Combined Evaluation of FGF23, Klotho, Myostatin, IL-6, and IL-10 as Potential Biomarkers in Monitoring Stable Renal Transplant Recipients
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FGF23 | fibroblast growth factor 23 |
| IL-6 | interleukin-6 |
| IL-10 | interleukin-10 |
| Mstn | myostatin |
| CKD | chronic kidney disease |
| PTH | parathyroid hormone |
| BMI | Body mass index |
| CRP | c-reactive protein |
| BUN | blood urea nitrogen |
| eGFR | estimated glomerular filtration rate |
| ELISA | enzyme-linked immunoassay |
| CV | Coefficient variation |
References
- Shimada, T.; Yamazaki, Y.; Takahashi, M.; Hasegawa, H.; Urakawa, I.; Oshima, T.; Ono, K.; Kakitani, M.; Tomizuka, K.; Fujita, T.; et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Renal Physiol. 2005, 289, F1088–F1095. [Google Scholar] [CrossRef] [PubMed]
- Erben, R.G.; Andrukhova, O. FGF23-Klotho signaling axis in the kidney. Bone 2017, 100, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Andrukhova, O.; Zeitz, U.; Goetz, R.; Mohammadi, M.; Lanske, B.; Erben, R.G. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 2012, 51, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hu, M.C. Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis. 2017, 3, 15–23. [Google Scholar] [CrossRef]
- Enoki, Y.; Watanabe, H.; Arake, R.; Sugimoto, R.; Imafuku, T.; Tominaga, Y.; Ishima, Y.; Kotani, S.; Nakajima, M.; Tanaka, M.; et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci. Rep. 2016, 6, 32084. [Google Scholar] [CrossRef]
- Wang, X.H.; Mitch, W.E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014, 10, 504–516. [Google Scholar] [CrossRef]
- Fielding, C.A.; Jones, G.W.; McLoughlin, R.M.; McLeod, L.; Hammond, V.J.; Uceda, J.; Williams, A.S.; Lambie, M.; Foster, T.L.; Liao, C.T.; et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014, 40, 40–50. [Google Scholar] [CrossRef]
- Haas, M.; Sis, B.; Racusen, L.C.; Solez, K.; Glotz, D.; Colvin, R.B.; Castro, M.C.; David, D.S.; David-Neto, E.; Bagnasco, S.M.; et al. Banff 2013 meeting report: Inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am. J. Transplant. 2014, 14, 272–283. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Bruetto, R.G.; Torres, U.S.; Otaviano, A.P.; Zanetta, D.M.; Burdmann, E.A. Incidence and mortality of acute kidney injury after myocardial infarction: A comparison between KDIGO and RIFLE criteria. PLoS ONE 2013, 8, e69998. [Google Scholar] [CrossRef]
- Ghanekar, H.; Welch, B.J.; Moe, O.W.; Sakhaee, K. Post-renal transplantation hypophosphatemia: A review and novel insights. Curr. Opin. Nephrol. Hypertens. 2006, 15, 97–104. [Google Scholar] [CrossRef]
- Gutierrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Juppner, H.; et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 2008, 359, 584–592. [Google Scholar] [CrossRef]
- Barker, S.L.; Pastor, J.; Carranza, D.; Quinones, H.; Griffith, C.; Goetz, R.; Mohammadi, M.; Ye, J.; Zhang, J.; Hu, M.C.; et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial. Transplant. 2015, 30, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Quinones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 124–136. [Google Scholar] [CrossRef]
- Bhan, I.; Shah, A.; Holmes, J.; Isakova, T.; Gutierrez, O.; Burnett, S.M.; Juppner, H.; Wolf, M. Post-transplant hypophosphatemia: Tertiary ‘Hyper-Phosphatoninism’? Kidney Int. 2006, 70, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Larsson, T.; Nisbeth, U.; Ljunggren, O.; Juppner, H.; Jonsson, K.B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003, 64, 2272–2279. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Naesens, M.; Claes, K.; Kuypers, D.; Vanrenterghem, Y. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am. J. Transplant. 2007, 7, 1193–1200. [Google Scholar] [CrossRef]
- Prasad, N.; Jaiswal, A.; Agarwal, V.; Kumar, S.; Chaturvedi, S.; Yadav, S.; Gupta, A.; Sharma, R.K.; Bhadauria, D.; Kaul, A. FGF23 is associated with early post-transplant hypophosphataemia and normalizes faster than iPTH in living donor renal transplant recipients: A longitudinal follow-up study. Clin. Kidney J. 2016, 9, 669–676. [Google Scholar] [CrossRef]
- Bataille, S.; Chauveau, P.; Fouque, D.; Aparicio, M.; Koppe, L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 1986–1993. [Google Scholar] [CrossRef]
- Yasar, E.; Tek, N.A.; Tekbudak, M.Y.; Yurtdas, G.; Gulbahar, O.; Uyar, G.O.; Ural, Z.; Celik, O.M.; Erten, Y. The Relationship Between Myostatin, Inflammatory Markers, and Sarcopenia in Patients With Chronic Kidney Disease. J. Ren. Nutr. 2022, 32, 677–684. [Google Scholar] [CrossRef]
- Gil, A.P.P.; Lunardi, A.C.; Santana, F.R.; Bergamim, J.; Sarmento, L.A.; Cristelli, M.P.; Chiavegato, L.D. Impact of Renal Transplantation and Immunosuppressive Therapy on Muscle Strength, Functional Capacity, and Quality of Life: A Longitudinal Study. Transplant. Proc. 2020, 52, 1279–1283. [Google Scholar] [CrossRef]
- Kopple, J.D.; Cohen, A.H.; Wang, H.; Qing, D.; Tang, Z.; Fournier, M.; Lewis, M.; Casaburi, R.; Storer, T. Effect of exercise on mRNA levels for growth factors in skeletal muscle of hemodialysis patients. J. Ren. Nutr. 2006, 16, 312–324. [Google Scholar] [CrossRef]
- Kaizu, Y.; Ohkawa, S.; Odamaki, M.; Ikegaya, N.; Hibi, I.; Miyaji, K.; Kumagai, H. Association between inflammatory mediators and muscle mass in long-term hemodialysis patients. Am. J. Kidney Dis. 2003, 42, 295–302. [Google Scholar] [CrossRef]
- Mota, A.P.L.; A Menezes, C.; Alpoim, P.N.; Cardoso, C.N.; Martins, S.R.; Alves, L.V.; de A Martins-Filho, O.; Gomes, K.B.; Dusse, L.M.S. Regulatory and pro-inflammatory cytokines in Brazilian living-related renal transplant recipients according to creatinine plasma levels. Nephrology 2018, 23, 867–875. [Google Scholar] [CrossRef]
- Dahle, D.O.; Mjoen, G.; Oqvist, B.; Scharnagl, H.; Weihrauch, G.; Grammer, T.; Marz, W.; Abedini, S.; Norby, G.E.; Holme, I.; et al. Inflammation-associated graft loss in renal transplant recipients. Nephrol. Dial. Transplant. 2011, 26, 3756–3761. [Google Scholar] [CrossRef]
- Chen, B.; Kapturczak, M.H.; Joseph, R.; George, J.F.; Campbell-Thompson, M.; Wasserfall, C.H.; Atkinson, M.A.; Tisher, C.C.; Flotte, T.R.; Agarwal, A.; et al. Adeno-associated viral vector-mediated interleukin-10 prolongs allograft survival in a rat kidney transplantation model. Am. J. Transplant. 2007, 7, 1112–1120. [Google Scholar] [CrossRef]
- Alves, L.V.; Martins, S.R.; Simoes, E.S.A.C.; Cardoso, C.N.; Gomes, K.B.; Mota, A.P.L. TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation. Immunol. Res. 2020, 68, 246–254. [Google Scholar] [CrossRef]
| Group A (Cyclosporine) (n = 36) | Group B (Tacrolimus) (n = 58) | Group C (Sirolimus) (n = 28) | Control Group (n = 110) | p | |
|---|---|---|---|---|---|
| Age (years) | 44.5 ± 11.4 | 38.59 ± 10.18 | 39.29 ± 10.98 | 40.1 ± 11.04 | 0.071 |
| Male/Female | 14/22 | 19/39 | 9/19 | 38/72 | 0.89 |
| BMI (kg/m2) | 28.15 ± 6.39 | 26.67 ± 4.94 | 25.09 ± 3.45 | 26.11 ± 4.72 | 0.08 |
| Muscle Mass (kg) | 52.41 ± 9.07 | 52.93 ± 11.07 | 53.14 ± 9.87 | 49.76 ± 10.75 | 0.22 |
| Fat Mass (kg) | 21.19 ± 12.3 | 19.24 ± 8.7 | 14.89 ± 6.66 | 19.94 ± 8.06 | 0.038 * |
| BUN (mg/dL) | 21.89 ± 16.03 | 17.61 ± 8.07 | 21.36 ± 7.89 | 15.24 ± 12.2 | 0.013 * |
| Creatinine (mg/dL) | 1.38 ± 0.83 | 1.2 ± 0.38 | 1.48 ± 0.46 | 0.9 ± 0.37 | <0.001 * |
| eGFR | 66.27 ± 20.68 | 76.52 ± 21.77 | 57.92 ± 18.31 | 98.37 ± 20.75 | <0.001 * |
| Calcium (mg/dL) | 9.49 ± 0.55 | 9.47 ± 0.48 | 9.52 ± 0.49 | 9.44 ± 0.39 | 0.91 |
| Phosphorus (mg/dL) | 3.6 ± 0.8 | 3.5 ± 0.78 | 3.63 ± 0.88 | 3.6 ± 0.55 | 0.68 |
| Albumin (g/dL) | 4.24 ± 0.39 | 4.3 ± 0.38 | 4.2 ± 0.3 | 4.32 ± 0.31 | 0.69 |
| PTH (ng/L) | 138.27 ± 188.3 | 166.75 ± 192.43 | 107.98 ± 57.64 | 81.37 ± 99.25 | 0.31 |
| CRP (mg/L) | 4.98 ± 6.52 | 5.53 ± 11.13 | 5.54 ± 12.61 | 3.72 ± 5.23 | 0.65 |
| Hemoglobin (g/dl) | 13.16 ± 1.72 | 13.66 ± 1.92 | 12.72 ± 1.71 | 13.58 ± 1.51 | 0.06 |
| Group A (Cyclosporine) (n = 36) | Group B (Tacrolimus) (n = 58) | Group C (Sirolimus) (n = 28) | Control Group (n = 110) | p | |
|---|---|---|---|---|---|
| FGF23 (pg/mL) | 186.48 ± 227.68 | 229.103 ± 289.30 | 140.37 ± 194.94 | 523.07 ± 365.28 | <0.001 * |
| Klotho (ng/mL) | 7.83 ± 5.75 | 7.54 ± 6.26 | 7.38 ± 3.90 | 11.83 ± 1.8 | 0.79 |
| Mstn (ng/L) | 693.06 ± 497.55 | 883.5 ± 752.81 | 633.85 ± 405.48 | 1284.21 ± 938.88 | <0.001 * |
| IL-6 (pg/mL) | 32.71 ± 18.91 | 28.09 ± 2.41 | 30.52 ± 13.55 | 32.15 ± 18.85 | 0.41 |
| IL-10 (pg/mL) | 35 ± 7.3 | 40.10 ± 4.76 | 33.37 ± 4.25 | 46.54 ± 20.23 | 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kal, Ö.; Kulaksızoğlu, S.; Kahraman, O.; Yavuz, D.; Sezer, S. Combined Evaluation of FGF23, Klotho, Myostatin, IL-6, and IL-10 as Potential Biomarkers in Monitoring Stable Renal Transplant Recipients. J. Clin. Med. 2025, 14, 8131. https://doi.org/10.3390/jcm14228131
Kal Ö, Kulaksızoğlu S, Kahraman O, Yavuz D, Sezer S. Combined Evaluation of FGF23, Klotho, Myostatin, IL-6, and IL-10 as Potential Biomarkers in Monitoring Stable Renal Transplant Recipients. Journal of Clinical Medicine. 2025; 14(22):8131. https://doi.org/10.3390/jcm14228131
Chicago/Turabian StyleKal, Öznur, Sevsen Kulaksızoğlu, Oğuzhan Kahraman, Demet Yavuz, and Siren Sezer. 2025. "Combined Evaluation of FGF23, Klotho, Myostatin, IL-6, and IL-10 as Potential Biomarkers in Monitoring Stable Renal Transplant Recipients" Journal of Clinical Medicine 14, no. 22: 8131. https://doi.org/10.3390/jcm14228131
APA StyleKal, Ö., Kulaksızoğlu, S., Kahraman, O., Yavuz, D., & Sezer, S. (2025). Combined Evaluation of FGF23, Klotho, Myostatin, IL-6, and IL-10 as Potential Biomarkers in Monitoring Stable Renal Transplant Recipients. Journal of Clinical Medicine, 14(22), 8131. https://doi.org/10.3390/jcm14228131

