Effects of Extracorporeal Membrane Oxygenation Circuits on Drug Sequestration: A Review of Ex Vivo Experiments
Abstract
1. Background
2. Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Descriptive Data Analysis
2.5. Statistical Analysis and Model Building
3. Results
3.1. Data Description
3.2. Factors Affecting Sequestration
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
| ATC | anatomical therapeutic chemical |
| CNS | central nervous system |
| CL | clearance |
| CRRT | continuous renal replacement therapy |
| Vd | volume of distribution |
| ECMO | extracorporeal membrane oxygenation |
| ICU | intensive care unit |
| LogP | logarithm of the n-octanol-water partition coefficient |
| LogD | logarithm of the n-octanol-water partition coefficient at a given pH |
| MW | molecular weight |
| PB | protein binding |
| PBPK | physiologically based pharmacokinetic |
| PK | pharmacokinetics |
| quantile–quantile | |
| RSE | relative standard error |
| TPSA | total polar surface area |
References
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; El Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults. J. Am. Coll. Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Life Support for Adults with Respiratory Failure and Related Indications: A Review. JAMA 2019, 322, 557. [Google Scholar] [CrossRef]
- Tsangaris, A.; Alexy, T.; Kalra, R.; Kosmopoulos, M.; Elliott, A.; Bartos, J.A.; Yannopoulos, D. Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock. Front. Cardiovasc. Med. 2021, 8, 686558. [Google Scholar] [CrossRef]
- Patel, B.; Diaz-Gomez, J.L.; Ghanta, R.K.; Bracey, A.W.; Chatterjee, S. Management of Extracorporeal Membrane Oxygenation for Postcardiotomy Cardiogenic Shock. Anesthesiology 2021, 135, 497–507. [Google Scholar] [CrossRef] [PubMed]
- De Charrière, A.; Assouline, B.; Scheen, M.; Mentha, N.; Banfi, C.; Bendjelid, K.; Giraud, R. ECMO in Cardiac Arrest: A Narrative Review of the Literature. J. Clin. Med. 2021, 10, 534. [Google Scholar] [CrossRef]
- Giraud, R.; Banfi, C.; Assouline, B.; De Charrière, A.; Cecconi, M.; Bendjelid, K. The use of extracorporeal CO2 removal in acute respiratory failure. Ann. Intensive Care 2021, 11, 43. [Google Scholar] [CrossRef]
- Abrams, D.; Brodie, D.; Arcasoy, S.M. Extracorporeal Life Support in Lung Transplantation. Clin. Chest Med. 2017, 38, 655–666. [Google Scholar] [CrossRef]
- Giraud, R.; Laurencet, M.; Assouline, B.; De Charrière, A.; Banfi, C.; Bendjelid, K. Can VA-ECMO Be Used as an Adequate Treatment in Massive Pulmonary Embolism? J. Clin. Med. 2021, 10, 3376. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, S.; Hoeper, M.M.; Klepetko, W. Advanced pulmonary arterial hypertension: Mechanical support and lung transplantation. Eur. Respir. Rev. 2017, 26, 170089. [Google Scholar] [CrossRef] [PubMed]
- Short, B.; Abrams, D.; Brodie, D. Extracorporeal membrane oxygenation for coronavirus disease 2019-related acute respiratory distress syndrome. Curr. Opin. Crit. Care 2022, 28, 90–97. [Google Scholar] [CrossRef]
- Ling, R.R.; Ramanathan, K.; Subramaniam, A.; Shekar, K. Respiratory Support in COVID-19-Related Respiratory Failure: Lessons Learnt. Adv. Exp. Med. Biol. 2024, 1457, 97–109. [Google Scholar] [CrossRef]
- Malfertheiner, M.V.; Broman, L.M.; Vercaemst, L.; Belliato, M.; Aliberti, A.; Di Nardo, M.; Swol, J.; Barrett, N.; Pappalardo, F.; Bělohlávek, J.; et al. Ex vivo models for research in extracorporeal membrane oxygenation: A systematic review of the literature. Perfusion 2020, 35 (Suppl. S1), 38–49. [Google Scholar] [CrossRef]
- Shekar, K.; Roberts, J.A.; Mcdonald, C.I.; Ghassabian, S.; Anstey, C.; Wallis, S.C.; Mullany, D.V.; Fung, Y.L.; Fraser, J.F. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: Results from an ex vivo study. Crit. Care 2015, 19, 164. [Google Scholar] [CrossRef] [PubMed]
- Preston, T.J.; Ratliff, T.M.; Gomez, D.; Olshove, V.F.; Nicol, K.K.; Sargel, C.L.; Chicoine, L.G. Modified Surface Coatings and their Effect on Drug Adsorption within the Extracorporeal Life Support Circuit. J. Extra Corpor. Technol. 2010, 42, 199–202. [Google Scholar] [CrossRef]
- Rehder, K.J.; Turner, D.A.; Bonadonna, D.; Walczak, R.J.; Rudder, R.J.; Cheifetz, I.M. Technological advances in extracorporeal membrane oxygenation for respiratory failure. Expert Rev. Respir. Med. 2012, 6, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Magreault, S.; Pierredon, D.; Akinotcho-Relouzat, J.; Méchaï, F.; Lamy, B.; Jaureguy, F.; Jullien, V. From Bed to Bench: Pre-analytical Stability of 29 Anti-infective Agents in Plasma and Whole Blood to Improve Accuracy of Therapeutic Drug Monitoring. Ther. Drug Monit. 2024, 46, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Ditzinger, F.; Price, D.J.; Ilie, A.-R.; Köhl, N.J.; Jankovic, S.; Tsakiridou, G.; Aleandri, S.; Kalantzi, L.; Holm, R.; Nair, A.; et al. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches—A PEARRL review. J. Pharm. Pharmacol. 2019, 71, 464–482. [Google Scholar] [CrossRef]
- Michelin, O.; Zoete, V.; Molecular Modelling Group. SwissADME. Available online: http://www.swissadme.ch/about.php (accessed on 1 October 2025).
- DrugBank. Available online: https://go.drugbank.com/ (accessed on 1 October 2025).
- ChEMBL. Available online: https://www.ebi.ac.uk/chembl/ (accessed on 1 October 2025).
- WHO. Collaborating Centre for Drug Statistics Methodology. Available online: https://atcddd.fhi.no/ (accessed on 1 October 2025).
- R Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 October 2025).
- Leven, C.; Fillâtre, P.; Petitcollin, A.; Verdier, M.-C.; Laurent, J.; Nesseler, N.; Launey, Y.; Tattevin, P.; Bellissant, E.; Flécher, E.; et al. Ex Vivo Model to Decipher the Impact of Extracorporeal Membrane Oxygenation on Beta-lactam Degradation Kinetics. Ther. Drug Monit. 2017, 39, 180–184. [Google Scholar] [CrossRef]
- Mané, C.; Delmas, C.; Porterie, J.; Jourdan, G.; Verwaerde, P.; Marcheix, B.; Concordet, D.; Georges, B.; Ruiz, S.; Gandia, P. Influence of extracorporeal membrane oxygenation on the pharmacokinetics of ceftolozane/tazobactam: An ex vivo and in vivo study. J. Transl. Med. 2020, 18, 213. [Google Scholar] [CrossRef]
- Raffaeli, G.; Cavallaro, G.; Allegaert, K.; Koch, B.C.P.; Mosca, F.; Tibboel, D.; Wildschut, E.D. Sequestration of Voriconazole and Vancomycin Into Contemporary Extracorporeal Membrane Oxygenation Circuits: An in vitro Study. Front. Pediatr. 2020, 8, 468. [Google Scholar] [CrossRef]
- Watt, K.M.; Cohen-Wolkowiez, M.; Williams, D.C.; Bonadonna, D.K.; Cheifetz, I.M.; Thakker, D.; Benjamin, D.K.; Brouwer, K.L.R. Antifungal Extraction by the Extracorporeal Membrane Oxygenation Circuit. J. Extra Corpor. Technol. 2017, 49, 150–159. [Google Scholar] [CrossRef]
- Lemaitre, F.; Hasni, N.; Leprince, P.; Corvol, E.; Belhabib, G.; Fillâtre, P.; Luyt, C.-E.; Leven, C.; Farinotti, R.; Fernandez, C.; et al. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit. Care 2015, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Roberts, J.A.; Mcdonald, C.I.; Fisquet, S.; Barnett, A.G.; Mullany, D.V.; Ghassabian, S.; Wallis, S.C.; Fung, Y.L.; Smith, M.T.; et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit. Care 2012, 16, R194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, H.; Zhang, Q.; Ou, Q.; Zhou, H.; Sha, T.; Zeng, Z.; Wu, J.; Lu, J.; Chen, Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front. Med. 2021, 8, 748769. [Google Scholar] [CrossRef]
- Wildschut, E.D.; Ahsman, M.J.; Allegaert, K.; Mathot, R.A.A.; Tibboel, D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010, 36, 2109–2116. [Google Scholar] [CrossRef]
- Baud, F.J.; Wasram Jetha-Jamal, T.; Vicca, S.; Raphalen, J.-H.; Lamhaut, L. Disposition of gentamicin and amikacin in extracorporeal membrane oxygenation using a heparin-coated filter: An in vitro assessment. Int. J. Artif. Organs 2022, 45, 588–592. [Google Scholar] [CrossRef]
- Imburgia, C.E.; Rower, J.E.; Green, D.J.; Mcknite, A.M.; Kelley, W.E.; Reilly, C.A.; Watt, K.M. Remdesivir and GS-441524 Extraction by Ex Vivo Extracorporeal Life Support Circuits. ASAIO J. 2022, 68, 1204–1210. [Google Scholar] [CrossRef]
- Lyster, H.; Pitt, T.; Maunz, O.; Diamond, S.; Roberts, J.A.; Brown, D.; Mills, J.; Armstrong-James, D.; Gerovasili, V.; Carby, M.; et al. Variable Sequestration of Antifungals in an Extracorporeal Membrane Oxygenation Circuit. ASAIO J. 2023, 69, 309–314. [Google Scholar] [CrossRef]
- Green, D.J.; Watt, K.M.; Fish, D.N.; McKnite, A.; Kelley, W.; Bensimhon, A.R. Cefepime Extraction by Extracorporeal Life Support Circuits. J. Extra Corpor. Technol. 2022, 54, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.V.; Conelius, A.; Gluck, J.A.; Nicolau, D.P.; Kuti, J.L. Cefiderocol is Not Sequestered in an Ex Vivo Extracorporeal Membrane Oxygenation (ECMO) Circuit. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 437–441. [Google Scholar] [CrossRef]
- Kalaria, S.N.; Kishk, O.A.; Gopalakrishnan, M.; Bagdure, D.N. Evaluation of an ex-vivo neonatal extracorporeal membrane oxygenation circuit on antiepileptic drug sequestration. Perfusion 2022, 37, 812–818. [Google Scholar] [CrossRef]
- Raffaeli, G.; Allegaert, K.; Koch, B.; Cavallaro, G.; Mosca, F.; Tibboel, D.; Wildschut, E.D. In Vitro Adsorption of Analgosedative Drugs in New Extracorporeal Membrane Oxygenation Circuits. Pediatr. Crit. Care Med. 2018, 19, e251–e258. [Google Scholar] [CrossRef] [PubMed]
- Harthan, A.A.; Buckley, K.W.; Heger, M.L.; Fortuna, R.S.; Mays, K. Medication Adsorption into Contemporary Extracorporeal Membrane Oxygenator Circuits. J. Pediatr. Pharmacol. Ther. 2014, 19, 288–295. [Google Scholar] [CrossRef]
- Dallefeld, S.H.; Sherwin, J.; Zimmerman, K.O.; Watt, K.M. Dexmedetomidine extraction by the extracorporeal membrane oxygenation circuit: Results from an in vitro study. Perfusion 2020, 35, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Khurana, N.; Sünner, T.; Hubbard, O.; Imburgia, C.; Stoddard, G.J.; Yellepeddi, V.; Ghandehari, H.; Watt, K.M. Micellar Encapsulation of Propofol Reduces its Adsorption on Extracorporeal Membrane Oxygenator (ECMO) Circuit. AAPS J. 2023, 25, 52. [Google Scholar] [CrossRef] [PubMed]
- Lescroart, M.; Pressiat, C.; Péquignot, B.; Tran, N.; Hébert, J.-L.; Alsagheer, N.; Gambier, N.; Ghaleh, B.; Scala-Bertola, J.; Levy, B. Impaired Pharmacokinetics of Amiodarone under Veno-Venous Extracorporeal Membrane Oxygenation: From Bench to Bedside. Pharmaceutics 2022, 14, 974. [Google Scholar] [CrossRef]
- McDaniel, C.G.; Honeycutt, C.C.; Watt, K.M. Amiodarone Extraction by the Extracorporeal Membrane Oxygenation Circuit. J. Extra Corpor. Technol. 2021, 53, 68–74. [Google Scholar] [CrossRef]
- Di Nardo, M.; Wildschut, E.D. Drugs pharmacokinetics during veno-venous extracorporeal membrane oxygenation in pediatrics. J. Thorac. Dis. 2018, 10, S642–S652. [Google Scholar] [CrossRef]
- Ontaneda, A.; Annich, G.M. Novel Surfaces in Extracorporeal Membrane Oxygenation Circuits. Front. Med. 2018, 5, 321. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Jakob, S.M.; Levkovich, B.J.; Pellegrino, V.; Que, Y.-A.; et al. Population pharmacokinetics of cefepime in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Int. J. Antimicrob. Agents 2021, 58, 106466. [Google Scholar] [CrossRef]
- Fillâtre, P.; Lemaitre, F.; Nesseler, N.; Schmidt, M.; Besset, S.; Launey, Y.; Maamar, A.; Daufresne, P.; Flecher, E.; Le Tulzo, Y.; et al. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: A case–control study. J. Antimicrob. Chemother. 2021, 76, 1242–1249. [Google Scholar] [CrossRef]
- Donadello, K.; Antonucci, E.; Cristallini, S.; Roberts, J.A.; Beumier, M.; Scolletta, S.; Jacobs, F.; Rondelet, B.; de Backer, D.; Vincent, J.-L.; et al. β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case–control study. Int. J. Antimicrob. Agents 2015, 45, 278–282. [Google Scholar] [CrossRef]
- Gijsen, M.; Dreesen, E.; Annaert, P.; Nicolai, J.; Debaveye, Y.; Wauters, J.; Spriet, I. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients Are Not Affected by Extracorporeal Membrane Oxygenation: A Matched Cohort Analysis. Microorganisms 2021, 9, 1310. [Google Scholar] [CrossRef]
- Destache, C.J.; Isern, R.; Kenny, D.; El-Herte, R.; Plambeck, R.; Palmer, C.; Inouye, B.S.; Wong, M.; North, E.J.; Sotelo, M.R.; et al. Impact of Extracorporeal Membrane Oxygenation (ECMO) on Serum Concentrations of Cefepime. Antibiotics 2024, 13, 1024. [Google Scholar] [CrossRef] [PubMed]
- Marín-Cerezuela, M.; Martín-Latorre, R.; Frasquet, J.; Ruiz-Ramos, J.; Garcia-Contreras, S.; Gordón, M.; Broch, M.J.; Castellanos-Ortega, Á.; Ramirez, P. Cefiderocol pharmacokinetics in critically ill patients undergoing ECMO support. Crit. Care 2024, 28, 337. [Google Scholar] [CrossRef] [PubMed]
- Pokorná, P.; Michaličková, D.; Tibboel, D.; Berner, J. Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics 2024, 13, 419. [Google Scholar] [CrossRef]
- Curtiaud, A.; Petit, M.; Chommeloux, J.; Pineton de Chambrun, M.; Hekimian, G.; Schmidt, M.; Combes, A.; Luyt, C.-E. Ceftazidime/avibactam serum concentration in patients on ECMO. J. Antimicrob. Chemother. 2024, 79, 1182–1186. [Google Scholar] [CrossRef]
- Fratoni, A.J.; Kois, A.K.; Gluck, J.A.; Nicolau, D.P.; Kuti, J.L. Imipenem/relebactam pharmacokinetics in critically ill patients supported on extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2024, 79, 1118–1125. [Google Scholar] [CrossRef]
- Wi, J.; Noh, H.; Min, K.L.; Yang, S.; Jin, B.H.; Hahn, J.; Bae, S.K.; Kim, J.; Park, M.S.; Choi, D.; et al. Population Pharmacokinetics and Dose Optimization of Teicoplanin during Venoarterial Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2017, 61, e01015-17. [Google Scholar] [CrossRef] [PubMed]
- Jendoubi, A.; Pressiat, C.; De Roux, Q.; Hulin, A.; Ghaleh, B.; Tissier, R.; Kohlhauer, M.; Mongardon, N. The impact of extracorporeal membrane oxygenation on antifungal pharmacokinetics: A systematic review. Int. J. Antimicrob. Agents 2024, 63, 107078. [Google Scholar] [CrossRef] [PubMed]
- Ronda, M.; Llop-Talaveron, J.M.; Fuset, M.; Leiva, E.; Shaw, E.; Gumucio-Sanguino, V.D.; Diez, Y.; Colom, H.; Rigo-Bonnin, R.; Puig-Asensio, M.; et al. Voriconazole Pharmacokinetics in Critically Ill Patients and Extracorporeal Membrane Oxygenation Support: A Retrospective Comparative Case-Control Study. Antibiotics 2023, 12, 1100. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, X.; Chen, W.; Li, M.; Gu, S.; Huang, L.; Zhan, Q.; Wang, C. Impact of extracorporeal membrane oxygenation on voriconazole plasma concentrations: A retrospective study. Front. Pharmacol. 2022, 13, 972585. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.M.; Juffermans, N.P.; Taccone, F.S.; Coimbra Sousa, C.A.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Spriet, I.; Annaert, P.; Meersseman, P.; Hermans, G.; Meersseman, W.; Verbesselt, R.; Willems, L. Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2009, 63, 767–770. [Google Scholar] [CrossRef]
- Van Daele, R.; Brüggemann, R.J.; Dreesen, E.; Depuydt, P.; Rijnders, B.; Cotton, F.; Fage, D.; Gijsen, M.; Van Zwam, K.; Debaveye, Y.; et al. Pharmacokinetics and target attainment of intravenous posaconazole in critically ill patients during extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2021, 76, 1234–1241. [Google Scholar] [CrossRef]
- Novy, E.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Gilder, E.; Levkovich, B.J.; McGuinness, S.; et al. Population pharmacokinetics of fluconazole in critically ill patients receiving extracorporeal membrane oxygenation and continuous renal replacement therapy: An ASAP ECMO study. Antimicrob. Agents Chemother. 2024, 68, e0120123. [Google Scholar] [CrossRef]
- Dhanani, J.A.; Lipman, J.; Pincus, J.; Townsend, S.; Livermore, A.; Wallis, S.C.; Abdul-Aziz, M.H.; Roberts, J.A. Pharmacokinetics of fluconazole and ganciclovir as combination antimicrobial chemotherapy on ECMO: A case report. Int. J. Antimicrob. Agents 2021, 58, 106431. [Google Scholar] [CrossRef]
- López-Sánchez, M.; Moreno-Puigdollers, I.; Rubio-López, M.I.; Zarragoikoetxea-Jauregui, I.; Vicente-Guillén, R.; Argente-Navarro, M.P. Pharmacokinetics of micafungin in patients treated with extracorporeal membrane oxygenation: An observational prospective study. Rev. Bras. Ter. Intensiv. 2020, 32, 277–283. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Liu, D.; Chen, W.; Cui, G.; Li, P.; Zhang, X.; Li, M.; Zhan, Q.; Wang, C. Population Pharmacokinetics of Caspofungin among Extracorporeal Membrane Oxygenation Patients during the Postoperative Period of Lung Transplantation. Antimicrob. Agents Chemother. 2020, 64, e00687-20. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Diehl, A.; Liu, X.; Cheng, V.; Corley, A.; Gilder, E.; Levkovich, B.; McGuinness, S.; Ordonez, J.; Parke, R.; et al. Population pharmacokinetics of caspofungin in critically ill patients receiving extracorporeal membrane oxygenation-an ASAP ECMO study. Antimicrob. Agents Chemother. 2025, 69, e0143524. [Google Scholar] [CrossRef]
- Sukeishi, A.; Itohara, K.; Yonezawa, A.; Sato, Y.; Matsumura, K.; Katada, Y.; Nakagawa, T.; Hamada, S.; Tanabe, N.; Imoto, E.; et al. Population pharmacokinetic modeling of GS-441524, the active metabolite of remdesivir, in Japanese COVID-19 patients with renal dysfunction. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 94–103. [Google Scholar] [CrossRef]
- Hahn, J.; Yang, S.; Min, K.L.; Kim, D.; Jin, B.H.; Park, C.; Park, M.S.; Wi, J.; Chang, M.J. Population pharmacokinetics of intravenous sufentanil in critically ill patients supported with extracorporeal membrane oxygenation therapy. Crit. Care 2019, 23, 248. [Google Scholar] [CrossRef]
- Ethuin, F.; Boudaoud, S.; Leblanc, I.; Troje, C.; Marie, O.; Levron, J.-C.; Le Moing, J.-P.; Assoune, P.; Eurin, B.; Jacob, L. Pharmacokinetics of long-term sufentanil infusion for sedation in ICU patients. Intensive Care Med. 2003, 29, 1916–1920. [Google Scholar] [CrossRef]
- Morales Castro, D.; Balzani, E.; Abdul-Aziz, M.H.; Hernandez-Mitre, M.P.; Wong, I.; Turgeon, J.; Tisminetzky, M.; Jurado-Camacho, F.; Morris, I.; Dresser, L.; et al. Propofol and Fentanyl Pharmacokinetics and Pharmacodynamics in Extracorporeal Membrane Oxygenation. Ann. Am. Thorac. Soc. 2025, 22, 121–129. [Google Scholar] [CrossRef]
- Thibault, C.; Zuppa, A.F. Dexmedetomidine in Children on Extracorporeal Membrane Oxygenation: Pharmacokinetic Data Exploration Using Previously Published Models. Front. Pediatr. 2022, 10, 924829. [Google Scholar] [CrossRef]
- Mulla, H.; Lawson, G.; Peek, G.J.; Firmin, R.K.; Upton, D.R. Plasma Concentrations of Midazolam in Neonates Receiving Extracorporeal Membrane Oxygenation. ASAIO J. 2003, 49, 41–47. [Google Scholar] [CrossRef]
- Ahsman, M.J.; Hanekamp, M.; Wildschut, E.D.; Tibboel, D.; Mathot, R.A.A. Population Pharmacokinetics of Midazolam and Its Metabolites during Venoarterial Extracorporeal Membrane Oxygenation in Neonates. Clin. Pharmacokinet. 2010, 49, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Mulla, H.; McCormack, P.; Lawson, G.; Firmin, R.K.; Upton, D.R. Pharmacokinetics of Midazolam in Neonates Undergoing Extracorporeal Membrane Oxygenation. Anesthesiology 2003, 99, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.C.; Brown, C.S.; Peffley, N.D.; Wittwer, E.D.; Yalamuri, S.M. Phenytoin Pharmacokinetics During Venoarterial Extracorporeal Membrane Oxygenation and Plasma Exchange. Cureus 2021, 13, e17120. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.; Gaines, D.; Peterson, L.-K. Levetiracetam pharmacokinetics in venovenous extracorporeal membrane oxygenation: A case report. Perfusion 2025, 40, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Nei, S.D.; Wittwer, E.D.; Kashani, K.B.; Frazee, E.N. Levetiracetam Pharmacokinetics in a Patient Receiving Continuous Venovenous Hemofiltration and Venoarterial Extracorporeal Membrane Oxygenation. Pharmacotherapy 2015, 35, e127–e130. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.G.; Macready, J.J.; Kissoon, N. Amiodarone Treatment of Junctional Ectopic Tachycardia in a Neonate Receiving Extracorporeal Membrane Oxygenation. Ann. Pharmacother. 2006, 40, 1872–1875. [Google Scholar] [CrossRef]
- Yellepeddi, V.K.; Hunt, J.P.; Green, D.J.; McKnite, A.; Whelan, A.; Watt, K. A physiologically-based pharmacokinetic modeling approach for dosing amiodarone in children on ECMO. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 1542–1553. [Google Scholar] [CrossRef]
- American Heart Association Pediatric Cardiac Arrest Algorithm. 2020. Available online: https://cpr.heart.org/-/media/CPR-Files/CPR-Guidelines-Files/Algorithms/AlgorithmPALS_CA_200707 (accessed on 1 October 2025).
- Raffaeli, G.; Pokorna, P.; Allegaert, K.; Mosca, F.; Cavallaro, G.; Wildschut, E.D.; Tibboel, D. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge. Front. Pediatr. 2019, 7, 360. [Google Scholar] [CrossRef]
- Dubinsky, S.; Hamadeh, A.; Imburgia, C.; McKnite, A.; Porter Hunt, J.; Wong, K.; Rice, C.; Rower, J.; Watt, K.; Edginton, A. Physiologically Based Pharmacokinetic Modelling in Critically Ill Children Receiving Anakinra While on Extracorporeal Life Support. Clin. Pharmacokinet. 2024, 63, 1343–1356. [Google Scholar] [CrossRef]
- Watt, K.M.; Cohen-Wolkowiez, M.; Barrett, J.S.; Sevestre, M.; Zhao, P.; Brouwer, K.L.R.; Edginton, A.N. Physiologically Based Pharmacokinetic Approach to Determine Dosing on Extracorporeal Life Support: Fluconazole in Children on ECMO. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 629–637. [Google Scholar] [CrossRef] [PubMed]

| Drug | LogP | LogD | Protein Binding (%) | Molecular Weight (g/mol) | TPSA (Å2) | Ionization a | Drug Sequestration b (%) | Study References |
|---|---|---|---|---|---|---|---|---|
| Anti-infectives | ||||||||
| Antibacterials | ||||||||
| amikacin | −5.91 | −15.10 | 10 | 582.6 | 331.9 | 4 | 6 | [32] |
| amoxicillin | −0.39 | −2.67 | 17 | 365.4 | 158.3 | 0 | −9 | [24] |
| cefazolin | −0.15 | −5.01 | 80 | 454.5 | 234.9 | −1 | 2.1 | [31] |
| cefepime | −2.58 | −3.45 | 20 | 480.6 | 203.6 | 0 | −6, 18.4 | [24,35] |
| cefiderocol | −1.86 | NA | 50 | 752.2 | 310.4 | −1 | 0 | [36] |
| cefoperazone | −0.98 | −4.35 | 87.5 | 645.7 | 270.9 | −1 | 17, 23 | [30] |
| cefotaxime | −0.24 | −4.20 | 32.5 | 455.5 | 227.1 | −1 | 18 | [24] |
| ceftazidime | −1.39 | −6.94 | 13.9 | 546.6 | 244.8 | −1 | −7 | [24] |
| ceftolozane | −3.43 | −7.80 | 18.5 | 666.7 | 355.8 | 0 | 2.9 | [25] |
| ceftriaxone | −0.72 | −5.53 | 95 | 554.6 | 293.8 | −2 | −9, 22 | [14,24] |
| ciprofloxacin | 1.10 | −0.85 | 30 | 331.3 | 74.6 | 0 | 23 | [14] |
| gentamicin | −2.15 | NA | 15 | 1390.7 | 199.7 | 5 | 1 | [32] |
| linezolid | 1.23 | 0.64 | 31 | 337.3 | 71.1 | 0 | 11 | [14] |
| meropenem | −0.37 | −4.36 | 2 | 383.5 | 135.5 | 0 | 21 (10.9–48) | [29,30,31] |
| oxacillin | 1.85 | −1.59 | 94.2 | 401.4 | 138.0 | −1 | −3 | [24] |
| piperacillin | −0.24 | −3.64 | 18.5 | 517.6 | 138.8 | −1 | −10 | [24] |
| polymyxin B | −5.28 | NA | 85.5 | 1203.5 | 510.9 | 5 | −1.56 | [30] |
| sulbactam | −0.33 | −4.35 | 38 | 233.2 | 100.1 | −1 | 7, 20 | [30] |
| tazobactam | −1.04 | −4.89 | 30 | 300.3 | 130.8 | −1 | 0.06 | [25] |
| teicoplanin | −2.30 | NA | 92.5 | 1879.7 | NA | 1 | 3, 60 | [30] |
| vancomycin | −3.10 | NA | 50 | 1449.3 | NA | 1 | 35.5 (9–50) | [26,29,31] |
| Antifungals | ||||||||
| caspofungin | 0 | NA | 97 | 1093.3 | NA | 2 | 10.5 (1.9–43) | [14,30,34] |
| fluconazole | 0.88 | 0.56 | 11.5 | 306.7 | 81.7 | 0 | 2, 11 | [14,27] |
| micafungin | −1.50 | NA | 99 | 1270.3 | NA | −1 | 14.2, 31.97 | [27,30] |
| posaconazole | 4.23 | 5.41 | 98 | 700.8 | 115.7 | 0 | 52.2 | [34] |
| voriconazole | 2.40 | 1.82 | 58 | 349.3 | 76.7 | 0 | 80.3 (7.8–82.2) | [26,34] |
| Antivirals | ||||||||
| GS-441524 | −1.90 | −1.88 | 2 | 291.3 | NA | 0 | 1.6 | [33] |
| remdesivir | 1.50 | 2.01 | 90.8 | 602.6 | 213.4 | 0 | 20.6 | [33] |
| Nervous system | ||||||||
| Analgesics | ||||||||
| fentanyl | 3.78 | 2.43 | 82.5 | 336.5 | 23.6 | 1 | 80 (24.1–90) | [29,31,38,39] |
| morphine | 1.44 | −0.60 | 35 | 285.3 | 52.9 | 1 | 49 (−6–67.9) | [29,31,38,39] |
| paracetamol | 0.93 | 0.90 | 17.5 | 151.2 | 49.3 | 0 | 53 (43–59) | [31,38] |
| Antiepileptics | ||||||||
| lacosamide | 0.85 | −0.02 | 15 | 250.3 | 67.4 | 0 | 18.1, 20.5 | [37] |
| levetiracetam | 0.10 | −0.59 | 10 | 170.2 | 63.4 | 0 | 7, 10.5 | [37] |
| phenytoin | 1.81 | 1.07 | 90 | 252.3 | 58.2 | 0 | 26.5, 29 | [37] |
| Anesthetics, general | ||||||||
| propofol | 3.36 | 4.16 | 97 | 178.3 | 20.2 | 0 | 86, 89 | [28,41] |
| thiopental | 1.88 | 2.38 | 80 | 242.3 | 90.3 | −1 | 90 | [14] |
| sufentanil | 3.93 | 2.13 | 92 | 386.6 | 61.0 | 1 | 88 (62–94) | [38] |
| Psycholeptics | ||||||||
| dexmedetomidine | 2.88 | 3.34 | 94 | 200.3 | 28.7 | 0 | 61 | [40] |
| lorazepam | 2.68 | 3.53 | 85 | 321.2 | 61.7 | 0 | 40.4 | [39] |
| midazolam | 3.61 | 3.95 | 97 | 325.8 | 30.2 | 0 | 43 (35–87) | [29,31,38,39] |
| Cardiovascular system | ||||||||
| Cardiac therapy | ||||||||
| amiodarone | 6.49 | 6.10 | 96 | 645.3 | 42.7 | 1 | 59.1, 99.3 | [42,43] |
| Oxygenator Brand | Oxygenator Model | Oxygenator Surface (m2) | Oxygenator Coating | Tubing Coating | Matrix | Volume Circuit (mL) | Flow Rate (L/min) | T (°C) | pH | Number of Drugs | Study Duration (h) | Controls | Study References |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Maquet | PLS Quadrox D adult | 1.8 | Bioline | Bioline | blood | 668 | 4.5 | physiol. | 7.2–7.6 | 13 | 24 | yes | [14] |
| Maquet | Quadrox | NA | Bioline | Bioline | blood | 900 | 3 | physiol. | NA | 7 | 48 | yes | [24] |
| Sorin | EOS | 1.2 | ChoP | NA | blood | NA | 2.8 | physiol. | 7.2–7.5 | 2 | 24 | yes | [25] |
| Xenios | miniLung petite | 0.32 | Rheoparin | NA | blood | 225 | 0.5 | physiol. | 7.3–7.5 | 2 | 24 | yes | [26] |
| Xenios | miniLung | 0.65 | Rheoparin | NA | blood | 280 | 0.7 | physiol. | 7.3–7.5 | 2 | 24 | yes | [26] |
| Xenios | ILA active | 1.3 | Rheoparin | NA | blood | 360 | 2.5 | physiol. | 7.3–7.5 | 2 | 24 | yes | [26] |
| Xenios | XLung | 1.9 | Rheoparin | NA | blood | 400 | 3.5 | physiol. | 7.3–7.5 | 2 | 24 | yes | [26] |
| Maquet | Quadrox iD adult or pediatric | 1.8 or 0.8 | Bioline | ChoP | blood | NA | 1 | physiol. | 7.2–7.5 | 1 | 24 | yes | [27] |
| Maquet | Quadrox | NA | Bioline | Bioline | blood | 800 | 4.5 | physiol. | NA | 4 | 48 | yes | [28] |
| Maquet | PLS Quadrox D adult | 1.8 | Bioline | Bioline | blood | 668 | 4.5 | physiol. | 7.3–7.6 | 13 | 24 | yes | [29] |
| Maquet | PLS Quadrox adult | 1.8 | Bioline | Bioline | blood | 818 | 4.5 | physiol. | 7.2–7.5 | 7 | 24 | yes | [30] |
| Sorin | D905 EOS ECMO | 1.2 | ChoP | ChoP | blood | 525 | 4.5 | physiol. | 7.2–7.5 | 9 | 24 | yes | [30] |
| Medos Hilite | 800LT | 0.32 | Rheoparin | coated | blood | 200 | 0.4 | RT | physiol. | 7 | 3 | no | [31] |
| Maquet | HLS advanced 7.0 | 1.8 | Bioline | Bioline | crystalloid | 5351 | 3 | RT | 7.23 | 2 | 6 | no | [32] |
| Maquet | Quadrox iD adult | 1.8 | Bioline | Smart-X | blood | 1200 | 1 | physiol. | 7.2–7.5 | 2 | 12 | yes | [33] |
| Chalice | paragon | NA | Rheopak | Carmeda | blood | 700–750 | 4.5 | physiol. | 7.3–7.5 | 1 | 24 | yes | [34] |
| Maquet | Quadrox iD adult | 1.8 | Softline | Smart-X | blood | 1000 | 1 | physiol. | 7.2–7.5 | 1 | 24 | yes | [35] |
| Maquet | Quadrox i adult | 1.8 | NA | NA | blood | NA | 4.5 | physiol. | NA | 1 | 24 | yes | [36] |
| Maquet | Quadrox i neonatal | 0.38 | NA | NA | crystalloid | 400 | 1.5 | physiol. | 7.4–7.5 | 3 | 24 | yes | [37] |
| Maquet | Quadrox i neonatal | 0.38 | NA | NA | blood | 400 | 1.5 | physiol. | 7.4–7.5 | 3 | 24 | yes | [37] |
| Xenios | miniLung petite | 0.32 | Rheoparin | NA | blood | 225 | 0.5 | physiol. | 7.3–7.5 | 5 | 24 | yes | [38] |
| Xenios | miniLung | 0.65 | Rheoparin | NA | blood | 280 | 0.7 | physiol. | 7.3–7.5 | 5 | 24 | yes | [38] |
| Xenios | ILA active | 1.3 | Rheoparin | NA | blood | 360 | 2.5 | physiol. | 7.3–7.5 | 5 | 24 | yes | [38] |
| Xenios | XLung | 1.9 | Rheoparin | NA | blood | 400 | 3.5 | physiol. | 7.3–7.5 | 5 | 24 | yes | [38] |
| Maquet | Quadrox D | 1.8 | NA | Carmeda | blood | NA | 1 | physiol. | NA | 4 | 48 | yes | [39] |
| Maquet | Quadrox iD adult | 1.8 | Bioline | ChoP | blood | NA | 1 | physiol. | 7.2–7.5 | 1 | 24 | yes | [40] |
| Maquet | Quadrox iD | NA | Bioline | Cortiva BioActive | blood | 550 | 1 | physiol. | physiol. | 2 | 10 | yes | [41] |
| Maquet | PLS-I | 1.8 | Bioline | NA | crystalloid | 770 | 3.5 | physiol. | NA | 1 | 2 | yes | [42] |
| Maquet | Quadrox iD adult | 1.8 | NA | ChoP | blood | NA | 1 | physiol. | 7.2–7.5 | 1 | 72 | yes | [43] |
| Coefficients | Global Model | ||||||
|---|---|---|---|---|---|---|---|
| Variable | Estimate | Standard Error | p-Value | R2 | Adjusted-R2 | RSE | p-Value |
| LogP | +8.2 | 1.0 | 1.0710−12 | 0.44 | 0.42 | 23.59 | 6.110−12 |
| Ionization | +4.8 | 2.2 | 0.03 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertin, S.; Haefliger, D.; Schneider, A.G.; Giraud, R.; Perez, M.-H.; Bechtold, X.; Di Paolo, E.R.; Rothuizen, L.E.; Buclin, T.; Livio, F. Effects of Extracorporeal Membrane Oxygenation Circuits on Drug Sequestration: A Review of Ex Vivo Experiments. J. Clin. Med. 2025, 14, 8060. https://doi.org/10.3390/jcm14228060
Bertin S, Haefliger D, Schneider AG, Giraud R, Perez M-H, Bechtold X, Di Paolo ER, Rothuizen LE, Buclin T, Livio F. Effects of Extracorporeal Membrane Oxygenation Circuits on Drug Sequestration: A Review of Ex Vivo Experiments. Journal of Clinical Medicine. 2025; 14(22):8060. https://doi.org/10.3390/jcm14228060
Chicago/Turabian StyleBertin, Stéphane, David Haefliger, Antoine G. Schneider, Raphaël Giraud, Maria-Helena Perez, Xavier Bechtold, Ermindo R. Di Paolo, Laura E. Rothuizen, Thierry Buclin, and Françoise Livio. 2025. "Effects of Extracorporeal Membrane Oxygenation Circuits on Drug Sequestration: A Review of Ex Vivo Experiments" Journal of Clinical Medicine 14, no. 22: 8060. https://doi.org/10.3390/jcm14228060
APA StyleBertin, S., Haefliger, D., Schneider, A. G., Giraud, R., Perez, M.-H., Bechtold, X., Di Paolo, E. R., Rothuizen, L. E., Buclin, T., & Livio, F. (2025). Effects of Extracorporeal Membrane Oxygenation Circuits on Drug Sequestration: A Review of Ex Vivo Experiments. Journal of Clinical Medicine, 14(22), 8060. https://doi.org/10.3390/jcm14228060

