Metabolomics Signatures of Atherosclerosis in Cardiovascular Disease: A Narrative Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
3. Results
3.1. Study Characteristics
3.2. Metabolism of Amino Acids and Derivatives
3.3. Carbohydrate and Energy Metabolism
3.4. Metabolism of Lipids and Derivatives
3.5. Other Metabolites
4. Discussion
4.1. Metabolism of Amino Acids and Derivatives
4.1.1. Aromatic Amino Acids (AACs) and Derivatives
4.1.2. Aspartate Family and Derivatives
4.1.3. Glutamate Family and Derivatives
4.1.4. BCAAs
4.1.5. Other Amino Acid Derivatives
4.2. Carbohydrate and Energy Metabolism
4.2.1. Glucose, Pyruvate, and Lactate
4.2.2. 1,5-AS
4.2.3. Citrate
4.3. Metabolism of Lipids and Derivatives
4.3.1. PLs and Derivatives
4.3.2. FAs
4.3.3. Ketone Bodies
4.4. Other Metabolites
4.4.1. Sex Steroids
4.4.2. BAs
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
| AS | atherosclerosis |
| NSTEACS | non-ST elevation acute coronary syndrome |
| ARIC | Atherosclerosis Risk in Communities |
| VF | visceral fat |
| BP | blood pressure |
| CVD | cardiovascular disease |
| FA | fatty acid |
| PUFA | polyunsaturated fatty acids |
| SRFB | sugar-rich food and beverages |
| SYS | Saguenay Youth Study |
| GPC | glycerophosphocholines |
| PC | phosphocholine |
| TGs | triglycerides |
| 2-HB | 2-hydroxybutirate |
| 3-HB | 3-hydroxybutyrate |
| HDL | high-density lipoprotein |
| CV | cardiovascular |
| FH | familial hypercholesterolemia |
| DHA | docosahexaenoic acid |
| FAω3 | Omega 3 FAs |
| FAω6 | Omega 6 FAs |
| MUFA | monounsaturated fatty acid |
| SFAs | saturated fatty acids |
| LDL | low-density lipoproteins |
| VLDL | very low-density lipoproteins |
| ApoB | apolipoprotein B |
| XL-HDL | extra-large HDL |
| M-HDL | medium HDL |
| S-HDL | small HDL |
| PAD | peripheral arterial disease |
| CAD | coronary artery disease |
| lysoPC | lysophosphatidylcholine |
| HR | heart rate |
| GM | gut microbiota |
| SI | sarcopenia index |
| IRAS | Insulin Resistance Atherosclerosis Study |
| T2DM | type 2 diabetes mellitus |
| BCAA | branched-chain amino acid |
| IMT | intima-media thickness |
| c-IMT | carotid intima-media thickness |
| PCOS | polycystic ovary syndrome |
| AAC | aromatic amino acid |
| 1,5 AS | 1,5-anhydrosorbitol |
| BMI | body mass index |
| DEHA-S | dehydroepiandrosterone sulphate |
| MESA | Multi-Ethnic Study of Atherosclerosis |
| LOLIPOP | London Life Sciences Prospective Population Study |
| CAC | coronary artery calcification |
| max-IMT | maximal intima-media thickness |
| FMD | flow-mediated vasodilation |
| DCA | deoxycholic acid |
| TDCA | tauro deoxycholic acid |
| TCA | taurocholic acid |
| ASCVD | atherosclerotic cardiovascular disease |
| CABG | coronary artery bypass grafting |
| ox-HVF | Oxford Heart Vessels and Fat |
| DHS | Diabetes Heart Study |
| AAs | African Americans |
| EAs | European Americans |
| CKD | chronic kidney disease |
| RRI-CKD | Renal Research Institute Chronic Kidney Disease |
| ABI | ankle–brachial index |
| HA | hippuric acid |
| IPA | indole-3-propionic acid |
| I3A | indole-3-aldehyde |
| HAA | 3-hydroxyanthranilic acid |
| BHMT | betaine homocysteine methyltransferase |
| MACE | major adverse cardiac events |
| MASALA | Mediators of Atherosclerosis in South Asian living in America |
| PE | phosphatidylethanolamine |
| NAPE | N-acyl phosphatidylethanolamine |
| LPI | lysophosphatidylinositol |
| MAFLD | metabolic-disfunction-associated fatty liver disease |
| CAS | carotid atherosclerosis |
| SM | sphingomyelin |
| PG | phosphatidylglycerol |
| DNL | de novo lipogenesis |
| WIHS | Women’s Interagency HIV Study |
| HIV | human immunodeficiency virus |
| ImP | Imidazolyl propionate |
| HEI | Healthy Eating Index |
| UFA | unsaturated fatty acids |
| CaSR5 | calcium-sensing receptor |
| TMCS | Tsuruoka Metabolomics Cohort Study |
| HTP | heated tobacco products |
| DS | Down’s syndrome |
| TMI | Tri-Ponderal Mass Index |
| SLE | systemic lupus erythematosus |
| GlycA | glycoprotein acetyls |
| (Apo)A1 | apolipoprotein A1 |
| T1D | type 1 diabetes |
| MetS | metabolic syndrome |
| γ-Glu-Glu | γ-L-glutamil-L-glutamic acid |
| NAM | nicotinate D-ribonucleotide |
| HVA | homovanillic acid |
| MS | mass spectrometry |
| GM-MS | gas chromatography–mass spectrometry |
| LC-MS | liquid chromatography–mass spectrometry |
| NMR | nuclear magnetic resonance |
| SMCs | smooth muscle cells |
| FXR | farnesoid X-activated receptor |
| CRF | chronic renal failure |
References
- Fan, J.; Watanabe, T. Atherosclerosis: Known and unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Han, X.; Li, Y.; Wang, Y.; Liu, M.; Liu, H.; Pan, J.; Zhang, L.; Liu, Y.; Jiang, M.; et al. Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population. Nutr. Metab. Cardiovasc. Dis. NMCD 2025, 35, 103789. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Narula, N.; Olin, J.W.; Narula, N. Pathologic Disparities Between Peripheral Artery Disease and Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1982–1989. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Kampoli, A.M.; Tousoulis, D.; Antoniades, C.; Siasos, G.; Stefanadis, C. Biomarkers of premature atherosclerosis. Trends Mol. Med. 2009, 15, 323–332. [Google Scholar] [CrossRef]
- Orekhov, A.N.; Sobenin, I.A. Modified lipoproteins as biomarkers of atherosclerosis. Front. Biosci. 2018, 23, 1422–1444. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Jury, E.C.; Peng, J.; Van Vijfeijken, A.; Martin Gutierrez, L.; Woodridge, L.; Wincup, C.; Pineda-Torra, I.; Ciurtin, C.; Robinson, G.A. Systemic lupus erythematosus patients have unique changes in serum metabolic profiles across age associated with cardiometabolic risk. Rheumatology 2024, 63, 2741–2753. [Google Scholar] [CrossRef]
- Hetman, M.; Mielko, K.; Placzkowska, S.; Bodetko, A.; Młynarz, P.; Barg, E. Predisposition to atherosclerosis in children and adults with trisomy 21: Biochemical and metabolomic studies. Predyspozycje do miażdżycy u dzieci i dorosłych z trisomią 21: Badania biochemiczne i metabolomiczne. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Buszewska-Forajta, M.; Rachoń, D.; Stefaniak, A.; Wawrzyniak, R.; Konieczna, A.; Kowalewska, A.; Markuszewski, M.J. Identification of the metabolic fingerprints in women with polycystic ovary syndrome using the multiplatform metabolomics technique. J. Steroid Biochem. Mol. Biol. 2019, 186, 176–184. [Google Scholar] [CrossRef]
- Tzoulaki, I.; Castagné, R.; Boulangé, C.L.; Karaman, I.; Chekmeneva, E.; Evangelou, E.; Ebbels, T.M.D.; Kaluarachchi, M.R.; Chadeau-Hyam, M.; Mosen, D.; et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur. Heart J. 2019, 40, 2883–2896. [Google Scholar] [CrossRef]
- Vallejo, M.; García, A.; Tuñón, J.; García-Martínez, D.; Angulo, S.; Martin-Ventura, J.L.; Blanco-Colio, L.M.; Almeida, P.; Egido, J.; Barbas, C. Plasma fingerprinting with GC-MS in acute coronary syndrome. Anal. Bioanal. Chem. 2009, 394, 1517–1524. [Google Scholar] [CrossRef]
- Omori, K.; Katakami, N.; Arakawa, S.; Yamamoto, Y.; Ninomiya, H.; Takahara, M.; Matsuoka, T.A.; Tsugawa, H.; Furuno, M.; Bamba, T.; et al. Identification of Plasma Inositol and Indoxyl Sulfate as Novel Biomarker Candidates for Atherosclerosis in Patients with Type 2 Diabetes. -Findings from Metabolome Analysis Using GC/MS. J. Atheroscler. Thromb. 2020, 27, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, B.; Alexander, D.; Steffen, L.M.; Boerwinkle, E. Human metabolome associates with dietary intake habits among African Americans in the atherosclerosis risk in communities study. Am. J. Epidemiol. 2014, 179, 1424–1433. [Google Scholar] [CrossRef]
- Harada, S.; Ohmomo, H.; Matsumoto, M.; Sata, M.; Iida, M.; Hirata, A.; Miyagawa, N.; Kuwabara, K.; Kato, S.; Toki, R.; et al. Metabolomics Profiles Alterations in Cigarette Smokers and Heated Tobacco Product Users. J. Epidemiol. 2024, 34, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Menaker, Y.; van den Munckhof, I.; Scarpa, A.; Placek, K.; Brandes-Leibovitz, R.; Glantzspiegel, Y.; Joosten, L.A.B.; Rutten, J.H.W.; Netea, M.G.; Gat-Viks, I.; et al. Stratification of Atherosclerosis based on Plasma Metabolic States. J. Clin. Endocrinol. Metab. 2024, 109, 1250–1262. [Google Scholar] [CrossRef]
- Shao, C.; Xu, L.; Lei, P.; Wang, W.; Feng, S.; Ye, J.; Zhong, B. Metabolomics to identify fingerprints of carotid atherosclerosis in nonobese metabolic dysfunction-associated fatty liver disease. J. Transl. Med. 2023, 21, 12. [Google Scholar] [CrossRef]
- Santiago-Hernandez, A.; Martinez, P.J.; Agudiez, M.; Heredero, A.; Gonzalez-Calero, L.; Yuste-Montalvo, A.; Esteban, V.; Aldamiz-Echevarria, G.; Martin-Lorenzo, M.; Alvarez-Llamas, G. Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants 2021, 10, 1369. [Google Scholar] [CrossRef]
- Chevli, P.A.; Freedman, B.I.; Hsu, F.C.; Xu, J.; Rudock, M.E.; Ma, L.; Parks, J.S.; Palmer, N.D.; Shapiro, M.D. Plasma metabolomic profiling in subclinical atherosclerosis: The Diabetes Heart Study. Cardiovasc. Diabetol. 2021, 20, 231. [Google Scholar] [CrossRef]
- Wolak-Dinsmore, J.; Gruppen, E.G.; Shalaurova, I.; Matyus, S.P.; Grant, R.P.; Gegen, R.; Bakker, S.J.L.; Otvos, J.D.; Connelly, M.A.; Dullaart, R.P.F. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. Clin. Biochem. 2018, 54, 92–99. [Google Scholar] [CrossRef]
- Gadgil, M.D.; Wood, A.C.; Karaman, I.; Graça, G.; Tzoulaki, I.; Zhong, V.W.; Greenland, P.; Kanaya, A.M.; Herrington, D.M. Metabolomic Profile of the Healthy Eating Index-2015 in the Multiethnic Study of Atherosclerosis. J. Nutr. 2023, 153, 2174–2180. [Google Scholar] [CrossRef]
- Gadgil, M.D.; Kanaya, A.M.; Sands, C.; Chekmeneva, E.; Lewis, M.R.; Kandula, N.R.; Herrington, D.M. Diet Patterns Are Associated with Circulating Metabolites and Lipid Profiles of South Asians in the United States. J. Nutr. 2022, 152, 2358–2366. [Google Scholar] [CrossRef]
- Benitez, T.; VanDerWoude, E.; Han, Y.; Byun, J.; Konje, V.C.; Gillespie, B.W.; Saran, R.; Mathew, A.V. Kynurenine pathway metabolites predict subclinical atherosclerotic disease and new cardiovascular events in chronic kidney disease. Clin. Kidney J. 2022, 15, 1952–1965. [Google Scholar] [CrossRef]
- Ho, K.J.; Ramirez, J.L.; Kulkarni, R.; Harris, K.G.; Helenowski, I.; Xiong, L.; Ozaki, C.K.; Grenon, S.M. Plasma Gut Microbe-Derived Metabolites Associated with Peripheral Artery Disease and Major Adverse Cardiac Events. Microorganisms 2022, 10, 2065. [Google Scholar] [CrossRef] [PubMed]
- Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Jakobson, M.; Lieberg, J.; Zilmer, M. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Syme, C.; Czajkowski, S.; Shin, J.; Abrahamowicz, M.; Leonard, G.; Perron, M.; Richer, L.; Veillette, S.; Gaudet, D.; Strug, L.; et al. Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation 2016, 134, 1629–1636. [Google Scholar] [CrossRef]
- Christensen, J.J.; Ulven, S.M.; Retterstøl, K.; Narverud, I.; Bogsrud, M.P.; Henriksen, T.; Bollerslev, J.; Halvorsen, B.; Aukrust, P.; Holven, K.B. Comprehensive lipid and metabolite profiling of children with and without familial hypercholesterolemia: A cross-sectional study. Atherosclerosis 2017, 266, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Palacios, G.; Gao, J.; Zhang, N.; Li, G.; Lu, J.; Song, T.; Zhang, Y.; Lv, H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci. 2010, 33, 2776–2783. [Google Scholar] [CrossRef]
- Su, J.; Zhao, Q.; Zhao, A.; Jia, W.; Zhu, W.; Lu, J.; Ma, X. Serum metabolic signatures of subclinical atherosclerosis in patients with type 2 diabetes mellitus: A preliminary study. Acta Diabetol. 2021, 58, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Peters, B.A.; Bryant, M.; Hanna, D.B.; Schwartz, T.; Wang, T.; Sollecito, C.C.; Usyk, M.; Grassi, E.; Wiek, F.; et al. Gut microbiota, circulating inflammatory markers and metabolites, and carotid artery atherosclerosis in HIV infection. Microbiome 2023, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Akawi, N.; Checa, A.; Antonopoulos, A.S.; Akoumianakis, I.; Daskalaki, E.; Kotanidis, C.P.; Kondo, H.; Lee, K.; Yesilyurt, D.; Badi, I.; et al. Fat-Secreted Ceramides Regulate Vascular Redox State and Influence Outcomes in Patients With Cardiovascular Disease. J. Am. Coll. Cardiol. 2021, 77, 2494–2513. [Google Scholar] [CrossRef]
- Delles, C.; Rankin, N.J.; Boachie, C.; McConnachie, A.; Ford, I.; Kangas, A.; Soininen, P.; Trompet, S.; Mooijaart, S.P.; Jukema, J.W.; et al. Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation: Results from PROSPER and FINRISK 1997. Eur. J. Heart Fail. 2018, 20, 663–673. [Google Scholar] [CrossRef]
- Vangipurapu, J.; Stancáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids Are Associated With Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5,181 Finnish Men. Diabetes 2015, 68, 1353–1358. [Google Scholar] [CrossRef]
- Jauhiainen, R.; Vangipurapu, J.; Laakso, A.; Kuulasmaa, T.; Kuusisto, J.; Laakso, M. The Association of 9 Amino Acids With Cardiovascular Events in Finnish Men in a 12-Year Follow-up Study. J. Clin. Endocrinol. Metab. 2021, 106, 3448–3454. [Google Scholar] [CrossRef]
- Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef]
- Nemet, I.; Li, X.S.; Haghikia, A.; Li, L.; Wilcox, J.; Romano, K.A.; Buffa, J.A.; Witkowski, M.; Demuth, I.; König, M.; et al. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur. Heart J. 2023, 44, 3085–3096. [Google Scholar] [CrossRef]
- Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22. [Google Scholar] [CrossRef]
- Heianza, Y.; Tiwari, S.; Wang, X.; Watrous, J.D.; Rexrode, K.M.; Hu, F.B.; Alotaibi, M.; Jain, M.; Sun, Q.; Manson, J.E.; et al. Gut-Microbiota-Related Metabolite Phenylacetylglutamine and Risk of Incident Coronary Heart Disease Among Women. J. Clin. Endocrinol. Metab. 2025, 110, e1531–e1539. [Google Scholar] [CrossRef]
- Murri, M.; Insenser, M.; Escobar-Morreale, H.F. Metabolomics in polycystic ovary syndrome. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 429, 181–188. [Google Scholar] [CrossRef]
- Spagnoli, L.G.; Bonanno, E.; Sangiorgi, G.; Mauriello, A. Role of inflammation in atherosclerosis. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2007, 48, 1800–1815. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.; Forteza, M.J.; Ketelhuth, D.F.J. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine 2019, 122, 154148. [Google Scholar] [CrossRef] [PubMed]
- Theiler-Schwetz, V.; Trummer, C.; Grübler, M.R.; Keppel, M.H.; Zittermann, A.; Tomaschitz, A.; März, W.; Meinitzer, A.; Pilz, S. Associations of Parameters of the Tryptophan-Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients. Nutrient 2023, 15, 256. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, X.; Liu, X.; Xie, C.; Shi, J. The role of the kynurenine pathway in cardiovascular disease. Front. Cardiovasc. Med. 2024, 11, 1406856. [Google Scholar] [CrossRef]
- Niinisalo, P.; Oksala, N.; Levula, M.; Pelto-Huikko, M.; Järvinen, O.; Salenius, J.P.; Kytömäki, L.; Soini, J.T.; Kähönen, M.; Laaksonen, R.; et al. Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann. Med. 2010, 42, 55–63. [Google Scholar] [CrossRef]
- Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta; Int. J. Clin. Chem. 2006, 364, 82–90. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar] [CrossRef]
- Sulo, G.; Vollset, S.E.; Nygård, O.; Midttun, Ø.; Ueland, P.M.; Eussen, S.J.; Pedersen, E.R.; Tell, G.S. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int. J. Cardiol. 2013, 168, 1435–1440. [Google Scholar] [CrossRef]
- Pawlak, D.; Pawlak, K.; Malyszko, J.; Mysliwiec, M.; Buczko, W. Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. Int. Urol. Nephrol. 2001, 33, 399–404. [Google Scholar] [CrossRef]
- Cason, C.A.; Dolan, K.T.; Sharma, G.; Tao, M.; Kulkarni, R.; Helenowski, I.B.; Doane, B.M.; Avram, M.J.; McDermott, M.M.; Chang, E.B.; et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J. Vasc. Surg. 2018, 68, 1552–1562.e7. [Google Scholar] [CrossRef]
- Pedersen, E.R.; Tuseth, N.; Eussen, S.J.; Ueland, P.M.; Strand, E.; Svingen, G.F.; Midttun, Ø.; Meyer, K.; Mellgren, G.; Ulvik, A.; et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 455–462. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Q.; Zhang, W.; Jin, T.; Wang, B.; Liang, J.; Li, Y.; Zhang, S.; Zhang, L.; Gao, Y. The role of serum indoxyl sulfate and Klotho protein in cardiovascular complications among chronic kidney disease patients. Int. J. Artif. Organs 2025, 48, 302–309. [Google Scholar] [CrossRef]
- Lekawanvijit, S.; Kompa, A.R.; Wang, B.H.; Kelly, D.J.; Krum, H. Cardiorenal syndrome: The emerging role of protein-bound uremic toxins. Circ. Res. 2012, 111, 1470–1483. [Google Scholar] [CrossRef]
- Bogiatzi, C.; Gloor, G.; Allen-Vercoe, E.; Reid, G.; Wong, R.G.; Urquhart, B.L.; Dinculescu, V.; Ruetz, K.N.; Velenosi, T.J.; Pignanelli, M.; et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis 2018, 273, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Dobre, M.; Meyer, T.W.; Hostetter, T.H. Searching for uremic toxins. Clin. J. Am. Soc. Nephrol. CJASN 2013, 8, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Regolisti, G.; Cosola, C.; Gesualdo, L.; Fiaccadori, E. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr. Diabetes Rep. 2017, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Goto, H.; Abe, H.; Komiya, K.; Kawaguchi, M.; Shimizu, T.; Ogihara, T.; et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014, 37, 2343–2350. [Google Scholar] [CrossRef]
- Zhao, J.V.; Kwok, M.K.; Schooling, C.M. Effect of glutamate and aspartate on ischemic heart disease, blood pressure, and diabetes: A Mendelian randomization study. Am. J. Clin. Nutr. 2019, 109, 1197–1206. [Google Scholar] [CrossRef]
- Kirma, M.; Araújo, W.L.; Fernie, A.R.; Galili, G. The multifaceted role of aspartate-family amino acids in plant metabolism. J. Exp. Bot. 2012, 63, 4995–5001. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sricholpech, M. Lysine post-translational modifications of collagen. Essays Biochem. 2012, 52, 113–133. [Google Scholar] [CrossRef]
- Ballester-Servera, C.; Alonso, J.; Cañes, L.; Vázquez-Sufuentes, P.; Puertas-Umbert, L.; Fernández-Celis, A.; Taurón, M.; Rodríguez-Sinovas, A.; López-Andrés, N.; Rodríguez, C.; et al. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease. Biomed. Pharmacother. 2023, 167, 115469. [Google Scholar] [CrossRef]
- Stoyell-Conti, F.F.; Suresh Kumar, M.; Zigmond, Z.M.; Rojas, M.G.; Santos Falcon, N.; Martinez, L.; Vazquez-Padron, R.I. Gene inactivation of lysyl oxidase in smooth muscle cells reduces atherosclerosis burden and plaque calcification in hyperlipidemic mice. Atherosclerosis 2024, 397, 118582. [Google Scholar] [CrossRef]
- Gao, C.; Chen, G.; Kuan, S.F.; Zhang, D.H.; Schlaepfer, D.D.; Hu, J. FAK/PYK2 promotes the Wnt/β-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β. eLife 2015, 4, e10072. [Google Scholar] [CrossRef] [PubMed]
- Gayrard, C.; Bernaudin, C.; Déjardin, T.; Seiler, C.; Borghi, N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J. Cell Biol. 2018, 217, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Preil, S.A.R.; Thorsen, A.F.; Christiansen, A.L.; Poulsen, M.K.; Karsdal, M.A.; Leeming, D.J.; Rasmussen, L.M. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2? Scand. J. Clin. Lab. Investig. 2017, 77, 493–497. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.B.; et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: Plasma metabolomics analysis. BMC Med. 2012, 10, 153. [Google Scholar] [CrossRef]
- Canales, L.; Chen, J.; Kelty, E.; Musah, S.; Webb, C.; Pisano, M.M.; Neal, R.E. Developmental cigarette smoke exposure: Liver proteome profile alterations in low birth weight pups. Toxicology 2012, 300, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Neal, R.E.; Chen, J.; Webb, C.; Stocke, K.; Gambrell, C.; Greene, R.M.; Pisano, M.M. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring. Reprod. Toxicol. 2016, 65, 414–424. [Google Scholar] [CrossRef]
- Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; et al. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010, 5, e10883. [Google Scholar] [CrossRef]
- Ferrannini, E.; Natali, A.; Camastra, S.; Nannipieri, M.; Mari, A.; Adam, K.P.; Milburn, M.V.; Kastenmüller, G.; Adamski, J.; Tuomi, T.; et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 2013, 62, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Deidda, M.; Piras, C.; Cadeddu Dessalvi, C.; Congia, D.; Locci, E.; Ascedu, F.; De Candia, G.; Cadeddu, M.; Lai, G.; Pirisi, R.; et al. Blood metabolomic fingerprint is distinct in healthy coronary and in stenosing or microvascular ischemic heart disease. J. Transl. Med. 2017, 15, 112. [Google Scholar] [CrossRef]
- Massy, Z.A.; Pietrement, C.; Touré, F. Reconsidering the Lack of Urea Toxicity in Dialysis Patients. Semin. Dial. 2016, 29, 333–337. [Google Scholar] [CrossRef]
- Ivanovski, O.; Szumilak, D.; Nguyen-Khoa, T.; Ruellan, N.; Phan, O.; Lacour, B.; Descamps-Latscha, B.; Drüeke, T.B.; Massy, Z.A. The antioxidant N-acetylcysteine prevents accelerated atherosclerosis in uremic apolipoprotein E knockout mice. Kidney Int. 2005, 67, 2288–2294. [Google Scholar] [CrossRef]
- Giardino, I.; D’Apolito, M.; Brownlee, M.; Maffione, A.B.; Colia, A.L.; Sacco, M.; Ferrara, P.; Pettoello-Mantovani, M. Vascular toxicity of urea, a new “old player” in the pathogenesis of chronic renal failure induced cardiovascular diseases. Turk Pediatri Ars. 2017, 52, 187–193. [Google Scholar] [CrossRef]
- Apostolov, E.O.; Ray, D.; Savenka, A.V.; Shah, S.V.; Basnakian, A.G. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J. Am. Soc. Nephrol.JASN 2010, 21, 1852–1857. [Google Scholar] [CrossRef]
- D’Apolito, M.; Colia, A.L.; Lasalvia, M.; Capozzi, V.; Falcone, M.P.; Pettoello-Mantovani, M.; Brownlee, M.; Maffione, A.B.; Giardino, I. Urea-induced ROS accelerate senescence in endothelial progenitor cells. Atherosclerosis 2017, 263, 127–136. [Google Scholar] [CrossRef]
- Trécherel, E.; Godin, C.; Louandre, C.; Benchitrit, J.; Poirot, S.; Mazière, J.C.; Massy, Z.A.; Galmiche, A. Upregulation of BAD, a pro-apoptotic protein of the BCL2 family, in vascular smooth muscle cells exposed to uremic conditions. Biochem. Biophys. Res. Commun. 2012, 417, 479–483. [Google Scholar] [CrossRef]
- Czaja-Stolc, S.; Potrykus, M.; Ruszkowski, J.; Dębska-Ślizień, A.; Małgorzewicz, S. Nutritional Status, Uremic Toxins, and Metabo-Inflammatory Biomarkers as Predictors of Two-Year Cardiovascular Mortality in Dialysis Patients: A Prospective Study. Nutrients 2025, 17, 1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ishigami, J.; Mathews, L.; Konety, S.; Hall, M.; Chang, P.P.; Ndumele, C.; Rosamond, W.; Matsushita, K. Association of Blood Urea Nitrogen With Incident Heart Failure in the Community—The Atherosclerosis Risk in Communities (ARIC) Study. Circ. J. Off. J. Jpn. Circ. Soc. 2024, 89, 1637–1643. [Google Scholar] [CrossRef]
- Durante, W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019, 11, 2092. [Google Scholar] [CrossRef]
- Boelens, P.G.; van Leeuwen, P.A.; Dejong, C.H.; Deutz, N.E. Intestinal renal metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-[2,15N]glutamine or L-[2,15N]glutamine in mice. Am. J. physiology. Gastrointest. Liver Physiol. 2005, 289, G679–G685. [Google Scholar] [CrossRef]
- McNeill, A.M.; Rosamond, W.D.; Girman, C.J.; Golden, S.H.; Schmidt, M.I.; East, H.E.; Ballantyne, C.M.; Heiss, G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005, 28, 385–390. [Google Scholar] [CrossRef]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef]
- Greenfield, J.R.; Farooqi, I.S.; Keogh, J.M.; Henning, E.; Habib, A.M.; Blackwood, A.; Reimann, F.; Holst, J.J.; Gribble, F.M. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am. J. Clin. Nutr. 2009, 89, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Mohajeri-Tehrani, M.R.; Qorbani, M.; Heshmat, R.; Larijani, B.; Hosseini, S. Effect of glutamine supplementation on cardiovascular risk factors in patients with type 2 diabetes. Nutrition 2015, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Torres-Santiago, L.; Mauras, N.; Hossain, J.; Weltman, A.L.; Darmaun, D. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes? Nutrition 2017, 34, 1–6. [Google Scholar] [CrossRef]
- Bakalar, B.; Duska, F.; Pachl, J.; Fric, M.; Otahal, M.; Pazout, J.; Andel, M. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients. Crit. Care Med. 2006, 34, 381–386. [Google Scholar] [CrossRef]
- Iwashita, S.; Williams, P.; Jabbour, K.; Ueda, T.; Kobayashi, H.; Baier, S.; Flakoll, P.J. Impact of glutamine supplementation on glucose homeostasis during and after exercise. J. Appl. Physiol. 2005, 99, 1858–1865. [Google Scholar] [CrossRef]
- Opara, E.C.; Petro, A.; Tevrizian, A.; Feinglos, M.N.; Surwit, R.S. L-glutamine supplementation of a high fat diet reduces body weight and attenuates hyperglycemia and hyperinsulinemia in C57BL/6J mice. J. Nutr. 1996, 126, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Buettger, C.; Kwagh, J.; Matter, A.; Daikhin, Y.; Nissim, I.B.; Collins, H.W.; Yudkoff, M.; Stanley, C.A.; Matschinsky, F.M. A signaling role of glutamine in insulin secretion. J. Biol. Chem. 2004, 279, 13393–13401. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336 Pt 1, 1–17. [Google Scholar] [CrossRef]
- Durante, W. Regulation of L-arginine transport and metabolism in vascular smooth muscle cells. Cell Biochem. Biophys. 2001, 35, 19–34. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837d. [Google Scholar] [CrossRef]
- Peyton, K.J.; Liu, X.M.; Yu, Y.; Yates, B.; Behnammanesh, G.; Durante, W. Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells. Biochem. Pharmacol. 2018, 156, 204–214. [Google Scholar] [CrossRef]
- Eelen, G.; Dubois, C.; Cantelmo, A.R.; Goveia, J.; Brüning, U.; DeRan, M.; Jarugumilli, G.; van Rijssel, J.; Saladino, G.; Comitani, F.; et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature 2018, 561, 63–69. [Google Scholar] [CrossRef]
- Unterluggauer, H.; Mazurek, S.; Lener, B.; Hütter, E.; Eigenbrodt, E.; Zwerschke, W.; Jansen-Dürr, P. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 2008, 9, 247–259. [Google Scholar] [CrossRef]
- Hinshaw, D.B.; Burger, J.M. Protective effect of glutamine on endothelial cell ATP in oxidant injury. J. Surg. Res. 1990, 49, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Parolari, A.; Sala, R.; Antona, C.; Bussolati, O.; Alamanni, F.; Mezzadri, P.; Dall’Asta, V.; Gazzola, G.C.; Biglioli, P. Hypertonicity induces injury to cultured human endothelium: Attenuation by glutamine. Ann. Thorac. Surg. 1997, 64, 1770–1775. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.L.; Carroll, P.A.; Thalhofer, A.B.; Lagunoff, M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathog. 2015, 11, e1005052. [Google Scholar] [CrossRef]
- Safi, S.Z.; Batumalaie, K.; Mansor, M.; Chinna, K.; Mohan, S.; Karimian, H.; Qvist, R.; Ashraf, M.A.; Yan, G.O. Glutamine treatment attenuates hyperglycemia-induced mitochondrial stress and apoptosis in umbilical vein endothelial cells. Clinics 2015, 70, 569–576. [Google Scholar] [CrossRef]
- Liu, X.M.; Peyton, K.J.; Durante, W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic. Biol. Med. 2017, 102, 37–46. [Google Scholar] [CrossRef]
- Do, C.; Xing, Z.; Yu, Y.E.; Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: Lessons from Down syndrome and mouse models. Epigenomics 2017, 9, 189–207. [Google Scholar] [CrossRef]
- Ma, X.; Li, W.; Ma, J.; Han, Z.; Deng, S.; Wang, S. Autophagy is a promising process for linking inflammation and redox homeostasis in Down syndrome. Front. Pharmacol. 2024, 15, 1491563. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- Tai, E.S.; Tan, M.L.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, F.B.; Ruiz-Canela, M.; Clish, C.B.; Dennis, C.; Salas-Salvado, J.; Hruby, A.; Liang, L.; Toledo, E.; Corella, D.; et al. Metabolites of Glutamate Metabolism Are Associated With Incident Cardiovascular Events in the PREDIMED PREvención con DIeta MEDiterránea (PREDIMED) Trial. J. Am. Heart Assoc. 2016, 5, e003755. [Google Scholar] [CrossRef] [PubMed]
- Parfenova, H.; Basuroy, S.; Bhattacharya, S.; Tcheranova, D.; Qu, Y.; Regan, R.F.; Leffler, C.W. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: Contributions of HO-1 and HO-2 to cytoprotection. Am. J. physiology. Cell Physiol. 2006, 290, C1399–C1410. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid. Redox Signal. 2019, 30, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.K.; Becker, D.F. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Cell Health Cytoskelet. 2012, 2012, 11–27. [Google Scholar] [CrossRef]
- Phang, J.M.; Donald, S.P.; Pandhare, J.; Liu, Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 2008, 35, 681–690. [Google Scholar] [CrossRef]
- Luo, X.; Liu, M.; Wang, S.; Chen, Y.; Bao, X.; Lv, Y.; Zhang, S.; Xu, B.; Weng, X.; Bai, X.; et al. Combining metabolomics and OCT to reveal plasma metabolic profiling and biomarkers of plaque erosion and plaque rupture in STEMI patients. Int. J. Cardiol. 2023, 390, 131223. [Google Scholar] [CrossRef]
- Kim, H.; Hu, E.A.; E Wong, K.; Yu, B.; Steffen, L.M.; Seidelmann, S.B.; Boerwinkle, E.; Coresh, J.; Rebholz, C.M. Serum Metabolites Associated with Healthy Diets in African Americans and European Americans. J. Nutr. 2021, 151, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Onvani, S.; Haghighatdoost, F.; Surkan, P.J.; Larijani, B.; Azadbakht, L. Adherence to the Healthy Eating Index and Alternative Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: A meta-analysis of observational studies. J. Hum. Nutr. Diet.Off. J. Br. Diet. Assoc. 2017, 30, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Hirahatake, K.M.; Jacobs, D.R., Jr.; Shikany, J.M.; Jiang, L.; Wong, N.D.; Odegaard, A.O. Cumulative average dietary pattern scores in young adulthood and risk of incident type 2 diabetes: The CARDIA study. Diabetologia 2019, 62, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Jacobs, D.R., Jr.; Lewis, C.E.; Steffen, L.M.; Sternfeld, B.; Carnethon, M.R.; Richman, J.S. Associations between food groups, dietary patterns, and cardiorespiratory fitness in the Coronary Artery Risk Development in Young Adults study. Am. J. Clin. Nutr. 2013, 98, 1402–1409. [Google Scholar] [CrossRef]
- Niu, R.; Wang, H.; Qiu, G.; Long, P.; Liu, K.; Chen, H.; Hu, D.; Xiao, Y.; Yuan, Y.; Wang, W.; et al. Metabolomic profiles of body shapes and their associations with the risks of incident cardiovascular diseases in Chinese adults. Nutr. Metab. Cardiovasc. Dis. NMCD 2025, 35, 104031. [Google Scholar] [CrossRef]
- Necchi, D.; Pinto, A.; Tillhon, M.; Dutto, I.; Serafini, M.M.; Lanni, C.; Govoni, S.; Racchi, M.; Prosperi, E. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat. Res. 2015, 780, 15–23. [Google Scholar] [CrossRef]
- French, C.D.; Arnold, C.D.; Taha, A.Y.; Engle-Stone, R.; Schmidt, R.J.; Hertz-Picciotto, I.; Slupsky, C.M. Assessing Repeated Urinary Proline Betaine Measures as a Biomarker of Usual Citrus Intake during Pregnancy: Sources of Within-Person Variation and Correlation with Reported Intake. Metabolites 2023, 13, 904. [Google Scholar] [CrossRef]
- Almanza-Aguilera, E.; Urpi-Sarda, M.; Llorach, R.; Vázquez-Fresno, R.; Garcia-Aloy, M.; Carmona, F.; Sanchez, A.; Madrid-Gambin, F.; Estruch, R.; Corella, D.; et al. Microbial metabolites are associated with a high adherence to a Mediterranean dietary pattern using a 1H-NMR-based untargeted metabolomics approach. J. Nutr. Biochem. 2017, 48, 36–43. [Google Scholar] [CrossRef]
- Kim, H.; Lichtenstein, A.H.; Wong, K.E.; Appel, L.J.; Coresh, J.; Rebholz, C.M. Urine Metabolites Associated with the Dietary Approaches to Stop Hypertension (DASH) Diet: Results from the DASH-Sodium Trial. Mol. Nutr. Food Res. 2021, 65, e2000695. [Google Scholar] [CrossRef]
- Loo, R.L.; Zou, X.; Appel, L.J.; Nicholson, J.K.; Holmes, E. Characterization of metabolic responses to healthy diets and association with blood pressure: Application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. Am. J. Clin. Nutr. 2018, 107, 323–334. [Google Scholar] [CrossRef]
- Kim, H.; Appel, L.J.; Lichtenstein, A.H.; Wong, K.E.; Chatterjee, N.; Rhee, E.P.; Rebholz, C.M. Metabolomic Profiles Associated With Blood Pressure Reduction in Response to the DASH and DASH-Sodium Dietary Interventions. Hypertension 2023, 80, 1494–1506. [Google Scholar] [CrossRef]
- He, Z.; Li, P.; Liu, P.; Xu, P. Exploring stachydrine: From natural occurrence to biological activities and metabolic pathways. Front. Plant Sci. 2024, 15, 1442879. [Google Scholar] [CrossRef]
- Noerman, S.; Kokla, M.; Koistinen, V.M.; Lehtonen, M.; Tuomainen, T.P.; Brunius, C.; Virtanen, J.K.; Hanhineva, K. Associations of the serum metabolite profile with a healthy Nordic diet and risk of coronary artery disease. Clin. Nutr. 2021, 40, 3250–3262. [Google Scholar] [CrossRef]
- Oude Griep, L.M.; Chekmeneva, E.; Van Horn, L.; Chan, Q.; Daviglus, M.L.; Frost, G.; Holmes, E.; Ebbels, T.M.; Elliott, P. A Metabolome Wide Association Study of Fruit and Vegetable Consumption and Associations with Cardiovascular Disease Risk Factors: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP) Study. J. Nutr. 2025, 155, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Sun, J.L.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; Pieper, K.S.; Haynes, C.; Hauser, E.R.; Kraus, W.E.; Granger, C.B.; et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J. 2012, 163, 844–850.e1. [Google Scholar] [CrossRef]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef]
- Connelly, M.A.; Wolak-Dinsmore, J.; Dullaart, R.P.F. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance. Metab. Syndr. Relat. Disord. 2017, 15, 183–186. [Google Scholar] [CrossRef]
- Zhang, X.; Sergin, I.; Evans, T.D.; Jeong, S.J.; Rodriguez-Velez, A.; Kapoor, D.; Chen, S.; Song, E.; Holloway, K.B.; Crowley, J.R.; et al. High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nat. Metab. 2020, 2, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kapoor, D.; Jeong, S.J.; Fappi, A.; Stitham, J.; Shabrish, V.; Sergin, I.; Yousif, E.; Rodriguez-Velez, A.; Yeh, Y.S.; et al. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat. Metab. 2024, 6, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Hamaguchi, M.; Hashimoto, Y.; Ushigome, E.; Tanaka, M.; Yamazaki, M.; Fukui, M. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 52–58. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chen, S.Y.; Lai, Y.H.; Wang, C.H.; Kuo, C.H.; Liou, H.H.; Hsu, B.G. Serum creatinine to cystatin C ratio predicts skeletal muscle mass and strength in patients with non-dialysis chronic kidney disease. Clin. Nutr. 2020, 39, 2435–2441. [Google Scholar] [CrossRef] [PubMed]
- Hirai, K.; Tanaka, A.; Homma, T.; Goto, Y.; Akimoto, K.; Uno, T.; Yoshitaka, U.; Miyata, Y.; Inoue, H.; Ohta, S.; et al. Serum creatinine/cystatin C ratio as a surrogate marker for sarcopenia in patients with chronic obstructive pulmonary disease. Clin. Nutr. 2021, 40, 1274–1280. [Google Scholar] [CrossRef]
- Tabara, Y.; Kohara, K.; Okada, Y.; Ohyagi, Y.; Igase, M. Creatinine-to-cystatin C ratio as a marker of skeletal muscle mass in older adults: J-SHIPP study. Clin. Nutr. 2020, 39, 1857–1862. [Google Scholar] [CrossRef]
- Jung, C.Y.; Joo, Y.S.; Kim, H.W.; Han, S.H.; Yoo, T.H.; Kang, S.W.; Park, J.T. Creatinine-Cystatin C Ratio and Mortality in Patients Receiving Intensive Care and Continuous Kidney Replacement Therapy: A Retrospective Cohort Study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2021, 77, 509–516.e1. [Google Scholar] [CrossRef]
- Lu, Y.W.; Tsai, Y.L.; Chou, R.H.; Kuo, C.S.; Chang, C.C.; Huang, P.H.; Lin, S.J. Serum creatinine to cystatin C ratio is associated with major adverse cardiovascular events in patients with obstructive coronary artery disease. Nutr. Metab. Cardiovasc. Dis.NMCD 2021, 31, 1509–1515. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Takahashi, F.; Okamura, T.; Osaka, T.; Okada, H.; Senmaru, T.; Majima, S.; Ushigome, E.; Nakanishi, N.; Asano, M.; et al. Relationship between serum creatinine to cystatin C ratio and subclinical atherosclerosis in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002910. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Zhang, Y.; Zhang, L.; Zhang, S.; Ye, H. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front. Cardiovasc. Med. 2021, 8, 743710. [Google Scholar] [CrossRef]
- Dziegielewska-Gesiak, S. Metabolic Syndrome in an Aging Society—Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis. Clin. Interv. Aging 2021, 16, 1057–1070. [Google Scholar] [CrossRef]
- Suzuki, H.; Yamada, C.; Kato, K. Gamma-glutamyl compounds and their enzymatic production using bacterial gamma-glutamyltranspeptidase. Amino Acids 2007, 32, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Paul, C.; Alvarez, S.; Mine, Y.; Majumder, K. Dietary γ-Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors. J. Agric. Food Chem. 2020, 68, 9139–9149. [Google Scholar] [CrossRef]
- Zhang, H.; Kovacs-Nolan, J.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim. Biophys. Acta 2015, 1852, 792–804. [Google Scholar] [CrossRef]
- Salama, S.A.; Arab, H.H.; Hassan, M.H.; Al Robaian, M.M.; Maghrabi, I.A. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J. Trace Elem. Med. Biol.Organ Soc. Miner. Trace Elem. (GMS) 2019, 52, 74–82. [Google Scholar] [CrossRef]
- Muramatsu, M.; Hira, T.; Mitsunaga, A.; Sato, E.; Nakajima, S.; Kitahara, Y.; Eto, Y.; Hara, H. Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats. Am. J. physiology. Gastrointest. Liver Physiol. 2014, 306, G1099–G1107. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Majumder, K.; Zhang, W.; Mine, Y. γ-Glutamylvaline Prevents Low-Grade Chronic Inflammation via Activation of a Calcium-Sensing Receptor Pathway in 3T3-L1Mouse Adipocytes. J. Agric. Food Chem. 2019, 67, 8361–8369. [Google Scholar] [CrossRef]
- Sundararaman, S.S.; van der Vorst, E.P.C. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int. J. Mol. Sci. 2021, 22, 2478. [Google Scholar] [CrossRef]
- Wang, M.; Yao, Y.; Kuang, D.; Hampson, D.R. Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J. Biol. Chem. 2006, 281, 8864–8870. [Google Scholar] [CrossRef]
- Robertson, R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004, 279, 42351–42354. [Google Scholar] [CrossRef]
- Soga, T.; Sugimoto, M.; Honma, M.; Mori, M.; Igarashi, K.; Kashikura, K.; Ikeda, S.; Hirayama, A.; Yamamoto, T.; Yoshida, H.; et al. Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J. Hepatol. 2011, 55, 896–905. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.O.; Dellow, W.J.; Lever, M.; George, P.M.; Robson, R.A.; Chambers, S.T. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001, 59, 2267–2272. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Fall, T.; Ärnlöv, J.; Elmståhl, S.; Sundström, J. Large-Scale Metabolomics and the Incidence of Cardiovascular Disease. J. Am. Heart Assoc. 2023, 12, e026885. [Google Scholar] [CrossRef] [PubMed]
- Tomas, L.; Edsfeldt, A.; Mollet, I.G.; Perisic Matic, L.; Prehn, C.; Adamski, J.; Paulsson-Berne, G.; Hedin, U.; Nilsson, J.; Bengtsson, E.; et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J. 2018, 39, 2301–2310. [Google Scholar] [CrossRef]
- Ramachandran, R.; Gravenstein, K.S.; Metter, E.J.; Egan, J.M.; Ferrucci, L.; Chia, C.W. Selective contribution of regional adiposity, skeletal muscle, and adipokines to glucose disposal in older adults. J. Am. Geriatr. Soc. 2012, 60, 707–712. [Google Scholar] [CrossRef]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Zhan, L.; Guo, J.Y.; et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef]
- Shantha, G.P.; Wasserman, B.; Astor, B.C.; Coresh, J.; Brancati, F.; Sharrett, A.R.; Young, J.H. Association of blood lactate with carotid atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Atherosclerosis 2013, 228, 249–255. [Google Scholar] [CrossRef]
- Jutley, G.S.; Young, S.P. Metabolomics to identify biomarkers and as a predictive tool in inflammatory diseases. Best Pract. research. Clin. Rheumatol. 2015, 29, 770–782. [Google Scholar] [CrossRef]
- Marsch, E.; Sluimer, J.C.; Daemen, M.J. Hypoxia in atherosclerosis and inflammation. Curr. Opin. Lipidol. 2013, 24, 393–400. [Google Scholar] [CrossRef]
- Li, Z.; Guo, S.; Cao, K.; Duan, Y.; Zhao, Y.; Zhang, Y.; Yu, S.; Bai, Z.; Yu, R.; Chen, Y.; et al. Endothelial monocarboxylate transporter 1 drives atherosclerosis via a lactate/NADH/CtBP-mediated transrepression pathway. MedComm 2025, 6, e70089. [Google Scholar] [CrossRef]
- Seok, H.; Huh, J.H.; Kim, H.M.; Lee, B.W.; Kang, E.S.; Lee, H.C.; Cha, B.S. 1,5-anhydroglucitol as a useful marker for assessing short-term glycemic excursions in type 1 diabetes. Diabetes Metab. J. 2015, 39, 164–170. [Google Scholar] [CrossRef]
- Dungan, K.M. 1,5-anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev. Mol. Diagn. 2008, 8, 9–19. [Google Scholar] [CrossRef]
- Ikeda, N.; Hara, H.; Hiroi, Y.; Nakamura, M. Impact of serum 1,5-anhydro-d-glucitol level on prediction of major adverse cardiac and cerebrovascular events in non-diabetic patients without coronary artery disease. Atherosclerosis 2016, 253, 1–6. [Google Scholar] [CrossRef]
- Selvin, E.; Rawlings, A.; Lutsey, P.; Maruthur, N.; Pankow, J.S.; Steffes, M.; Coresh, J. Association of 1,5-Anhydroglucitol With Cardiovascular Disease and Mortality. Diabetes 2016, 65, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qian, C.; Chen, Z.; Wang, T.; Chi, Q.; Zhu, L. Short-term glycemic variability and intracranial atherosclerotic plaque stability assessed by high-resolution MR vessel wall imaging in type 2 diabetes mellitus. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2024, 33, 107769. [Google Scholar] [CrossRef] [PubMed]
- Sakanaka, A.; Katakami, N.; Furuno, M.; Nishizawa, H.; Omori, K.; Taya, N.; Ishikawa, A.; Mayumi, S.; Inoue, M.; Tanaka Isomura, E.; et al. Salivary metabolic signatures of carotid atherosclerosis in patients with type 2 diabetes hospitalized for treatment. Front. Mol. Biosci. 2022, 9, 1074285. [Google Scholar] [CrossRef] [PubMed]
- Koga, M.; Murai, J.; Saito, H.; Mukai, M.; Kasayama, S. Habitual intake of dairy products influences serum 1,5-anhydroglucitol levels independently of plasma glucose. Diabetes Res. Clin. Pract. 2010, 90, 122–125. [Google Scholar] [CrossRef]
- Pigsborg, K.; Gürdeniz, G.; Rangel-Huerta, O.D.; Holven, K.B.; Dragsted, L.O.; Ulven, S.M. Effects of changing from a diet with saturated fat to a diet with n-6 polyunsaturated fat on the serum metabolome in relation to cardiovascular disease risk factors. Eur. J. Nutr. 2022, 61, 2079–2089. [Google Scholar] [CrossRef]
- Mukai, N.; Ninomiya, T.; Hata, J.; Hirakawa, Y.; Ikeda, F.; Fukuhara, M.; Hotta, T.; Koga, M.; Nakamura, U.; Kang, D.; et al. Association of hemoglobin A1c and glycated albumin with carotid atherosclerosis in community-dwelling Japanese subjects: The Hisayama Study. Cardiovasc. Diabetol. 2015, 14, 84. [Google Scholar] [CrossRef]
- Karrei, K.; Koehler, C.; Hanefeld, M.; Temelkova-Kurktschiev, T.; Del Prato, S. Fluctuations in glycaemia in clinical diabetes mellitus type 2 are not associated with carotid intima-media thickening. Diabetes Vasc. Dis. Res. 2004, 1, 51–52. [Google Scholar] [CrossRef]
- Waś, J.; Dobrowolski, P.; Prejbisz, A.; Niedolistek, M.; Kowalik, I.; Drohomirecka, A.; Sokołowska, D.; Krzysztoń-Russjan, J. Early Changes in the Plasma Lipidome of People at Very High Cardiovascular Risk: A New Approach to Assessing the Risk of Cardiovascular Changes. Biomedicines 2025, 13, 643. [Google Scholar] [CrossRef] [PubMed]
- Tiwari-Heckler, S.; Gan-Schreier, H.; Stremmel, W.; Chamulitrat, W.; Pathil, A. Circulating Phospholipid Patterns in NAFLD Patients Associated with a Combination of Metabolic Risk Factors. Nutrients 2018, 10, 649. [Google Scholar] [CrossRef]
- Hall, Z.; Bond, N.J.; Ashmore, T.; Sanders, F.; Ament, Z.; Wang, X.; Murray, A.J.; Bellafante, E.; Virtue, S.; Vidal-Puig, A.; et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 2017, 65, 1165–1180. [Google Scholar] [CrossRef]
- Boggs, K.P.; Rock, C.O.; Jackowski, S. Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J. Biol. Chem. 1995, 270, 7757–7764. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.; Vance, J. (Eds.) Phospholipid biosynthesis in eukaryotes. In Biochemistry of Lipids, Lipoproteins, and Membranes; Elsevier: Amsterdam, The Netherlands, 2008; pp. 213–245. [Google Scholar]
- Meyer zu Heringdorf, D.; Jakobs, K.H. Lysophospholipid receptors: Signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim. Et Biophys. Acta 2007, 1768, 923–940. [Google Scholar] [CrossRef]
- Dzobo, K.E.; Cupido, A.J.; Mol, B.M.; Stiekema, L.C.A.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.M.; Havik, S.R.; Vaz, F.M.; et al. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration Erqou, S.; Kaptoge, S.; Perry, P.L.; Di Angelantonio, E.; Thompson, A.; White, I.R.; Marcovina, S.M.; Collins, R.; Thompson, S.G.; Danesh, J. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 2009, 302, 412–423. [Google Scholar] [CrossRef]
- Kamstrup, P.R.; Tybjaerg-Hansen, A.; Steffensen, R.; Nordestgaard, B.G. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 2009, 301, 2331–2339. [Google Scholar] [CrossRef]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.C.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Tanguy, E.; Wang, Q.; Moine, H.; Vitale, N. Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology. Front. Cell. Neurosci. 2019, 13, 2. [Google Scholar] [CrossRef]
- Geraldo, L.H.M.; Spohr, T.C.L.S.; Amaral, R.F.D.; Fonseca, A.C.C.D.; Garcia, C.; Mendes, F.A.; Freitas, C.; dosSantos, M.F.; Lima, F.R.S. Role of lysophosphatidic acid and its receptors in health and disease: Novel therapeutic strategies. Signal Transduct. Target. Ther. 2021, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Tsorotes, D.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; MacIntosh, G.L.; Goudey, B.; Stern, L.; Kowalczyk, A.; et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2723–2732. [Google Scholar] [CrossRef]
- Croset, M.; Brossard, N.; Polette, A.; Lagarde, M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem. J. 2000, 345 Pt 1, 61–67. [Google Scholar] [CrossRef]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2024. [Google Scholar]
- Lubrano, V.; Ndreu, R.; Balzan, S. Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 1637. [Google Scholar] [CrossRef]
- Chaaba, R.; Bouaziz, A.; Ben Amor, A.; Mnif, W.; Hammami, M.; Mehri, S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics 2023, 13, 979. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 1999, 70, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Susser, L.I.; Rayner, K.J. Through the layers: How macrophages drive atherosclerosis across the vessel wall. J. Clin. Investig. 2022, 132, e157011. [Google Scholar] [CrossRef]
- Ku, C.W.; Ho, T.J.; Huang, C.Y.; Chu, P.M.; Ou, H.C.; Hsieh, P.L. Cordycepin Attenuates Palmitic Acid-Induced Inflammation and Apoptosis of Vascular Endothelial Cells through Mediating PI3K/Akt/eNOS Signaling Pathway. Am. J. Chin. Med. 2021, 49, 1703–1722. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, A.; Zhou, W.; Tang, X.; Zeng, T.; Fan, T.; Jiang, W.; Tang, M.; Ouyang, F. Unveiling the protective role of ESM1 in endothelial cell proliferation and lipid reprogramming. Sci. Rep. 2025, 15, 15572. [Google Scholar] [CrossRef]
- Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Celik, T.; Iyisoy, A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis 2015, 243, 339–343. [Google Scholar] [CrossRef]
- Torvik, K.; Narverud, I.; Ottestad, I.; Svilaas, A.; Gran, J.M.; Retterstøl, K.; Ellingvåg, A.; Strøm, E.; Ose, L.; Veierød, M.B.; et al. Dietary counseling is associated with an improved lipid profile in children with familial hypercholesterolemia. Atherosclerosis 2016, 252, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Senokuchi, T.; Shi, Y.; Furusho, T.; Morita, Y.; Sarie, M.; Hanatani, S.; Fukuda, K.; Ishii, N.; Matsumura, T.; et al. Orally administrated acetate inhibits atherosclerosis progression through AMPK activation via GPR43 in plaque macrophages. Atherosclerosis 2025, 401, 119088. [Google Scholar] [CrossRef] [PubMed]
- Baccouch, R.; Shi, Y.; Vernay, E.; Mathelié-Guinlet, M.; Taib-Maamar, N.; Villette, S.; Feuillie, C.; Rascol, E.; Nuss, P.; Lecomte, S.; et al. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochim. Biophys. acta. Biomembr. 2023, 1865, 184084. [Google Scholar] [CrossRef]
- Wada, M.; DeLong, C.J.; Hong, Y.H.; Rieke, C.J.; Song, I.; Sidhu, R.S.; Yuan, C.; Warnock, M.; Schmaier, A.H.; Yokoyama, C.; et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J. Biol. Chem. 2007, 282, 22254–22266. [Google Scholar] [CrossRef]
- Bennett, M.; Gilroy, D.W. Lipid Mediators in Inflammation. Microbiol. Spectr. 2016, 4, 343–366. [Google Scholar] [CrossRef]
- Kosova, E.C.; Auinger, P.; Bremer, A.A. The relationships between sugar-sweetened beverage intake and cardiometabolic markers in young children. J. Acad. Nutr. Diet. 2013, 113, 219–227. [Google Scholar] [CrossRef]
- Welsh, J.A.; Sharma, A.; Cunningham, S.A.; Vos, M.B. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef]
- Zuo, L.; Kavousi, M.; Bos, D.; Voortman, T. Associations of dietary fatty acids with the incidence of carotid atherosclerotic plaque components: A 6-year follow-up study with serial MRI. Atherosclerosis 2025, 403, 119144. [Google Scholar] [CrossRef]
- McGarry, J.D.; Guest, M.J.; Foster, D.W. Ketone body metabolism in the ketosis of starvation and alloxan diabetes. J. Biol. Chem. 1970, 245, 4382–4390. [Google Scholar] [CrossRef] [PubMed]
- Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1060–H1076. [Google Scholar] [CrossRef]
- Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; et al. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 139, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Li, Z.H.; Zhang, Y.D.; Chen, J.; Li, Y.; Wu, F.Q.; Wang, W.; Cui, Z.J.; Chen, G.Q. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. Adv. Sci. 2021, 8, 2003410. [Google Scholar] [CrossRef]
- Rahman, M.; Muhammad, S.; Khan, M.A.; Chen, H.; Ridder, D.A.; Müller-Fielitz, H.; Pokorná, B.; Vollbrandt, T.; Stölting, I.; Nadrowitz, R.; et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 2014, 5, 3944. [Google Scholar] [CrossRef]
- Caronia, L.M.; Dwyer, A.A.; Hayden, D.; Amati, F.; Pitteloud, N.; Hayes, F.J. Abrupt decrease in serum testosterone levels after an oral glucose load in men: Implications for screening for hypogonadism. Clin. Endocrinol. 2013, 78, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, G.; Spasevska, S.; Idan, A.; Turner, L.; Forbes, E.; Zamojska, A.; Allan, C.A.; Ly, L.P.; Conway, A.J.; McLachlan, R.I.; et al. Serum testosterone, dihydrotestosterone and estradiol concentrations in older men self-reporting very good health: The healthy man study. Clin. Endocrinol. 2012, 77, 755–763. [Google Scholar] [CrossRef]
- Wittert, G.; Bracken, K.; Robledo, K.P.; Grossmann, M.; Yeap, B.B.; Handelsman, D.J.; Stuckey, B.; Conway, A.; Inder, W.; McLachlan, R.; et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): A randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021, 9, 32–45. [Google Scholar] [CrossRef]
- Kahn, H.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, S.; Chang, Q.; Sun, J.; Fan, Y.; Liu, J. Negative association between 15 obesity- and lipid-related indices and testosterone in adult males: A population based cross-sectional study. Lipids Health Dis. 2025, 24, 24. [Google Scholar] [CrossRef]
- Genchi, V.A.; Rossi, E.; Lauriola, C.; D’Oria, R.; Palma, G.; Borrelli, A.; Caccioppoli, C.; Giorgino, F.; Cignarelli, A. Adipose Tissue Dysfunction and Obesity-Related Male Hypogonadism. Int. J. Mol. Sci. 2022, 23, 8194. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
- Elagizi, A.; Köhler, T.S.; Lavie, C.J. Testosterone and Cardiovascular Health. Mayo Clin. Proc. 2018, 93, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, L.; Liang, X.; Li, X.; Li, Y.; Huang, Y.; Wang, Y. Inverse association between atherogenic index of plasma and testosterone in US adult males: A large cross-sectional study from the NAHNES 2011–2016. Front. Physiol. 2025, 16, 1504778. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Wang, Y. Association between Low Serum Testosterone Levels and All-cause Mortality in Patients With Cardiovascular Disease: A Study Based on the NHANES Database. Cardiovasc. Toxicol. 2025, 25, 604–613. [Google Scholar] [CrossRef]
- Reilly, C.M.; Lewis, R.W.; Stopper, V.S.; Mills, T.M. Androgenic maintenance of the rat erectile response via a non-nitric-oxide-dependent pathway. J. Androl. 1997, 18, 588–594. [Google Scholar] [CrossRef]
- Burnett, A.L. Effects of castration and androgen replacement on erectile function in a rabbit model. Int. J. Impot. Res. 2000, 12, 340. [Google Scholar] [CrossRef]
- An, J.; Xiang, B.; Peng, J.; Li, D. Understanding the erectile dysfunction-cardiovascular disease connection: Clinical and pathophysiological insights. Sex. Med. Rev. 2025, 13, 406–422. [Google Scholar] [CrossRef]
- Alaamri, S.; Serafi, A.S.; Hussain, Z.; Bafail, S.K.; Bafail, M.A.; Demirkhanyan, L.; Gondi, C.S.; Sohail, S. Overweight-Related Hypertension in Middle-Aged Men Is Linked to Elevated Leptin, TNF-α, IL-6, Cholesterol, and Reduced Testosterone. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2025, 32, 7. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Wang, Q.; Fu, C.; Shrestha, N.; Virani, S.S.; Zhu, D. Male sex hormone concentrations, puberty timing, baldness patterns, and risk of cardiovascular disease. Hormones 2025, 24, 701–710. [Google Scholar] [CrossRef]
- Gagliano-Jucá, T.; Pencina, K.M.; Shang, Y.V.; Travison, T.G.; Lincoff, A.M.; Nissen, S.E.; Artz, A.S.; Li, X.; Chan, A.; Patel, R.; et al. Association of testosterone-induced increase in neutrophil and monocyte counts with thromboembolic events: The TRAVERSE trial. Am. Heart J. 2025, 288, 77–88. [Google Scholar] [CrossRef]
- Xu, Y.; Li, F.; Zalzala, M.; Xu, J.; Gonzalez, F.J.; Adorini, L.; Lee, Y.K.; Yin, L.; Zhang, Y. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 2016, 64, 1072–1085. [Google Scholar] [CrossRef]
- Ahmad, T.R.; Haeusler, R.A. Bile acids in glucose metabolism and insulin signalling—Mechanisms and research needs. Nat. Rev. Endocrinol. 2019, 15, 701–712. [Google Scholar] [CrossRef]
- Li, J.; Gao, Q.; Liu, H.; Liu, S.; Wang, Y.; Sun, X.; Zheng, J.; Yang, H.; Hu, B. Integrating 16S rDNA sequencing analysis and targeted metabolomics to explore the mechanism of Xiexin Tang in treating atherosclerosis mice induced by high-fat diet. J. Pharm. Biomed. Anal. 2025, 259, 116760. [Google Scholar] [CrossRef]
- Kulkarni, H.; Gaikwad, A.B. The mitochondria-gut microbiota crosstalk—A novel frontier in cardiovascular diseases. Eur. J. Pharmacol. 2025, 998, 177562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ma, W.Q.; Fu, M.J.; Li, J.; Hu, C.H.; Chen, Y.; Zhou, M.M.; Gao, Z.J.; He, Y.L. Overview of bile acid signaling in the cardiovascular system. World J. Clin. Cases 2021, 9, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Mathur, B.; Eblimit, Z.; Vasquez, H.; Taegtmeyer, H.; Karpen, S.J.; Penny, D.J.; Moore, D.D.; Anakk, S. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology 2017, 65, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, G.; He, Y.; Da, J.; Xie, B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur. J. Pharmacol. 2019, 858, 172393. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.; Wang, J.; Li, Y.; Li, M.; Zhao, M.; Ge, K.; Zheng, D.; Cheung, K.C.P.; Liao, B.; Wang, S.; et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023, 35, 1752–1766.e8. [Google Scholar] [CrossRef]
- Fu, T.; Coulter, S.; Yoshihara, E.; Oh, T.G.; Fang, S.; Cayabyab, F.; Zhu, Q.; Zhang, T.; Leblanc, M.; Liu, S.; et al. FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell 2019, 176, 1098–1112.e18. [Google Scholar] [CrossRef]
- Lai, J.; Luo, L.; Zhou, T.; Feng, X.; Ye, J.; Zhong, B. Alterations in Circulating Bile Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-Analysis. Biomolecules 2023, 13, 1356. [Google Scholar] [CrossRef]
- Liu, H.; Tian, R.; Wang, H.; Feng, S.; Li, H.; Xiao, Y.; Luan, X.; Zhang, Z.; Shi, N.; Niu, H.; et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J. Transl. Med. 2020, 18, 382. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Gaskins, H.R. Another renaissance for bile acid gastrointestinal microbiology. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 348–364. [Google Scholar] [CrossRef]
- Velmurugan, G.; Dinakaran, V.; Rajendhran, J.; Swaminathan, K. Blood Microbiota and Circulating Microbial Metabolites in Diabetes and Cardiovascular Disease. Trends Endocrinol. Metab. TEM 2020, 31, 835–847. [Google Scholar] [CrossRef]
- Bae, H.; Jung, S.; Le, J.; Tamburini, I.; Kim, J.; Wang, E.; Song, W.S.; Choi, W.; Jang, K.H.; Kang, T.; et al. Cross-organ metabolite production and consumption in healthy and atherogenic conditions. Cell 2025, 188, 4441–4455.e16. [Google Scholar] [CrossRef]
- Bozadjieva-Kramer, N.; Shin, J.H.; Li, Z.; Rupp, A.C.; Miller, N.; Kernodle, S.; Lanthier, N.; Henry, P.; Seshadri, N.; Myronovych, A.; et al. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024, 9, e174164. [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, J.; Zhou, M.; Ma, X.; Lu, Z.; Gao, M.; Pan, X.; Tang, J.; Bao, Y.; Jia, W. Serum levels of fibroblast growth factor 19 are inversely associated with coronary artery disease in chinese individuals. PLoS ONE 2013, 8, e72345. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.S.; Tang, M.J.; Xu, T.L.; Su, J.B.; Wang, X.Q.; Xu, F.; Zhang, D.M.; Zhu, Q.; Cao, J.; Wang, H. Association of serum fibroblast growth factor 19 levels with arteriosclerosis parameters assessed by arterial stiffness and atherogenic index of plasma in patients with type 2 diabetes. Diabetol. Metab. Syndr. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Escuredo, J.M.; Gómez-Ambrosi, J.; Catalan, V.; Domingo, P.; Giralt, M.; Frühbeck, G.; Villarroya, F. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int. J. Obes. 2015, 39, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Potthoff, M.J.; Boney-Montoya, J.; Choi, M.; He, T.; Sunny, N.E.; Satapati, S.; Suino-Powell, K.; Xu, H.E.; Gerard, R.D.; Finck, B.N.; et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 2011, 13, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Rinella, M.E.; Abdelmalek, M.F.; Trotter, J.F.; Paredes, A.H.; Arnold, H.L.; Kugelmas, M.; Bashir, M.R.; Jaros, M.J.; Ling, L.; et al. NGM282 for treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2018, 391, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Neff, G.; Guy, C.D.; Bashir, M.R.; Paredes, A.H.; Frias, J.P.; Younes, Z.; Trotter, J.F.; Gunn, N.T.; Moussa, S.E.; et al. Efficacy and Safety of Aldafermin, an Engineered FGF19 Analog, in a Randomized, Double-Blind, Placebo-Controlled Trial of Patients With Nonalcoholic Steatohepatitis. Gastroenterology 2021, 160, 219–231.e1. [Google Scholar] [CrossRef] [PubMed]



| Author | Sample Size and Participant’s Baseline Characteristics | Sample and Method | Results Increased (↑) or Decreased (↓) Candidate Biomarker Concentration Compared to Control Group | Comments |
|---|---|---|---|---|
| Jury, 2024 [10] | 164 females with SLE (14–76 years) divided into 3 age groups: Group 1: (n = 62, ≤25years) Group 2: (n = 50, 26–49 years) Group 3: (n = 52, 50 years) 123 healthy controls (HCs) (13–72 years) divided into 3 age groups: Group 1: (n = 43, ≤25 years) Group 2: (n = 46, 26–49 years) Group 3: (n = 31, 50 years) | Serum 1H-NMR | Metabolites dysregulated in SLE across all three age groups HDLs↓ HDL-apolipoprotein (Apo)A1↓ GlycA↑ Metabolites correlated with age in SLE Acetone↑, Citrate↑, Creatinine↑, Glycerol↑, Lactate↑, Pyruvate↑ | The metabolic profile of SLE patients of all ages was characterized by decreased HDL subsets, HDL-(Apo)A1, and increased GlycA. In addition, ApoA1 and GlycA were differentially associated with disease activity and serological measures as well as with AS incidence and myocardial infarction mortality risk. Metabolites of the glycolytic pathway increased significantly with age in SLE, were significantly affected by pharmacological treatment, and were associated with T1D and T2D |
| Hetman, 2023 [11] | 42 individuals with DS (14.17 ± 6.7 years) 20 healthy siblings (15.92 ± 8.58 years) | Serum 1H-NMR | Acetate↓, Creatinine↓, Formate↓, Glutamine↑, Lysine↑, Proline↓, Pyroglutamate↓, Xanthine↓ | People with DS have a pronounced risk of CVD, with reduced HDL and increased LDL levels. Combined with metabolomic differences and a higher BMI and TMI, this indicates an increased risk of AS compared to controls. |
| Buszewska-Forajta, 2019 [12] | 30 women with PCOS (27.9–31.4 years) 30 healthy age- and BMI-matched controls (26.3–31.3 years) | Serum LC-MS GC-MS | Threonine↑, Tryptophan↑ Tyrosine↑ Isoleucine↑ Leucine↑ Phenylalanine↑, Glycine↑ Homocysteine↓ lysoPC 18:2↑, Lactate↑ Uric acid↑ Dehydroepiandrosterone sulfate (DEHA-S)↑, Sphinganine↑ Cholesterol↓ | Compared to healthy controls, PCOS women had increased serum levels of PLs, AACs, organic acids, hormones, and sphinganine and decreased total cholesterol. Among the compounds identified, total cholesterol, phenylalanine and DEHA-S, uric acid, and lactic acid were those with the strongest discriminating power. |
| Tzoulaki, 2019 [13] | 3867 participants from MESA free of known CVD at baseline (62.9 ± 10.3 years) 1917 participants from the Rotterdam Study (70.8 ± 5.7 years) 1652 participants from the LOLIPOP Study (54.8 ± 10 years) | Serum 1H NMR | 5-Oxoproline↓, Alanine↑, Albumin↓, Aspartate↓, Glutamate↓, Glutamine↓, Glycine↑, Histidine↓, Lysine↓, N,N-Dimethylglycine↓, Phenylalanine↓, Tyrosine↓, Glucose↑, Mannose↑, 1,5-AS↑, Creatine↓, Creatinine↓, 3-HB↓, TGs↑, LDL↑, VLDL↑, Cholesterol↑, ApoB↑, Acetaminophen-glucuronide↑, Citrate↓, Lactate↑ | AS was assessed by CAC and IMT evaluation. Metabolites associated with AS were largely consistent between coronary and carotid arteries and mainly labelled metabolic pathways overlapping with known CV risk factors. These metabolites revealed disturbances in lipid and carbohydrate metabolism, BCAA and AAC metabolism, oxidative stress, and inflammatory pathways. Analyses of incident CVD events showed inverse associations with creatine, creatinine, and phenylalanine and direct associations with mannose, acetaminophen glucuronide, and lactate as well as ApoB |
| Vallejo, 2009 [14] | 9 patients with NSTEACS (58–84 years) 10 patients with stable AS (58–74 years) 10 healthy subjects (63–64 years) | Plasma GC-MS | In NSTEACS patients vs. healthy controls: Citric acid↓ 4-Hydroxyproline↓ Aspartic acid↓ Fructose↓ Lactate↑ Urea↑ Glucose↑ Valine↑ | Citric acid, 4-hydroxyproline, aspartic acid, and fructose were decreased, and lactate, urea, glucose, and valine were increased in NSTEACS patients vs. healthy controls. The decrease in plasma hydroxyproline levels observed in NSTEACS patients may reflect a status of low collagen synthesis and turnover. |
| Omori, 2020 [15] | 176 T2DM Japanese patients who never experienced a CVD (58.4 ± 12.3 years) 40 T2DM patients who survived CAD (66.5 ± 5.4 years) | Plasma GC-MS | Metabolite associated with FMD in non-CVD patients: 3-Aminoisobutyric acid↓, Galactose + Glucose↓, Glucunoic acid↓, Glucose↓, IS↓, Inositol↓, Mannose↓, O-Phosphoethanolamine↓ Metabolite associated to max-IMT in non-CVD patients: 1,5-AS↑, IS↑, Inositol↑, Meso-erythritol↑, Pyroglutamic acid↑, Urea↑ | Inositol and IS were significantly associated with max-IMT and FMD in T2DM patients. These metabolites were also significantly associated with CAD. Furthermore, the association between inositol and CAD persisted after adjustment for traditional coronary risk factors. |
| Zheng, 2014 [16] | 1.977 African American participants from the ARIC Study, which were divided in food groups according to dietary intake (mean 53 years) | Serum GC-MS LC-MS | In SRFB group: Creatinine↓ γ-Glutamyl dipeptides↑ 2-HB↓ PUFA↓ 4-Androsten-3β,17β-diol disulfate↓ 5α-Androstan-3β,17β-diol disulfate↓ | The relationship between dietary intake and untargeted serum metabolomics revealed that the SRFB food group was associated with more metabolites than the other food groups/categories, and some of these associations may be due to oxidative stress mechanisms. |
| Harada, 2024 [17] | Study 1: 9922 Japanese participants from the baseline survey TMCS conducted from fiscal year (April-March) 2012–2015, including 4576 men (1335 current cigarette smokers; 2287 past smokers; 954 never smokers) and 5346 women (238 current cigarette smokers; 471 past smokers; 4367 never smokers (35–74 years) Study 2: 3334 participants involved in a follow-up survey of the TMCS conducted from fiscal year 2018–2021, including 55 HTP users (49.22 ±10.57 years), 119 cigarette smokers (54.51 ± 8.83 years), 144 past smokers (52.72 ± 10.25 years), and 145 never smokers (51.34 ± 10.08 years) | Plasma CE-MS/MS | Trends in cigarette smokers Glutamate↑, Proline↑, Tyrosine↑, Ornithine↑, Arginine↑, Citrulline↑, N,N-Dimethylglycine↑, Serine↑, Threonine↑, Leucine↑, Isoleucine↑, Kynurenine↓ Citrates↓ 2-HB↓ 3-HB↓, 2-oxobutyrate↓, Pyruvate↑, Trigonellina↑ Guanidinosuccinate↓, Mucate↓, Uridine↓ Trends in HTP users Glutamate↑, Proline↓, Tyrosine↓, Ornithine↑, Arginine↑, Citrulline↑, N,N-Dimethylglycine↑, Serine↓, Threonine↑, Leucine↓, Isoleucine↓, Kynurenine↓ Citrates↓, 2-HB↓ 3-HB↓, 2-oxobutyrate↑, Piruvate↑, Trigonellina↑ Guanidinosuccinate↓, Mucate↓, Uridine↓ | Cigarette smokers had different metabolomic profiles than non-smokers. The metabolite profiles of HTP users were closer to those of cigarette smokers than to those of never smokers. Specifically, cigarette smokers and HTP users had higher concentrations of trigonelline and amino acid metabolites, including glutamate, ornithine, and arginine, than never smokers and past smokers. Metabolites involved in glutamate metabolism (arginine, ornithine, and citrulline) were also associated with cigarette smoking and HTP use. |
| Menaker, 2024 [18] | 216 adults from the 300-OB cohort: (BMI ≥ 27 kg/m2) (55–80 years), including the following: (1) women with MetS (W/MetS), with or without AS (healthy subjects); (2) women without MetS (W/NoMetS), with or without AS; (3) men with MetS (M/MetS), with or without AS; and (4) men without MetS (M/NoMetS), with or without AS. Validation cohorts: 473 (202 men and 271 women) healthy subjects from the 500-FG cohort, most with a BMI in the normal range (18–75 years) 2645 healthy middle-aged women from the TwinsUK cohort with an average BMI 30.8 ± 3.6 (average age 59 years) including 49 with at least one CVD event between 4–13 years after data collection | Plasma LC-MS | Metabolite associated with atherogenic state: γ-Glu-Glu↑, NAM↑, HVA↑; HVA sulphate↑ Phenylalanine and tyrosine catabolism↑: Phenylacetylglutamine↑, PAGln acid↑ Phenylpropanoids biosynthesis↑: Ferulic acid↑, Sinapate↑, Kaempferide↑ FAs↓: (including eicosadienoic acid↓,dodecanoic acid↓) Estrogens biosynthesis↓ (including androstenedione↓, estriol↓, pregnenolone↓) | The analysis of groups of individuals with different clinical conditions allowed for the identification of metabolites associated with the atherogenic state independently of the particular condition, such as γ-Glu-Glu and HVA sulfate. Metabolic pathways such as the catabolism of phenylalanine and tyrosine and the biosynthesis of oestrogens and phenylpropanoid were also associated with the atherogenic state. Validation cohorts confirmed the variation in atherogenic states in healthy subjects (before atherosclerotic plaques become visible) and showed that metabolites associated with the atherogenic state were also associated with future CVD. |
| Shao, 2023 [19] | 120 MAFLD patients including the groups non-obese MAFLD with (n = 19, 42.4 ± 11.7 years)/without (n = 41, 43.6 ± 11.7 years) CAS and obese MAFLD with (n = 20, 44.1 ± 12.1 years)/without (n = 40, 45.2 ± 10.8 years) CAS 60 non-MAFLD controls with (n = 30, 44.5 ± 9.9 years)/without (n = 30, 44.6 ± 11.9 years) CAS | Plasma UHPLC-QTOF-MS GC-MS | Metabolite associated with CAS in MAFLD patients Alpha-tocopherol↓, PE (20:2/16:0)↓, L-glutamine↓, PC (18:2/20:2)↓, SM (16:1/18:1)↓, D-threitol↑, PG (18:0/20:4)↓, De novo lipogenesis (DNL) (16:0/18:2n-6)↑, L-leucine↑, Cystine↑ | The combination of PE (20:2/16:0), DNL (16:0/18:2n-6), PG (18:0/20:4), and liver stiffness were a strong predictor of CAS in non-obese MAFLD patients. The combination of cystine, SM (16:1/18:1), DNL (16:0/18:2n-6), age, and liver fat content (LFC) correlated with CAS in obese MAFLD patients. |
| Santiago-Hernandez, 2021 [20] | 27 patients with a diagnosis of CAD undergoing CABG (68 ± 9 years) 24 healthy subjects (Age ND) | Plasma Urine LC-MS | Arabitol (urine)↑, Spermidine (urine)↑, Glutamine (urine and plasma)↓, Trimethylamine N-oxide (urine and plasma)↑, Pantothenate (urine)↓, Valine (plasma)↓, Acetylcholine (plasma)↓, Choline (plasma)↓, Pyruvate (plasma)↑ | The observed metabolic deregulations in CAD patients undergoing CABG indicated an inflammatory response together with a altered counteraction of oxidative stress |
| Chevli, 2021 [21] | 700 participants from DHS: 438 AAs (58.7 ± 8.8 years) and 262 EAs (61.8 ± 9 years) Unaffected family members | Plasma LC-MS | AAs: Androgenic steroids↓, BAs↑, PCs↓, γ-GPs↓, Acylcarnitines↓, Dicarboxilate FAs↓, Monohydroxy FAs↓, Medium-chain FAs↓, Pregnenolone steroids↓ EAs: Androgenic steroids↓, BCAA metabolites↑, N-acetylphenylalanine↑, Lysine metabolites↑, Lysoplasmalogens↑, Pregnenolon/progestin steroids↓, Campesterol↑, 3-Hydroxy-3-methylglutarate↑ | Androgenic steroid, FAs, and BA metabolism subpathways were significantly associated with CAC in AAs, whereas androgenic steroid, progestin steroid, pregnenolone steroid, lysoplasmalogen, sphingomyelin, and BCAA metabolism subpathways were associated with CAC in EAs. |
| Wolak-Dinsmore, 2018 [22] | 1209 participants from IRAS: 376 with T2DM (57 ± 8 years) and 833 non-diabetic (ND) subjects (55 ± 8 years) 123 participants from the Groningen cohort: 67 T2D patients (59 ± 9 years) and 56 ND (54 ± 10 years) | Plasma NMR LC-MS | Isoleucine↑ Leucine↑ Valine↑ | BCAA levels were elevated in T2DM patients and were associated with c-IMT, an indicator of subclinical AS. |
| Gadgil, 2023 [23] | 3557 participants without known CVD from MESA cohort (45–84 years) | Serum 1H NMR | Metabolites associated to a higher HEI 2015 score: Proline↓, Proline betaine↑,1,5 AS↓, C=CHCH2HC=C (fatty acyl chains) UFA↑ | Diet quality, measured by HEI-2015, was positively associated with proline betaine and inversely related to proline, 1,5-AS, and UFA chains. |
| Gadgil, 2022 [24] | 722 participants from the MASALA cohort study without known CVD (40–84 years) were categorized into three dietary patterns based on their eating habits: “Fruits, Vegetables, Nuts, Legumes” pattern, “Animal Protein” pattern, and “Fried Snacks, Sweets, High-Fat Dairy” pattern | Serum UPLC-MS | “Animal Protein” diet: PE (O-16:1/20:4) and/or PE(P-16:0/20:4)↑, NAPE (O-18:1/20:4/18:0) and/or NAPE (P-18:0/20:4/18)↑, LPI (22:6/0:0)↑, FA (22:6)↑ “Fried Snacks, Sweets, High-Fat Dairy” diet: PC (16:0/22:6)↓, FA (22:6)↓ “Fruits, Vegetables, Nuts, Legumes” diet: Proline betaine↑ | The pattern “Fruits, Vegetables, Nuts, Legumes” was positively associated with proline betaine and was linked to a lower risk of diabetes. The pattern “Animal Protein” was associated with NAPEs, sphingomyelins, and ceramides as well as long- and short-chain acylcarnitines. In addition, the patterns “Animal Protein” and “Fried Snacks, Sweets, High-Fat Dairy” showed contrasting associations with long-chain n–3 FAs, which were associated with a lower CVD risk. |
| Benitez, 2022 [25] | 325 samples from patients with moderate-to-severe CKD and a median follow-up of 2 years, including 149 patients from the RRI-CKD study and 199 newly recruited patients, divided as follows: patients with no history of CVD (n = 198) (57 ± 14.4 years) patients with a history of CVD (n = 127) (65.5 ± 13.9 years) patients who experienced new CV events during the study period (n = 50) (66.9 ± 12.3 years) patients who had no new CV events during the study period (n = 275) (59.2 ± 14.9 years) | Plasma LC-MS | Tryptophan↓, Hydroxyanthranilic acid↑, Quinolinic acid↑, Kynurenine↑ | The kynurenine pathway, but not indole metabolites, plays a role in subclinical AS and new CV events in advanced CKD. These data support a possible role of altered tryptophan immunometabolism in the pathogenesis of CKD-associated AS. |
| Ho, 2022 [26] | 119 individuals with PAD with ABI < 0.9 (65–73 years) 37 controls without apparent AS (60–74 years) | Plasma LC-MS | Kynurenine↓, Tryptophan↓, HA↓, IPA↓, I3A↓, IS↑, HAA↑ | This study investigates the association of microbiota-derived metabolites with PAD and MACE. After adjustment for traditional AS risk factors, concentrations of kynurenine, HA, IPA, and I3A were negatively associated with PAD, while IS and HAA were positively associated. HA, IPA, and I3A correlated with the ABI. Participants in the quartile with the highest I3A concentration had significantly higher freedom from MACE during the follow-up period than those in the lowest quartile |
| Paapstel, 2018 [27] | 32 males with PAD (61.7 ± 9.0 years) 52 males with CAD (63.2 ± 9.2 years) 40 healthy controls (60.3 ± 7.1 years) | Serum LC-MS | PC aa 28:1↓ PC aa 30:0↓ PC aa 32:2↓ PC ae 30:0↓ PC ae C34:2↓ lysoPC a 18:2↓ | Changes in the PC and lysoPC profiles were observed in all three study groups. The lower serum levels of many of these lipids were associated with either increased arterial stiffness, increased resting HR, or poorer endothelial function in AS patients. Despite some similarities, patients with PAD and CAD may differ in the way their lipid profiles relate to other biochemical and functional parameters. |
| Syme, 2016 [28] | 990 adolescents (12–18 years, 48% male) as part of the SYS | Serum LC-MS | GPCs: PC 14:1/0:0↑ PC 16:0/2:0↓ | Targeted serum lipidomics was used to identify GPCs associated with CV risk factors (such as VF, BP, TGs, and HDL-cholesterol) in adolescents. Most significantly, PC16:0/2:0 was negatively associated with CVD risk factors, while a direct association was observed for PC14:1/0:0. |
| Christensen, 2017 [29] | 47 children with FH (12.5 ± 3.7 years) 57 healthy children (10 ± 1.9 years) | Plasma 1H NMR | Acetate↓ Acetoacetate↓ PUFA↑: DHA↑, FAω3↑, FAω6↑, Linoleic acid↑, MUFA↑, SFAs↓ Cholesterol↑, LDL↑, VLDL↑, ApoB↑, XL-HDL↑, M-HDL↓, S-HDL↓ | FH children had higher levels of ApoB-containing lipoproteins and lipids as well as lipid fractions in lipoprotein subclasses compared to healthy children (HC). In addition, they showed changes in HDL particle concentration and lipid content compared to HC. In addition, non-statin-treated FH children had higher plasma FAs than HC, especially linoleic acid. Finally, acetoacetate and acetate were lower in FH children compared to HC. |
| Chen, 2010 [30] | 16 patients with stable AS 28 age- and sex-matched healthy subjects (Age ND) | Plasma GC-MS | Stearate↑ Palmitate↑ 1-Monolinoleoylglycerol↑ | AS development directly affects FA metabolism, particularly that of palmitate, which has been confirmed as a phenotypic candidate biomarker for the clinical diagnosis of AS. |
| Su, 2021 [31] | 231 T2DM patients with altered c-IMT (55–66 years) 231 T2DM patients with normal c-IMT (54–67 years) | Serum LC-MS | DCA↑, TDCA↑, TCA↓ | Serum bile acid levels were independently associated with c-IMT, suggesting that BAs may contribute to the development of ASCVD. |
| Wang, 2023 [32] | 433 women with or at high risk of HIV (65% HIV +) from the Women’s Interagency HIV Study (WIHS) 320 women from WIHS who underwent carotid artery imaging (46–62 years) | Plasma LC-MS | Metabolites associated with CAC ImP↑, 3-Hydroxyhippuric acid↑ | Altered gut microbial species, serum inflammatory markers, and plasma metabolites were associated with CAC in women with or at risk of HIV. Among the plasma metabolites associated with plaque-associated microbial species, 3-hydroxyhippuric acid, and ImP were positively associated with plaque and several pro-inflammatory markers. However, further analyses suggested that the associations between the identified gut bacterial species and plaque in the carotid artery were independent of circulating 3-hydroxyhippuric acid levels but dependent on ImP plasma levels. |
| Akawi, 2021 [33] | Study 1: 633 AS patients undergoing CABG recruited under the ox-HVF cohort (66.6 ± 9.7 years) Study 2: a subgroup of 48 patients of Study 1, including 31 obese (62.1 ± 11.9 years) and 17 lean (63.4 ± 8.4 years) subjects Study 3: 32 healthy obese subjects (51.4 ± 9.9 years) | Plasma LC-MS | C16:0-Ceramide↑ C16:0-Glycosylceramide↑ | Circulating C16:0 ceramide correlated positively with thoracic adipose tissue ceramides, dysregulated vascular redox signalling, and increased systemic inflammation in AS patients. High plasma C16:0 ceramide and its glycosylated derivative were independently associated with an increased risk of cardiac mortality in advanced AS. |
| Metabolite | Metabolite [ ] Trend | Type of Sample | CV Risk Factor/CV Protection Factor * | Study |
|---|---|---|---|---|
| Metabolism of amino acids and derivatives | ||||
| Phenylalanine | ↑ | Serum | PCOS | Buszewska-Forajta, 2019 [12] |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| N-acetylphenylalanine | ↑ | Plasma | T2DM | Chevli, 2021 [21] |
| Phenylacetylglutamine (PAGln)/PAGln acid | ↑ | Serum | Obesity and atherosclerosis | Menaker, 2024 [18] |
| Tyrosine | ↑ | Serum | PCOS | Buszewska-Forajta, 2019 [12] |
| ↑ | Serum | Smoke | Harada, 2024 [17] | |
| ↑ | Serum | Obesity and atherosclerosis | Menaker, 2024 [18] | |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| Creatinine | ↓ | Serum | DS | Hetman, 2023 [11] |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| ↓ | Serum | Unhealthy diet | Zheng, 2014 [16] | |
| ↑ | Serum | LES | Jury, 2024 [10] | |
| Lysine | ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] |
| ↑ | Serum | DS | Hetman, 2023 [11] | |
| Threonine | ↑ | Serum | PCOS | Buszewska-Forajta, 2019 [12] |
| ↑ | Serum | Smoke | Harada, 2024 [17] | |
| Urea | ↑ | Plasma | NSTEACS | Vallejo, 2009 [14] |
| ↑ | Plasma | T2DM with altered c-IMT | Omori, 2020 [15] | |
| Glutamate | ↑ | Plasma | Smoke | Harada, 2023 [17] |
| ↓ | Serum | Altered CAC-IMT. | Tzoulaki, 2019 [13] | |
| γ-L-Glutamil-L-Glutamic acid (γ-Glu-Glu) | ↑ | Serum | Obesity and atherosclerosis | Menaker, 2024 [18] |
| Glutamine | ↓ | Serum | LES | Jury, 2024 [10] |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| ↓ | Urine/Plasma | CAD | Santiago-Hernandez, 2021 [20] | |
| ↓ | Plasma | MAFLD w/without obesity | Shao, 2023 [19] | |
| ↑ | Serum | DS | Hetman et al. [11] | |
| Aspartate | ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] |
| ↓ | Plasma | NSTEACS | Vallejo, 2009 [14] | |
| Branched-chain amino acids (BCAAs) | ↑ | Plasma | T2DM with altered CAC | Chevli, 2021 [21] |
| Leucine | ↑ | Plasma | T2DM with altered c-IMT | Wolak-Dinsmore, 2018 [22] |
| ↑ | Serum | Smoke | Harada, 2024 [17] | |
| ↑ | Serum | PCOS | Buszewska-Forajta, 2019 [12] | |
| Isoleucine | ↑ | Plasma | T2DM with altered c-IMT | Wolak-Dinsmore, 2018 [22] |
| ↑ | Serum | Smoke | Harada, 2024 [17] | |
| ↑ | Serum | PCOS | Buszewska-Forajta, 2019 [12] | |
| Valine | ↑ | Plasma | T2DM with altered c-IMT | Wolak-Dinsmore, 2018 [22] |
| ↑ | Plasma | NSTEACS | Vallejo, 2009 [14] | |
| ↓ | Urine/Plasma | CAD | Santiago-Hernandez, 2021 [20] | |
| Proline | ↓ | Serum | Smoke | Harada, 2024 [17] |
| ↓ | Serum | Healthy diet * | Gadgil, 2023 [23] | |
| ↓ | Serum | DS | Hetman, 2023 [11] | |
| Proline betaine | ↑ | Serum | Healthy diet * | Gadgil, 2022 [24] |
| ↑ | Serum | Healthy diet * | Gadgil, 2023 [23] | |
| Tryptophan | ↑ | Serum | PCOS | Buszewska-Forajta, 2009 [12] |
| ↓ | Plasma | PAD | Ho, 2023 [26] | |
| ↓ | Plasma | CKD | Benitez, 2022 [25] | |
| Kynurenine | ↑ | Plasma | CKD | Benitez, 2022 [25] |
| ↓ | Serum | Smoke | Harada, 2024 [17] | |
| ↓ | Plasma | PAD | Ho, 2023 [26] | |
| 3-Hydroxyanthranilic acid (HAA) | ↑ | Plasma | CKD | Benitez, 2022 [25] |
| ↑ | Plasma | PAD | Ho, 2023 [26] | |
| Indoxyl sulfate (IS) | ↑ | Plasma | PAD | Ho, 2023 [26] |
| ↑ | Plasma | T2DM with altered c-IMT | Omori, 2020 [15] | |
| γ-Glutamyl dipeptides (γ-GPs) | ↑ | Serum | SRFB diet | Zheng, 2014 [16] |
| ↓ | Plasma | T2DM with altered CAC | Chevli, 2021 [21] | |
| N,N-Dimethylglycine (DMG) | ↑ | Serum | Smoke | Harada, 2024 [17] |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| 2-Hydroxybutyrate (2-HB) | ↑ | Serum | SRFB diet | Zheng, 2014 [16] |
| ↓ | Serum | Smoke | Harada, 2024 [17] | |
| 3-Hydroxybutyrate (3-HB) | ↓ | Serum | Smoke | Harada, 2024 [17] |
| ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| Carbohydrate and energy metabolism | ||||
| Glucose | ↑ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] |
| ↑ | Serum | NSTEACS | Vallejo, 2009 [14] | |
| Pyruvate | ↑ | Serum | Smoke | Harada, 2024 [17] |
| ↑ | Serum | PCOS | Buszewska-Forajta, 2009 [12] | |
| ↑ | Urine | CAD | Santiago-Hernandez, 2021 [20] | |
| Lactate | ↑ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] |
| ↑ | Serum | NSTEACS | Vallejo, 2009 [14] | |
| ↑ | Serum | PCOS | Buszewska-Forajta, 2009 [12] | |
| ↑ | Serum | LES | Jury, 2024 [10] | |
| 1,5-Anhydro-D-glucitol (1,5 AG) | ↑ | Plasma | T2DM with altered c-IMT | Omori, 2020 [15] |
| ↑ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] | |
| ↓ | Serum | Healthy diet * | Gadgil, 2023 [23] | |
| Citrate | ↓ | Serum | Altered CAC-IMT | Tzoulaki, 2019 [13] |
| ↓ | Serum | Smoke | Harada, 2024 [17] | |
| ↓ | Plasma | NSTEACS | Vallejo, 2009 [14] | |
| ↑ | Serum | LES | Jury, 2024 [10] | |
| Metabolism of lipids and derivatives | ||||
| Phosphatidylethanolamine (PE) | ||||
| PE 20:2/16:0 | ↓ | Plasma | MAFLD w/without obesity | Shao, 2023 [19] |
| PE O-16:1/20:4 | ↑ | Serum | Animal Protein diet | Gadgil, 2022 [24] |
| PE P-16:0/20:4 | ↑ | Serum | Animal Protein diet | Gadgil, 2022 [24] |
| N-acyl phosphatidylethanolamine (NAPE) | ||||
| NAPE O-18:1/20:4/18:0 | ↑ | Serum | Animal Protein diet | Gadgil, 2022 [24] |
| NAPE P-18:0/20:4/18 | ↑ | Serum | Animal Protein diet | Gadgil, 2022 [24] |
| Lysophosphatidylinositol (LPI) 22:6/0:0 | ↑ | Serum | Animal Protein diet | Gadgil, 2022 [24] |
| Phosphatidylglycerol (PG) (18:0/20:4) | ↓ | Plasma | MAFLD w/without obesity | Shao, 2023 [19] |
| Lysophosphatidylcholine (lysoPC) a 18:2 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| lysoPC PC14:1/0:0 | ↑ | Serum | VF, BP, insulin, TGs, and HDL-cholesterol in adolescence | Syme, 2016 [28] |
| Phosphatidylcholines (PCs) | ↓ | Plasma | T2DM with altered CAC | Chevli, 2021 [21] |
| PC (18:2/20:2) | ↓ | Plasma | MAFLD w/without obesity | Shao, 2023 [19] |
| PC aa 30:0 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC aa 32:2 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC ae 30:0 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC ae C34:2 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC aa 30:0 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC aa 32:2 | ↓ | Serum | PAD/CAD | Paapstel, 2018 [27] |
| PC 16:0/22:6 | ↓ | Serum | Fried Snacks, Sweets, High-Fat Dairy diet | Gadgil, 2022 [24] |
| PC 16:0/2:0 | ↓ | Serum | VF, BP, insulin, TGs, and HDL-cholesterol in adolescence | Syme, 2016 [28] |
| Saturated fatty acids (SFAs) | ↓ | Plasma | FH in children | Christensen, 2017 [29] |
| Palmitate (PA) | ↑ | Plasma | Stable atherosclerosis | Chen, 2010 [30] |
| Acetate | ↓ | Plasma | FH in children | Christensen, 2017 [29] |
| ↓ | Serum | Smoke | Harada, 2024 [17] | |
| Polyunsaturated fatty acids (PUFA) | ↓ | Plasma | T2DM with altered CAC | Chevli, 2021 [21] |
| ↓ | Serum | SRFB diet | Zheng, 2014 [16] | |
| ↑ | Plasma | FH in children | Christensen, 2017 [29] | |
| Eicosadienoic acid | ↓ | Serum | Obesity and atherosclerosis | Menaker, 2024 [18] |
| C=CHCH2HC=C (fatty acyl chains) | ↑ | Serum | Healthy diet * | Gadgil, 2023 [23] |
| Omega 3 FAs (FAω3), | ↑ | Plasma | FH in children | Christensen, 2017 [29] |
| Omega 6 FAs (FAω6) | ↑ | Plasma | FH in children | Christensen, 2017 [29] |
| Linoleic acid | ↑ | Plasma | FH in children | Christensen, 2017 [29] |
| Monounsaturated FAs (MUFA) | ↑ | Plasma | FH in children | Christensen, 2017 [29] |
| 3-Hydroxybutyrate (3-HB) | ↓ ↓ | Serum Serum | Smoke Altered CAC-IMT | Harada, 2024 [17] Tzoulaki, 2019 [13] |
| De novo lipogenesis (DNL) (16:0/18:2n-6) | ↑ | Plasma | MAFLD w/without obesity | Shao, 2023 [19] |
| Other metabolites | ||||
| Androgenic steroids | ↓ | Serum | SRFB diet | Zheng, 2014 [16] |
| ↓ | Plasma | T2DM with altered CAC | Chevli, 2021 [21] | |
| Bile acids (BAs) | ↑ | Serum | T2DM with altered c-IMT | Su, 2021 [31] |
| ↑ | Serum | T2DM with altered CAC | Chevli, 2021 [21] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pibiri, M.; Noto, A.; Dalu, A.; Muntoni, S.; Kopeć, K.K.; Spada, M.; Atzori, L.; Piras, C. Metabolomics Signatures of Atherosclerosis in Cardiovascular Disease: A Narrative Systematic Review. J. Clin. Med. 2025, 14, 8028. https://doi.org/10.3390/jcm14228028
Pibiri M, Noto A, Dalu A, Muntoni S, Kopeć KK, Spada M, Atzori L, Piras C. Metabolomics Signatures of Atherosclerosis in Cardiovascular Disease: A Narrative Systematic Review. Journal of Clinical Medicine. 2025; 14(22):8028. https://doi.org/10.3390/jcm14228028
Chicago/Turabian StylePibiri, Monica, Antonio Noto, Antonio Dalu, Sandro Muntoni, Karolina Krystyna Kopeć, Martina Spada, Luigi Atzori, and Cristina Piras. 2025. "Metabolomics Signatures of Atherosclerosis in Cardiovascular Disease: A Narrative Systematic Review" Journal of Clinical Medicine 14, no. 22: 8028. https://doi.org/10.3390/jcm14228028
APA StylePibiri, M., Noto, A., Dalu, A., Muntoni, S., Kopeć, K. K., Spada, M., Atzori, L., & Piras, C. (2025). Metabolomics Signatures of Atherosclerosis in Cardiovascular Disease: A Narrative Systematic Review. Journal of Clinical Medicine, 14(22), 8028. https://doi.org/10.3390/jcm14228028

