Concurrent Validity and Inter-Rater Reliability of the Motor Optimality Score-Revised in a Neonatal Surgical Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure
2.3. Statistical Analysis
3. Results
3.1. Concurrent Validity
3.2. Inter-Rater Reliability and Agreement
4. Discussion
4.1. Concurrent Validity
4.2. Inter-Rater Reliability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GMA | General Movements Assessment |
| MOS-R | Motor Optimality Score-Revised |
| CP | Cerebral palsy |
| ICC | Intraclass correlation coefficient |
| AC1 | Gwet’s Agreement Coefficient |
| Bayley III | Bayley Scales of Infant and Toddler Development III |
| HINE | Hammersmith Infant Neurological Examination |
References
- Sood, E.; Newburger, J.W.; Anixt, J.S.; Cassidy, A.R.; Jackson, J.L.; Jonas, R.A.; Lisanti, A.J.; Lopez, K.N.; Peyvandi, S.; Marino, B.S.; et al. Neurodevelopmental Outcomes for Individuals with Congenital Heart Disease: Updates in Neuroprotection, Risk-Stratification, Evaluation, and Management: A Scientific Statement from the American Heart Association. Circulation 2024, 149, e997–e1022. [Google Scholar] [CrossRef]
- Walker, K.; Badawi, N.; Halliday, R.; Stewart, J.; Sholler, G.F.; Winlaw, D.S.; Sherwood, M.; Holland, A.J. Early Developmental Outcomes following Major Noncardiac and Cardiac Surgery in Term Infants: A Population-Based Study. J. Pediatr. 2012, 161, 748–752.e1. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, T.; Harrison, T.M.; Simsic, J.M.; Cabral, T.I.; Heathcock, J.C. Screening and Evaluation of Neurodevelopmental Impairments in Infants Under 6 Months of Age with Congenital Heart Disease. Pediatr. Cardiol. 2022, 43, 489–496. [Google Scholar] [CrossRef]
- Crowle, C.; Galea, C.; Walker, K.; Novak, I.; Badawi, N. Prediction of neurodevelopment at one year of age using the General Movements assessment in the neonatal surgical population. Early Hum. Dev. 2018, 118, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.D.; Sananes, R.; Wojtowicz, M.; Seed, M.; Miller, S.P.; Chau, V.; Au-Young, S.H.; Guo, T.; Ly, L.; Kazazian, V.; et al. Neurodevelopmental outcomes at 18 months of children diagnosed with CHD compared to children born very preterm. Cardiol. Young 2024, 34, 1247–1253. [Google Scholar] [CrossRef]
- Fairbairn, N.; Badawi, N.; Galea, C.; Hodge, A.; Loughran-Fowlds, A.; Novak, I. Risk of Developmental Coordination Disorder in 8- and 9-Year-Olds Following Newborn Cardiac and Non–Cardiac Surgery. Pediatr. Phys. Ther. 2023, 35, 49–55. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.R.; Bos, A.F.; Ferrari, F.; Cioni, G. Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants; MacKeith Press: London, UK, 2004; Volume 167. [Google Scholar]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child. Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Darsaklis, V.; Snider, L.M.; Majnemer, A.; Mazer, B. Predictive validity of Prechtl’s Method on the Qualitative Assessment of General Movements: A systematic review of the evidence. Dev. Med. Child. Neurol. 2011, 53, 896–906. [Google Scholar] [CrossRef]
- Goyen, T.A.; Morgan, C.; Crowle, C.; Hardman, C.; Day, R.; Novak, I.; Badawi, N. Sensitivity and specificity of general movements assessment for detecting cerebral palsy in an Australian context: 2-year outcomes. J. Paediatr. Child. Health 2020, 56, 1414–1418. [Google Scholar] [CrossRef]
- Einspieler, C.; Bos, A.F.; Krieber-Tomantschger, M.; Alvarado, E.; Barbosa, V.M.; Bertoncelli, N.; Burger, M.; Chorna, O.; Del Secco, S.; DeRegnier, R.A.; et al. Cerebral Palsy: Early Markers of Clinical Phenotype and Functional Outcome. J. Clin. Med. 2019, 8, 1616. [Google Scholar] [CrossRef]
- Burgess, A.; Luke, C.; Jackman, M.; Wotherspoon, J.; Whittingham, K.; Benfer, K.; Goodman, S.; Caesar, R.; Nesakumar, T.; Bora, S.; et al. Clinical utility and psychometric properties of tools for early detection of developmental concerns and disability in young children: A scoping review. Dev. Med. Child. Neurol. 2025, 67, 286–306. [Google Scholar] [CrossRef]
- Crowle, C.; Jackman, M.; Morgan, C. The General Movements Motor Optimality Score in High-Risk Infants: A Systematic Scoping Review. Pediatr. Phys. Ther. 2023, 35, 2–26. [Google Scholar] [CrossRef]
- Kwong, A.K.; Doyle, L.W.; Olsen, J.E.; Eeles, A.L.; Lee, K.J.; Cheong, J.L.; Spittle, A.J. Early motor repertoire and neurodevelopment at 2 years in infants born extremely preterm or extremely-low-birthweight. Dev. Med. Child. Neurol. 2022, 64, 855–862. [Google Scholar] [CrossRef]
- Peyton, C.; Millman, R.; Rodriguez, S.; Boswell, L.; Naber, M.; Spittle, A.; de Regnier, R.; Barbosa, V.M.; Sukal-Moulton, T. Motor Optimality Scores are significantly lower in a population of high-risk infants than in infants born moderate-late preterm. Early Hum. Dev. 2022, 174, 105684. [Google Scholar] [CrossRef]
- Luke, C.; Bos, A.F.; Jackman, M.; Ware, R.S.; Gordon, A.; Finn, C.; Baptist, D.H.; Benfer, K.A.; Bosanquet, M.; Boyd, R.N. Reproducibility of the Motor Optimality Score–Revised in infants with an increased risk of adverse neurodevelopmental outcomes. Dev. Med. Child. Neurol. 2025, 67, 1176–1185. [Google Scholar] [CrossRef]
- Alexander, C.; Amery, N.; Salt, A.; Morgan, C.; Spittle, A.; Ware, R.S.; Elliott, C.; Valentine, J. Inter-rater reliability and agreement of the General Movement Assessment and Motor Optimality Score-Revised in a large population-based sample. Early Hum. Dev. 2024, 193, 106019. [Google Scholar] [CrossRef] [PubMed]
- Haataja, L.; Mercuri, E.; Regev, R.; Cowan, F.; Rutherford, M.; Dubowitz, V.; Dubowitz, L. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 1999, 135, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Bayley, N. Bayley Scales of Infant and Toddler Development; Psychological Corporation: San Antonio, TX, USA, 2006. [Google Scholar]
- Jackman, M.; Morgan, C.; Luke, C.; Korostenski, L.; Zawada, K.; Juarez, M.; Webb, A.; Blatch-Williams, R.; Crowle, C. The predictive validity of HINE, Bayley, general movements and MOS-R in infancy. Early Hum. Dev. 2025, 203, 106226. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Örtqvist, M.; Einspieler, C.; Ådén, U. Early prediction of neurodevelopmental outcomes at 12 years in children born extremely preterm. Pediatr. Res. 2022, 91, 1522–1529. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Hallgren, K.A. Computing inter-rater reliability for observational data: An overview and tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Örtqvist, M.; Marschik, P.B.; Toldo, M.; Zhang, D.; Fajardo-Martinez, V.; Nielsen-Saines, K.; Ådén, U.; Einspieler, C. Reliability of the Motor Optimality Score-Revised: A study of infants at elevated likelihood for adverse neurological outcomes. Acta Paediatr. 2023, 112, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.H. A robust statistic AC1 for assessing inter-observer agreement in reliability studies. Nihon Hoshasen Gijutsu Gakkai Zasshi 2010, 66, 1485–1491. [Google Scholar] [CrossRef]
- Fjortoft, T.; Einspieler, C.; Adde, L.; Strand, L.I. Inter-observer reliability of the “Assessment of Motor Repertoire—3 to 5 Months” based on video recordings of infants. Early Hum. Dev. 2009, 85, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Porsnok, D.; Sırtbaş, G.; Yardımcı-Lokmanoğlu, B.N.; Mutlu, A. Early Spontaneous Movements and Postural Patterns in Infants with Extremely Low Birth Weight. Pediatr. Neurol. 2022, 129, 55–61. [Google Scholar] [CrossRef]
| n = 209 | Mean (SD) |
|---|---|
| Gestational age (weeks) | 37.85 (2.10) |
| Birth weight (grams) | 3060 (666.04) |
| Sex (n, %) | Male = 119 (57%) |
| Cardiac surgery (n, %) | 124 (59%) |
| Non-cardiac surgery (n, %) | 81 (39%) |
| Both types surgery (n, %) | 4 (2%) |
| Age at assessment (weeks) | 13 (1.21) |
| Bayley III Domain Scores (n = 209) | |
| Cognition | 9.38 (2.42) |
| Receptive Communication | 8.67 (1.55) |
| Expressive Communication | 9.21 (1.37) |
| Fine Motor | 9.76 (2.23) |
| Gross Motor | 8.51 (2.11) |
| HINE score (n = 209) | |
| Total | 57.64 (5.58) Median = 58 (31–68) |
| MOS-R (n = 209) | |
| MOS-R total | 21.79 (3.79) Median = 22 (7–28) |
| Optimal (25–28) | n = 31 (15%) |
| Mildly reduced (20–24) | n = 159 (76%) |
| Moderately reduced (9–19) | n = 17 (8%) |
| Severely reduced (5–8) | n = 2 (1%) |
| MOS-R above predictive cut-off ≥23 | n = 103 (49%) |
| MOS-R below predictive cut-off <23 | n = 106 (51%) |
| Fidgety movements | |
| Normal | n = 197 (94%) |
| Abnormal | n = 0 |
| Absent/sporadic | n = 12 (6%) |
| Observed movement patterns | |
| N > A | n = 200 (96%) |
| N = A | n = 7 (3%) |
| N < A | n = 2 (1%) |
| Age-adequate movement repertoire | |
| Present | n = 48 (23%) |
| Reduced | n = 91 (44%) |
| Absent | n = 70 (33%) |
| Observed postural patterns | |
| N > A | n = 87 (42%) |
| N = A | n = 33 (16%) |
| N < A | n = 89 (42%) |
| Movement Character | |
| Smooth/fluent | n = 5 (2%) |
| Abnormal not CS | n = 203 (97%) |
| Cramped-synchronised | n = 1 (1%) |
| Correlation Coefficient | p-Value 1 | |
|---|---|---|
| MOS-R Total and Bayley III | ||
| Cognitive | 0.12 | 0.021 |
| Receptive Communication | 0.01 | 0.848 |
| Expressive Communication | 0.11 | 0.041 |
| Fine Motor | 0.06 | 0.237 |
| Gross Motor | 0.19 | <0.001 |
| MOS-R Total and HINE | ||
| HINE Total | 0.18 | <0.001 |
| Cranial Nerves | 0.13 | 0.031 |
| Posture | 0.16 | 0.002 |
| Movement Quality and Quantity | 0.15 | 0.010 |
| Tone | 0.12 | 0.026 |
| Reflexes and Reactions | 0.12 | 0.027 |
| MOS-R Above Predictive Cut-off ≥23 (n = 103) | MOS-R Below Predictive Cut-off <23 (n = 106) | p-Value | |
|---|---|---|---|
| Bayley Cognitive, mean (SD) | 9.7 (2.4) | 9.1 (2.4) | 0.097 1 |
| Bayley Cognitive, n (%) | |||
| Delay (<7) | 9 (9%) | 13 (12%) | 0.545 2 |
| No delay (≥7) | 94 (91%) | 93 (88%) | |
| Bayley Receptive Communication, mean (SD) | 8.7 (1.5) | 8.7 (1.6) | 0.965 1 |
| Bayley Receptive Communication, n (%) | |||
| Delay (<7) | 11 (11%) | 10 (9%) | 0.945 2 |
| No delay (≥7) | 92 (89%) | 96 (91%) | |
| Bayley Expressive Communication, mean (SD) | 9.3 (1.3) | 9.1 (1.4) | 0.231 1 |
| Bayley Expressive Communication, n (%) | |||
| Delay (<7) | 1 (1%) | 4 (4%) | 0.369 3 |
| No delay (≥7) | 101 (99%) | 101 (96%) | |
| Bayley Gross Motor, mean (SD) | 9.0 (1.8) | 8.0 (2.3) | <0.001 1 |
| Bayley Gross Motor, n (%) | |||
| Delay (<7) | 9 (9%) | 27 (26%) | 0.002 2 |
| No delay (≥7) | 94 (91%) | 78 (74%) | |
| Bayley Fine Motor, mean (SD) | 9.9 (2.3) | 9.6 (2.2) | 0.351 1 |
| Bayley Fine Motor, n (%) | |||
| Delay (<7) | 7 (7%) | 10 (9%) | 0.657 2 |
| No delay (≥+) | 96 (93%) | 96 (91%) | |
| HINE Total, n (%) | |||
| <50 score | 6 (6%) | 13(12%) | 0.168 2 |
| ≥50 score | 97 (94%) | 93 (88%) |
| Optimal MOS-R (n = 31) | Mildly Reduced MOS-R (n = 159) | Moderately Reduced/Severely Reduced MOS-R (n = 19) | p-Value 1 | |
|---|---|---|---|---|
| Bayley III | ||||
| Cognitive, n (%) | ||||
| Delay (scaled score <7) | 3 (10%) | 16 (10%) | 3 (16%) | 0.675 |
| No delay (scaled score ≥7) | 28 (90%) | 143 (90%) | 16 (84%) | |
| Receptive Communication, n (%) | ||||
| Delay (scaled score <7) | 4 (13%) | 15 (9%) | 2 (11%) | 0.785 |
| No delay (scaled score ≥7) | 27 (87%) | 144 (91%) | 17 (89%) | |
| Expressive Communication, n (%) | ||||
| Delay (scaled score <7) | 0 (0%) | 3 (2%) | 2 (11%) | 0.128 |
| No delay (scaled score ≥7) | 31 (100%) | 154 (98%) | 17 (89%) | |
| Fine Motor, n (%) | ||||
| Delay (scaled score <7) | 2 (6%) | 12 (8%) | 3 (16%) | 0.408 |
| No delay (scaled score ≥7) | 29 (94%) | 147 (92%) | 16 (84%) | |
| Gross Motor, n (%) | ||||
| Delay (scaled score <7) | 1 (3%) | 27 (17%) | 8 (42%) | 0.002 |
| No delay (scaled score ≥7) | 30 (97%) | 131 (83%) | 11 (58%) | |
| HINE | ||||
| HINE Total, n (%) | ||||
| <50 score | 2 (6%) | 11 (7%) | 6 (32%) | 0.007 |
| ≥50 score | 29 (94%) | 148 (93%) | 14 (68%) |
| Measure | Inter-Rater Reliability AC1 (95% CI) | p-Value | Percent Agreement |
|---|---|---|---|
| Total MOS-R score | 0.72 (0.67, 0.78) | <0.001 | - |
| Total MOS-R score without fidgety movements | 0.67 (0.63, 0.72) | <0.001 | - |
| MOS-R score categories (optimal, mildly reduced, moderately reduced, severely reduced) | 0.76 (0.69, 0.82) | <0.001 | 83.6% |
| MOS-R score above/below predictive cut-off (<23) | 1.00 (NA) | NA | 100.0% |
| Fidgety movements | 0.89 (0.84, 0.94) | <0.001 | 90.2% |
| Observed movement patterns | 0.93 (0.90, 0.96) | <0.001 | 93.5% |
| Age-adequate movement repertoire | 0.62 (0.45, 0.81) | <0.001 | 83.0% |
| Observed postural patterns | 0.29 (0.17, 0.40) | <0.001 | 67.0% |
| Movement character | 0.97 (0.95, 0.99) | <0.001 | 96.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowle, C.; Jackman, M.; Luke, C.; Webb, A.; Juarez, M.; Korostenski, L.; Zawada, K.; Blatch-Williams, R.; Morgan, C. Concurrent Validity and Inter-Rater Reliability of the Motor Optimality Score-Revised in a Neonatal Surgical Population. J. Clin. Med. 2025, 14, 7953. https://doi.org/10.3390/jcm14227953
Crowle C, Jackman M, Luke C, Webb A, Juarez M, Korostenski L, Zawada K, Blatch-Williams R, Morgan C. Concurrent Validity and Inter-Rater Reliability of the Motor Optimality Score-Revised in a Neonatal Surgical Population. Journal of Clinical Medicine. 2025; 14(22):7953. https://doi.org/10.3390/jcm14227953
Chicago/Turabian StyleCrowle, Cathryn, Michelle Jackman, Carly Luke, Annabel Webb, Michelle Juarez, Larissa Korostenski, Katya Zawada, Remy Blatch-Williams, and Catherine Morgan. 2025. "Concurrent Validity and Inter-Rater Reliability of the Motor Optimality Score-Revised in a Neonatal Surgical Population" Journal of Clinical Medicine 14, no. 22: 7953. https://doi.org/10.3390/jcm14227953
APA StyleCrowle, C., Jackman, M., Luke, C., Webb, A., Juarez, M., Korostenski, L., Zawada, K., Blatch-Williams, R., & Morgan, C. (2025). Concurrent Validity and Inter-Rater Reliability of the Motor Optimality Score-Revised in a Neonatal Surgical Population. Journal of Clinical Medicine, 14(22), 7953. https://doi.org/10.3390/jcm14227953

