3 hypertension | [60] #NCT05006716 |
| Bexobrutideg (NX-5948; Nurix Therapeutics, Inc., San Francisco, CA, USA) | Induces BTK protein degradation by the cereblon E3 ligase without degradation of other cereblon neosubstrates | Phase 1a/b trial RR CLL/SLL: ORR 76.4%, CR 0%, AEs: contusion, thrombocytopenia, neutropenia, no AF | [61] #NCT05131022 |
| NX-2127 (Nurix Therapeutics Inc., San Francisco, CA, USA) | Concomitant immunomodulatory activity mediating degradation of IKZF1 and IKZF3 through interactions with the cereblon E3 ubiquitin ligase complex | Phase 1a/b trial R/R CLL/SLL: ORR 9/24 (37.5), CR 0/24 (0%), SD 11/24 (46%), AEs: fatigue, neutropenia hypertension, anemia, atrial arrythmia | [62,63,64] #NCT05131022 |
| AC676 (Accutar Biotech., Cranbury, NJ, USA) | Recruits BTK by linking a BTK ligand to the cereblon E3-ligase recruiting ligand | Phase 1, dose-escalation study in patients with relapsed/refractory B-cell malignancies (Ongoing) | [65] #NCT05780034 |
| NRX-0492 (Nurix Therapeutics, Inc., San Francisco, CA, USA) | Selectively catalyzes ubiquitylation and proteasomal degradation of BTK | Phase 1a/1b multicenter, open-label study in patients with RR B-cell malignancies. Estimated study completion—2026 | [58] #NCT04830137 |
| HZ-Q1070 (Hangzhou HealZen Therapeutics Co., Hangzhou, China) | Novel BTK-PROTAC agents within the DaTProD® platform, avoided degradation of Aiolos and Ikaros | A phase 1study in patients with RR B-cell malignancies, including CLL/SLL ongoing | [66,67] #CTR20240471 |
| ABBV-101 (AbbVie Inc., Chicago, IL, USA) | Solely bind to and impede the catalytic domain of BTK | Phase 1, multicenter study in RR patients with B-cell NHL, including CLL | [68] #NCT05753501 |
| Drug | Characteristics | Selected Clinical Trials in CLL | FDA Approval | Reference Number |
|---|---|---|---|---|
| Venetoclax (formerly ABT 199, Venclyxto, AbbVie Inc., Chicago, IL, USA) | First-generation inhibitor of the apoptosis regulator BCL-2, disrupting inter-action between BCL-2 and proapoptotic proteins | Phase 3 MURANO study in RR CLL: VR vs. BR, PFS 54.7 months vs. 17.0 months, with BR. The 7-year OS 69.6% vs. 51.0%, serious AE 52.1% vs. 44.7% [70] Phase 3 CLL14 study in TN CLL: VenO vs. ChlO at median follow-up 76.4 m PFS 76.2 vs. 36.4 m, uMRD in PB 75.5% vs. 35.2%, in BM 56.9% vs. 17.1%, Grade 3 or 4 neutropenia, 52.8% vs. 48.1%, infections 17.5% vs. 15.0%, respectively [71] | 2016—in monotherapy for RR CLL with del17p. 2018—in combination with rituximab for R/R CLL/SLL, 2019—in combination with obinutuzumab for TN CLL/SLL | [70,71,72] |
| Sonrotoclax (BGB-11417, BeOne Medicines, Cambridge, MA, USA) | Next-generation BCL2 inhibitor effective against both WT BCL-2 and several mutants including BCL2 G101V mutation-induced venetoclax resistance | Phase 1b/2 in TN CLL: Sonrotoclax + Zanu, ORR-100% (CR: 160 mg-36%, 320 mg-19%), At Median 8.5 m PFS 100%; All grade neutropenia-35%, COVID-19-23%, diarhea 23% | Not approved | [73] |
| Lisaftoclax (APG-2575, Ascentage Pharma, Suzhou, China) | BH3 mimetic BCL2-selective inhibitor | Phase 1 in RR CLL and NHL: ORR 63.6%, TEAEs-diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%); Well tolerated up to 800 mg/day | Not approved | [74] |
| Surzetoclax (ABBV-453, Abbvie, AbbVie Inc., Chicago, IL, USA) | Next-generation BCL-2 inhibitor with high potency, selectivity and durable in vivo activity at low dose | Phase 1 Dose Escalation clinical trials in RR CLL | Not approved | [75] #NCT0629122 |
| LOXO-338 (Loxo Oncology/Eli Lilly, Indianapolis, IN, USA) | Next-generation BCL-2 inhibitor designed to achieve selectivity for BCL-2 over Bcl-xL | Phase 1 clinical trial in patients with advanced B-cell NHL, including CLL ORR 19% and disease control 67%, TRAE-15% and were mostly grade 1 (11%) or 2 (4%); grade ≥ 3 or serious TRAE not reported | Not approved | [76] #NCT05024045 |
| Mesutoclax (ICP-248, InnoCare Pharma, Beijing, China) | Novel, selective BCL-2 inhibitor | Phase 1 dose escalation and dose expansion study in RR CLL and MCL, ORR for CLL/SLL and RR MCL patients was 100%, including CR 14.3% for CLL/SLL and 71.4% for MCL. Most common TRAEs—neutropenia, thrombocytopenia, and upper respiratory tract infection | Not approved | [77,78] #NCT05728658 |
| Drug | Characteristics | Key Clinical Trials in CLL | FDA Approval | Reference |
|---|---|---|---|---|
| Idelalisib (GS-1101, CAL-101, Zydelig Gilead Sciences, Inc., Foster City, CA, USA) | First-in-class PI3Kδ inhibitor | Phase 3 randomised trial in patients with R/R CLL: Idela + R vs. R PFS 20.3 vs. 6.5, OS 40.6 m vs. 34.6 m most common AEs in the IDELA/R group pyrexia (40.0%), fatigue (30.9%), and diarrhea (29.1%) | 2014: EMA and FDA approval for RR CLL in combination with R; 2022: voluntarily withdrawn by the developer | [102] |
| Duvelisib (IPI-145, INK1197, Copiktra, Secura Bio, Inc., Las Vegas, NV, USA) | Selective dual inhibitor of Pi3kδγ selective dual inhibitor of Pi3kδγ | Phase 2 DYNAMO trial in RR/CLL/SLL: ORR 68%, PR 68% Phase 3 DUO trial-duvelisib vs. Ofa in RR CLL/SLL. PFS 13.3 m vs. 9.9 months. ORR 74% vs. 45%, most common non-haematological AEs in duvelisib arm: diarrhoea (51%), pyrexia (29%), nausea (23%), cough (21%) and colitis (13%) | 2018: approved for CLL after at least two therapies | [103,104,105] |
| Umbralisib (Ukoniq, TG Therapeutics, Morrisville, NC, USA) | Next-generation inhibitor of PI3Kδ and casein kinase-1ε (CK1ε) | Phase 2 study, Umbralisib in patients with CLL intoleratednt to prior BTKis or PI3Kδis. Median PFS 23.5 months, and ORR 44%. Most common AEs: rash (27%), arthralgia (18%), and AF (16%) Phase 3 UNITY trial: ChlO vs. umbralisib vs. ublituximab vs. umbralisib + ublituximab (U2) in TN or RR CLL. U2 well tolerated significantly improved PFS vs. ChlO | 2022: FDA approval for CLL in combination with anti-CD20 antibody. Umbralisib voluntarily withdrawn for sale for approved indications by the developer | [106,107,108] |
| Zandelisib (PWT143, ME-401, Mei Pharma, San Diego, CA, USA) | Selective, non-covalent inhibitor of PI3Kδ | Phase 1b 89% in CLL/SLL study (ME-401-K02 study in patients with RR CLL or NHL +/− R in CLL/SLL: ORR 89%, PFS NR, Grade 3 AESI diarrhea (3.5%), colitis (3.5%), rash (2%), ALT increased (2%), and pneumonitis (2%) [104], NCT02914938 | 2020—FDA fast track designation for adult patients with RR FL who have receive | [109,110,111] #NCT02914938 |
| Parsaclisib (IBI-376, Incyte/Innovent, Wilmington, DE, USA) | Highly selective, next-generation inhibitor of PI3Kδ | Parsaclisib demonstrated durable responses and a manageable safety profile in RR MZL Phase 1/2 study of parsaclisib + tafasitamab in RR CLL and RR NHL ongoing as part of a phase 1/2 study (NCT04809467) | Not approved | [112,113] #INCB050465 |
| BGB-10188 (BeOne Medicines, Cambridge, MA, USA) | Highly selective PI3Kδ inhibitor | Phase 1/2 trial in RR CLL of BGB-10188 +/− Zanu and tislelizumab (#NCT04282018) | Not approved | [114] #NCT04282018 |
| Tenalisib (GDC-0032, RP6530, Rhizen Pharmaceuticals SA, Basel, Switzerland) | Dual PI3K δ/γ inhibitor | Phase 2 study investigating the efficacy and safety of tenalisib in patients with RR-CLL, ongoing (#NCT04204057) | Investigational, not approved | [115] #NCT04204057 |
| ACP-319 (AMG 319, Acerta Pharma BV, Oss, The Netherlands/AstraZeneca, Cambridge, UK) | Selective PI3Kδ inhibitor | Phase 1 study in RR-CLL and RR-NHL—ongoing [116] Phase 1 study evaluating ACP-319 + Acala and ACP-319 in RR CLL -ongoing (#NCT02157324) | Not approved | [116] #NCT02157324 |
| Amdizalisib (HMPL-689) (HUTCHMED, Hong Kong, China) | Selective inhibitor of PI3Kδ | Phase 1b study CLL and other ORR 51.7%, median TTR—1.9 months, most common grade 3 or higher AEs—neutropenia, pneumonia, and rash | Not approved | [117] |
| SHC014748M (Nanjing Sanhome Pharmaceutical, Nanjing, Jiangsu, China) | Selective PI3Kδ inhibitor | Phase 1 study in patients with CLL and other indolent B-cell haematologic malignancies has been initiated (#NCT03588598). | Not approved | [118,119] #NCT03588598 |
| TQ-B3525 (Chia Tai Tianqing Pharmaceutical Group, Lianyungang, China) | Selective PI3Kα/δ inhibitor | Phase 1 dose-escalation and expansion trial in R/R NHL and solid tumors—promising clinical activity and a favourable safety profile. Most common AEs—hyperglycaemia (65.0%), increased glycosylated haemoglobin (35.0%), diarrhoea (32.5%) (#NCT03510767) | Not approved | [120] #NCT03510767 |
| Linperlisib (YY-20394, Yingli Pharmaceutical C, Shanghai, China) | PI3Kδ inhibitor with reduced activity against PI3Kγ | Phase 1 study in RR B-cell NHL: ORR 64.0%, median PFS 255 days. The most common drug-related AEs—neutropenia (44.0%), pneumonia (16.0%), hyperuricemia (12.0%), lymphocytopenia (8.0%), leukopenia (8.0%), pneumonitis (8.0%) (#NCT03757000). | Investigational, not approved | [121] #NCT03757000 |
| Drug | Characteristics | Key Clinical Trials in CLL | Reference |
|---|---|---|---|
| Epcoritamab (Tepkinly, AbbVie Inc., Chicago, IL, USA) | BsAb CD3×CD20 approved for DLBCL, FL and high-grade B-cell Lymphoma, not approved in CLL | Phase 1b/2 study: (EPCORE™ CLL-1) in RR CLL: ORR 67%, CR 33%, median PFS-12.8 m. Most common AEs-CRS (96%), diarrhoea (48%), peripheral oedema (48%), fatigue (43%), and injection-site reactions (43%) Phase 1/2 study (AETHER) in RR CLL/SLL: Epcoritamab alone or in combination with venetoclax or pirtobrutinib in RR CLL (#NCT05791409) | [151,152,153] #NCT04623541 #NCT05791409 |
| Mosumetuzumab (Lunsumio, BTCT4465A, GO29781 Roche, Basel, Switzerland) | BsAb CD3×CD20 humanized, approved for FL and investigated RR RT | Phase 2 study of mosumetuzumab in RR RT: ORR 40.0% and CR 20.0%, most common AE-CRS 65.0% (#NCT02500407) Phase 1 study of Mosunetuzumab and Mosunetuzumab + Venetoclax in RR CLL (NCT05091424) | [154] #NCT02500407, #NCT05091424 |
| Glofitamab (Columvi, Roche, Basel, Switzerland) | BsAb with a novel 2:1 (CD20:CD3) format | Phase 1/2 study in RR RT: ORR 63.6% and CR 45.5%, 80% CRs ongoing for ≥24.9 months, CRS occurred in 72.7% of patients (#NCT03075696) Phase 2 study of glofitamab alone or in combination with polatuzumab vedotin, pirtobrutinib, or atezolizumab is being evaluated as a potential treatment for RT. Estimated completion 2033 (#NCT06043674) | [155,156] #NCT03075696, #NCT06043674 |
| Plamotamab (XmAb-13676, Xencor, Inc., San Diego, CA, USA) | Human Fc domain-containing, BsAb that binds CD3 and CD20. | Phase 1 study in RR NHL: ORR 43%, most common AE-CRS 63% (#NCT02924402) | [157] #NCT02924402 |
| GB261 (CND261, Genor Biopharma, Shanghai, China) | First BsAb CD20/CD3 designed to maintain Fc effector function | Phase 1 study in RR NHL and CLL: ORR 73%, CRR 45.5%; most common TEAEs-COVID19 infection (40.4%;) and neutropenia (31.9%), CRS 2.8% (#NCT04923048) | [158] #NCT04923048 |
| NVG111 (NovalGen, London, UK) | Humanised, first-in-class tandem scFv, ROR1xCD3 BsAb | Phase 1 trial of NVG111 +/− ibrutinib in RR CLL and MCL. ORR was 55%, median PFS was 18.7 m, most common AEs were lethargy, headaches, nausea, vomiting and thrombocytopenia (#NCT04763083) | [159] #NCT04763083 |
| JNJ-75348780 (Johnson & Johnson, New Brunswick, NJ, USA) | Human BsAb binding with CD22 and CD3 | Phase 1 Study in RR NHL and CLL was initiated in 2020 and completed in 2025 (#NCT04540796) | [160] #NCT04540796 |
| AZD5492 (AstraZeneca, Cambridge, UK) | Trispecific IgG1 MoAb with binding domains to CD20, one VHH to the T-cell receptor, and one VHH binding domain to a CD8 co-receptor. | Phase 1/2 (TITANium) study with CD20+ mature B-cell NHL including CLL. Estimated study completion—2028 (#NCT06542250) | [161] #NCT06542250 |
| CC312 (Cytocares, Shanghai, China) | Trispecific T cell engager targeting CD19, CD3, T cell co-stimulatory molecule CD28 on T cells | Phase 1 study in RR CD19-positive B-cell NHL, including CLL and MCL (#NCT06037018) | #NCT06037018 |
| Nebratamig (GNC-035, Biokin Pharma, Chengdu, Sichuan, China.) | Octavalent, tetra-specific T-cell engager targeting ROR1, PDL1, 4-1BB, and CD3 | Phase 1b/2 clinical trial in R/R CLL and other haematological malignancies (#NCT05944978) | [162] #NCT05944978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robak, T.; Iskierka-Jażdżewska, E.; Puła, A.; Robak, P.; Puła, B. The Development of Novel Therapies for Chronic Lymphocytic Leukaemia in the Era of Targeted Drugs. J. Clin. Med. 2025, 14, 8247. https://doi.org/10.3390/jcm14228247
Robak T, Iskierka-Jażdżewska E, Puła A, Robak P, Puła B. The Development of Novel Therapies for Chronic Lymphocytic Leukaemia in the Era of Targeted Drugs. Journal of Clinical Medicine. 2025; 14(22):8247. https://doi.org/10.3390/jcm14228247
Chicago/Turabian StyleRobak, Tadeusz, Elżbieta Iskierka-Jażdżewska, Anna Puła, Pawel Robak, and Bartosz Puła. 2025. "The Development of Novel Therapies for Chronic Lymphocytic Leukaemia in the Era of Targeted Drugs" Journal of Clinical Medicine 14, no. 22: 8247. https://doi.org/10.3390/jcm14228247
APA StyleRobak, T., Iskierka-Jażdżewska, E., Puła, A., Robak, P., & Puła, B. (2025). The Development of Novel Therapies for Chronic Lymphocytic Leukaemia in the Era of Targeted Drugs. Journal of Clinical Medicine, 14(22), 8247. https://doi.org/10.3390/jcm14228247

