Next-Generation Spectacle Lenses for Myopia Control: Optical Designs, Mechanisms, and Clinical Efficacy
Abstract
1. Introduction
2. Optical Principles of Myopia Control Spectacle Lenses
2.1. Defocus Incorporated Multiple Segment (DIMS) Technology
2.2. Highly Aspherical Lenslet Target (HALT) Technology
2.3. Diffusion Optics Technology (DOT)
2.4. Cylindrical Annular Refractive Element (CARE) Design
3. Mechanisms of Myopia Control with Spectacle Lenses
3.1. Myopic Defocus as a Growth-Inhibiting Signal
3.2. Peripheral Retinal Image Quality and Aberrations
3.3. Role of Accommodation and Binocularity
4. Clinical Efficacy of Myopia Control Spectacle Lenses
5. Visual Performance, Compliance, and Safety Considerations
6. Global Perspectives and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CARE | Cylindrical Annular Refractive Element |
| DIMS | Defocus Incorporated Multiple Segments |
| DOT | Diffusion Optics Technology |
| HALT | Highly Aspherical Lenslet Target |
| PAL | Progressive Addition Lens |
| SV | Single Vision |
| SER | Spherical Equivalent Refraction |
| HOAs | Higher-Order Aberrations |
| NPC | Near Point of Convergence |
| RCT | Randomized Controlled Trial |
| AL | Axial Length |
| SE | Spherical Equivalent |
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef]
- Holden, B.A.; Wilson, D.A.; Jong, M.; Sankaridurg, P.; Fricke, T.R.; Smith, E.L., III; Resnikoff, S. Myopia: A growing global problem with sight-threatening complications. Community Eye Health 2015, 28, 35. [Google Scholar]
- Yam, J.C.; Jiang, Y.; Tang, S.M.; Law, A.K.P.; Chan, J.J.; Wong, E.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 2019, 126, 113–124. [Google Scholar] [CrossRef]
- Yang, B.; Liu, L.; Cho, P. Effectiveness of orthokeratology and myopia control spectacles in a real-world setting in China. Contact Lens Anterior Eye 2024, 47, 102167. [Google Scholar] [CrossRef]
- Chamberlain, P.; Bradley, A.; Arumugam, B.; Hammond, D.; McNally, J.; Logan, N.S.; Jones, D.; Ngo, C.; Peixoto-de-Matos, S.C.; Hunt, C.; et al. Long-term Effect of Dual-focus Contact Lenses on Myopia Progression in Children: A 6-year Multicenter Clinical Trial. Optom. Vis. Sci. 2022, 99, 204–212. [Google Scholar] [CrossRef]
- Berntsen, D.A.; Sinnott, L.T.; Mutti, D.O.; Zadnik, K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 640–649. [Google Scholar] [CrossRef]
- Yang, Z.; Lan, W.; Ge, J.; Liu, W.; Chen, X.; Chen, L.; Yu, M. The effectiveness of progressive addition lenses on the progression of myopia in Chinese children. Ophthalmic Physiol. Opt. 2009, 29, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Woo, G.C.; Drobe, B.; Schmid, K.L. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: Three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014, 132, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Schmid, K.L.; Woo, G.C.; Drobe, B. Randomized trial of effect of bifocal and prismatic bifocal spectacles on myopic progression: Two-year results. Arch. Ophthalmol. 2010, 128, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.X.; Tian, S.W.; Liu, Q.P. Effectiveness of peripheral defocus spectacle lenses in myopia control: A Meta-analysis and systematic review. Int. J. Ophthalmol. 2022, 15, 1699–1706. [Google Scholar] [CrossRef]
- Lam, C.S.Y.; Tang, W.C.; Zhang, H.Y.; Lee, P.H.; Tse, D.Y.Y.; Qi, H.; Vlasak, N.; To, C.H. Long-term myopia control effect and safety in children wearing DIMS spectacle lenses for 6 years. Sci. Rep. 2023, 13, 5475. [Google Scholar] [CrossRef]
- Bao, J.; Huang, Y.; Li, X.; Yang, A.; Zhou, F.; Wu, J.; Wang, C.; Li, Y.; Lim, E.W.; Spiegel, D.P.; et al. Spectacle Lenses with Aspherical Lenslets for Myopia Control vs Single-Vision Spectacle Lenses: A Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 472–478. [Google Scholar] [CrossRef]
- Rappon, J.; Chung, C.; Young, G.; Hunt, C.; Neitz, J.; Neitz, M.; Chalberg, T. Control of myopia using diffusion optics spectacle lenses: 12-month results of a randomised controlled, efficacy and safety study (CYPRESS). Br. J. Ophthalmol. 2023, 107, 1709–1715. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Xie, Z.; Sun, M.; Chen, M.; Wang, J.; Huang, J.; Chen, S.; Chen, Z.; Wang, Y.; et al. One-year myopia control efficacy of cylindrical annular refractive element spectacle lenses. Acta Ophthalmol. 2023, 101, 651–657. [Google Scholar] [CrossRef]
- Smith, E.L., 3rd; Hung, L.F.; Huang, J.; Arumugam, B. Effects of local myopic defocus on refractive development in monkeys. Optom. Vis. Sci. 2013, 90, 1176–1186. [Google Scholar] [CrossRef]
- Smith, E.L., 3rd; Hung, L.F.; Huang, J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vis. Res. 2009, 49, 2386–2392. [Google Scholar] [CrossRef]
- Smith, E.L., 3rd; Kee, C.S.; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.F. Peripheral vision can influence eye growth and refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L., 3rd; Hung, L.F. The role of optical defocus in regulating refractive development in infant monkeys. Vis. Res. 1999, 39, 1415–1435. [Google Scholar] [CrossRef] [PubMed]
- Gantes-Nunez, J.; Jaskulski, M.; Lopez-Gil, N.; Kollbaum, P.S. Optical characterisation of two novel myopia control spectacle lenses. Ophthalmic Physiol. Opt. 2023, 43, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, H.; Lam, C.S.Y.; Charman, W.N. Multiple segment spectacle lenses for myopia control. Part 1: Optics. Ophthalmic Physiol. Opt. 2023, 43, 1125–1136. [Google Scholar] [CrossRef]
- Jaskulski, M.; Singh, N.K.; Bradley, A.; Kollbaum, P.S. Optical and imaging properties of a novel multi-segment spectacle lens designed to slow myopia progression. Ophthalmic Physiol. Opt. 2020, 40, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.Y.; Tang, W.C.; Qi, H.; Radhakrishnan, H.; Hasegawa, K.; To, C.H.; Charman, W.N. Effect of Defocus Incorporated Multiple Segments Spectacle Lens Wear on Visual Function in Myopic Chinese Children. Transl. Vis. Sci. Technol. 2020, 9, 11. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, Z.; Wen, L.; Gao, W.; Pan, L.; Li, X.; Yang, Z.; Lan, W. The Adaptation and Acceptance of Defocus Incorporated Multiple Segment Lens for Chinese Children. Am. J. Ophthalmol. 2020, 211, 207–216. [Google Scholar] [CrossRef]
- Mobashir, F.; Sumita, A.; Anuradha, N. Impact of defocus incorporated multiple segments (DIMS) spectacle lenses for myopia control on quality of life of the children: A qualitative study. BMJ Open Ophthalmol. 2024, 9, e001562. [Google Scholar] [CrossRef]
- Essilor. Stellest. Available online: https://www.essilor.com/uk-en/products/stellest/ (accessed on 27 August 2025).
- Bao, J.; Yang, A.; Huang, Y.; Li, X.; Pan, Y.; Ding, C.; Lim, E.W.; Zheng, J.; Spiegel, D.P.; Drobe, B.; et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br. J. Ophthalmol. 2021, 106, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lim, E.W.; Yang, A.; Drobe, B.; Bullimore, M.A. The impact of spectacle lenses for myopia control on visual functions. Ophthalmic Physiol. Opt. 2021, 41, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Neitz, J.; Kuchenbecker, J.; Neitz, M. Ophthalmic Lenses for Treating Myopia. Google Patents WO2018026697A1, 8 February 2018. [Google Scholar]
- SightGlassVision. Diffusion Optics Technology™. Available online: https://www.sightglassvision.com/diffusion-optics-technology/ (accessed on 18 June 2025).
- Neitz, J.; Neitz, M. Diffusion Optics Technology (DOT): A Myopia Control Spectacle Lens Based on Contrast Theory. Transl. Vis. Sci. Technol. 2024, 13, 42. [Google Scholar] [CrossRef]
- Neitz, J.; Neitz, M. The Predictive and Explanatory Power of the Contrast Theory of Myopia. Transl. Vis. Sci. Technol. 2025, 14, 11. [Google Scholar] [CrossRef]
- Laughton, D.; Hill, J.S.; McParland, M.; Tasso, V.; Woods, J.; Zhu, X.; Young, G.; Craven, R.; Hunt, C.; Neitz, J.; et al. Control of myopia using diffusion optics spectacle lenses: 4-year results of a multicentre randomised controlled, efficacy and safety study (CYPRESS). BMJ Open Ophthalmol. 2024, 9, e001790. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Hill, J.S.; Hunt, C.; Young, G. Visual impact of diffusion optic technology lenses for myopia control. Ophthalmic Physiol. Opt. 2024, 44, 1398–1406. [Google Scholar] [CrossRef]
- Zeiss MyoCare: Technical Insight Paper; Zeiss: Aalen, Germany, 2023. Available online: https://www.zeiss.com/corporate/en/home.html (accessed on 13 September 2025).
- Chen, X.; Wu, M.; Yu, C.; Ohlendorf, A.; Rifai, K.; Boeck-Maier, C.; Wahl, S.; Yang, Y.; Zhu, Y.; Li, L.; et al. Slowing myopia progression with cylindrical annular refractive elements (CARE) spectacle lenses—Year 1 results from a 2-year prospective, multi-centre trial. Acta Ophthalmol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Rifai, K.; Sankaridurg, P.; Ohlendorf, A.; Boeck-Maier, C.; Yang, Y.; Zhu, Y.; Chen, X.; Wu, M.; Yu, C.; Wahl, S.; et al. Subjective acceptance of spectacle lenses with cylindrical annular refractive elements (CARE) in Chinese children with myopia. Investig. Ophthalmol. Vis. Sci. 2024, 65, 145. [Google Scholar]
- Smith Iii, E.L.; Arumugam, B.; Hung, L.F.; She, Z.; Beach, K.; Sankaridurg, P. Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys. Vis. Res. 2020, 177, 32–40. [Google Scholar] [CrossRef]
- Schaeffel, F.; Swiatczak, B. Mechanisms of emmetropization and what might go wrong in myopia. Vis. Res. 2024, 220, 108402. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Meyer, D.; Jaskulski, M.; Kollbaum, P. Retinal defocus in myopes wearing dual-focus zonal contact lenses. Ophthalmic Physiol. Opt. 2022, 42, 8–18. [Google Scholar] [CrossRef]
- Singh, N.K.; Kollbaum, P. Accommodative behaviour and retinal defocus of children during prolonged viewing of electronic devices while wearing dual-focus myopia control soft contact lenses. Ophthalmic Physiol. Opt. 2025, 45, 1456–1467. [Google Scholar] [CrossRef] [PubMed]
- Diether, S.; Wildsoet, C.F. Stimulus requirements for the decoding of myopic and hyperopic defocus under single and competing defocus conditions in the chicken. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2242–2252. [Google Scholar] [CrossRef]
- Hiraoka, T.; Kotsuka, J.; Kakita, T.; Okamoto, F.; Oshika, T. Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Sci. Rep. 2017, 7, 7876. [Google Scholar] [CrossRef]
- Steinfeld, K.; Murray, M.M. Cortical Visual Processing Differences in Myopia and Blur. Neuropsychologia 2025, 215, 109180. [Google Scholar] [CrossRef]
- Hughes, R.P.; Vincent, S.J.; Read, S.A.; Collins, M.J. Higher order aberrations, refractive error development and myopia control: A review. Clin. Exp. Optom. 2020, 103, 68–85. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Gifford, K.L. Optical Strategy Utilizing Contrast Modulation to Slow Myopia. Ophthalmol. Sci. 2025, 5, 100672. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, N.A.; Mohd-Ali, B.; Norazman, F.N.N.; Syed Mohd Dardin, S.F.; Mohamad Shahimin, M.; Mohamad Fadzil, N. Assessment of binocular vision and accommodation in myopic children wearing defocus incorporated multiple segments (DIMS) spectacle lenses for 24 months. J. Optom. 2025, 18, 100558. [Google Scholar] [CrossRef]
- Lin, Z.; Christaras, D.; Duarte-Toledo, R.; Yang, Z.; Arias, A.; Lan, W.; Artal, P. Dynamic Accommodation Responses in Subjects Wearing Myopia Control Spectacles Modifying Peripheral Refraction. Investig. Ophthalmol. Vis. Sci. 2025, 66, 55. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Brennan, N.A. Myopia Control: Why Each Diopter Matters. Optom. Vis. Sci. 2019, 96, 463–465. [Google Scholar] [CrossRef]
- Zadnik, K.; Schulman, E.; Flitcroft, I.; Fogt, J.S.; Blumenfeld, L.C.; Fong, T.M.; Lang, E.; Hemmati, H.D.; Chandler, S.P.; Investigators, C.T.G. Efficacy and Safety of 0.01% and 0.02% Atropine for the Treatment of Pediatric Myopia Progression Over 3 Years: A Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 990–999. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Cheung, S.-W.; Villa-Collar, C. A new look at the myopia control efficacy of orthokeratology. Contact Lens Anterior Eye 2024, 47, 102251. [Google Scholar] [CrossRef]
- Eppenberger, L.S.; Grzybowski, A.; Schmetterer, L.; Ang, M. Myopia Control: Are We Ready for an Evidence Based Approach? Ophthalmol. Ther. 2024, 13, 1453–1477. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Y.; Yin, Z.; Liu, C.; Zhang, S.; Yang, A.; Drobe, B.; Chen, H.; Bao, J. Myopia Control Efficacy of Spectacle Lenses with Aspherical Lenslets: Results of a 3-Year Follow-Up Study. Am. J. Ophthalmol. 2023, 253, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, C.; Li, Y.; Lim, E.W.; Gao, Y.; Fermigier, B.; Yang, A.; Chen, H.; Bao, J. Influence of Lenslet Configuration on Short-Term Visual Performance in Myopia Control Spectacle Lenses. Front. Neurosci. 2021, 15, 667329. [Google Scholar] [CrossRef]
- Webster, M.A.; Georgeson, M.A.; Webster, S.M. Neural adjustments to image blur. Nat. Neurosci. 2002, 5, 839–840. [Google Scholar] [CrossRef]
- Holguin, A.M.C.; Congdon, N.; Patel, N.; Ratcliffe, A.; Esteso, P.; Flores, S.T.; Gilbert, D.; Rito, M.A.P.; Munoz, B. Factors Associated with Spectacle-Wear Compliance in School-Aged Mexican Children. Investig. Ophthalmol. Vis. Sci. 2006, 47, 925–928. [Google Scholar] [CrossRef]
- Pirindhavellie, G.-P.; Yong, A.C.; Mashige, K.P.; Naidoo, K.S.; Chan, V.F. The impact of spectacle correction on the well-being of children with vision impairment due to uncorrected refractive error: A systematic review. BMC Public Health 2023, 23, 1575. [Google Scholar] [CrossRef]
- Lawrenson, J.G.; Shah, R.; Huntjens, B.; Downie, L.E.; Virgili, G.; Dhakal, R.; Verkicharla, P.K.; Li, D.; Mavi, S.; Kernohan, A.; et al. Interventions for myopia control in children: A living systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2023, 2, Cd014758. [Google Scholar] [CrossRef]
- Harvey, E.M.; Ramesh, D.; Marshall, M.S.; Martin, J.A.; McGrath, E.R.; Yescas, S.; Miller, J.M. Parent strategies for improving compliance with eyeglass wear in young children. Optom. Vis. Sci. 2024, 101, 187–194. [Google Scholar] [CrossRef]
- Stapleton, F.; Bakkar, M.; Carnt, N.; Chalmers, R.; Vijay, A.K.; Marasini, S.; Ng, A.; Tan, J.; Wagner, H.; Woods, C.; et al. CLEAR—Contact lens complications. Cont. Lens Anterior Eye 2021, 44, 330–367. [Google Scholar] [CrossRef]
- Sun, H.; Bu, F.; Xin, X.; Yan, J. Incidence of Adverse Events Induced by Atropine in Myopic Children: A Meta-Analysis. J. Clin. Pharmacol. 2023, 63, 1377–1386. [Google Scholar] [CrossRef]
- Lupon, M.; Nolla, C.; Cardona, G. New Designs of Spectacle Lenses for the Control of Myopia Progression: A Scoping Review. J. Clin. Med. 2024, 13, 1157. [Google Scholar] [CrossRef] [PubMed]
- Hoya, H.C. MiYOSMART Myopia Care for Kids. Available online: https://www.hoyavision.com/for-spectacle-wearers/miyosmart/ (accessed on 27 August 2025).
- Singh, N.K. Myopia Epidemic Post-Coronavirus Disease 2019. Optom. Vis. Sci. 2020, 97, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; James, R.M.; Yadav, A.; Kumar, R.; Asthana, S.; Labani, S. Prevalence of Myopia and Associated Risk Factors in Schoolchildren in North India. Optom. Vis. Sci. 2019, 96, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Bullimore, M.A.; Lee, S.S.; Schmid, K.L.; Rozema, J.J.; Leveziel, N.; Mallen, E.A.H.; Jacobsen, N.; Iribarren, R.; Verkicharla, P.K.; Polling, J.R.; et al. IMI-Onset and Progression of Myopia in Young Adults. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef]
- Perea-Romero, J.; Signes-Soler, I.; Badenes-Ribera, L.; Tauste, A. Efficacy of spectacle lenses specifically designed for myopia control: Systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 909–924. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, X.-F.; He, T.; Tang, Y.; Du, C.-X. Synergistic effects of defocus-incorporated multiple segments and atropine in slowing the progression of myopia. Sci. Rep. 2022, 12, 22311. [Google Scholar] [CrossRef] [PubMed]
- Nucci, P.; Lembo, A.; Schiavetti, I.; Shah, R.; Edgar, D.F.; Evans, B.J.W. A comparison of myopia control in European children and adolescents with defocus incorporated multiple segments (DIMS) spectacles, atropine, and combined DIMS/atropine. PLoS ONE 2023, 18, e0281816. [Google Scholar] [CrossRef] [PubMed]

| Lens Design (Brand) | Optical Features | Proposed Mechanism | Study Population/Follow-Up | Clinical Efficacy vs. Single Vision |
|---|---|---|---|---|
| DIMS—Defocus Incorporated Multiple Segments (MiyoSmart®, Hoya Lens, Tokyo, Japan) | ~400 lenslets (+3.50 D each) in a honeycomb array; 9 mm central clear zone. | Simultaneous myopic defocus across peripheral retina (dual-focus optics). | n = 160; 2-year RCT; Follow-up 6 years. | 0.44 D less myopia progression and 0.34 mm less axial elongation vs. control (≈60% reduction). Efficacy sustained through 3–6 years with no rebound. |
| HALT—Highly Aspherical Lenslet Target (Stellest®, Essilor, Charenton-le-Pont, France)) | 1021 contiguous aspherical lenslets arranged in 11 concentric rings; 9 mm central clear zone. Each ring’s lenslets have differing aspheric power profiles. | “Volume of myopic defocus” created by aspheric lenslets (simultaneous multi-depth defocus signal). | n = 167; 2-year RCT; Follow-up 5 years. | 0.80 D less progression and 0.35 mm less elongation vs. control (≈55% reduction). Higher wear compliance (≥12 h/day) increased efficacy to 67% (0.99 D, 0.41 mm). Sustained effect ~50% over 5–6 years (no loss of treatment effect). |
| DOT—Diffusion Optics Technology (SightGlass Vision, Dallas, TX, USA) | Thousands of microscopic diffusive “dots” (~0.1–0.2 mm); 5 mm central clear zone. Two refractive indices in lens to scatter light and reduce contrast. | Mild uniform reduction in retinal image contrast (especially high-frequency details), mimicking outdoor visual conditions. | n = 256; 3-year RCT; Follow-up 4 years. | Slowed axial growth by 0.13 mm and refractive progression by 0.33 D vs. control (≈30% less progression). Demonstrated continued benefit at 4 years (additional slowing vs. control). No significant differences in acuity or comfort compared to SV lenses. |
| CARE—Cylindrical Annular Refractive Element (MyoCare®, Zeiss Vision Care, Aalen, Germany) | Multiple ring-shaped micro-optic zones alternating with normal vision zones (approximately 50/50 area split); central distance zone (~8–10 mm). | Concentric annular defocus zones impose myopic defocus, while clear zones maintain central vision (balanced defocus and clarity). | n = 150; 1-year RCT; Follow-up 2 years (ongoing). | Axial elongation 0.27 mm (CARE) vs. 0.35 mm (SV)—a 0.08–0.09 mm reduction (~25%). Refractive progression 0.14 D less than control (not statistically significant at 1 year). Well tolerated with no adaptation issues. |
| Mechanism | Description | Supporting Evidence | Representative Lens Designs |
|---|---|---|---|
| Myopic defocus | Part of the image is intentionally focused slightly in front of the retina to signal the eye to slow its axial growth. | Strong evidence from animal studies and multiple randomized controlled trials showing reduced myopia progression. | Defocus Incorporated Multiple Segments (DIMS), Highly Aspherical Lenslet Target (HALT), Cylindrical Annular Refractive Element (CARE) lenses |
| Contrast modulation | Light scattering or diffusion is used to gently reduce image contrast across the retina, mimicking outdoor visual conditions that are protective against myopia. | Confirmed by clinical trials demonstrating effective myopia control without optical power addition. | Diffusion Optics Technology (DOT) lenses |
| Induced optical aberrations | Small, controlled distortions in peripheral image quality alter retinal signaling and may contribute to slower eye growth. | Supported by laboratory and modeling studies; effect is secondary to defocus. | DIMS and HALT lenses |
| Accommodation and binocular stability | Lens designs maintain normal focusing and eye-alignment responses despite peripheral optical modifications. | Clinical studies show no adverse impact on focusing or binocular coordination. | DIMS, HALT, and CARE lenses |
| Intervention | Mean Reduction in Axial Elongation | Efficacy Summary | Safety Profile | Adherence/Practical Considerations |
|---|---|---|---|---|
| DIMS/HALT/CARE Spectacle Lenses | 40–60% | Comparable efficacy to atropine and orthokeratology in multiple RCTs. | Excellent safety; no ocular adverse events reported. | Very high adherence; easy adaptation, worn like regular spectacles. |
| Low-Dose Atropine (0.01–0.05%) | 50–60% | Dose-dependent response; higher concentrations show greater efficacy. | Mild photophobia and near blur possible; generally well tolerated. | Very good adherence; nightly instillation required; potential rebound after discontinuation. |
| Orthokeratology | 50–60% | Robust short-term efficacy on axial growth; long-term data consistent. | Small but measurable risk of microbial keratitis; requires hygiene compliance. | Moderate adherence; overnight lens wear; requires regular monitoring. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.K.; De Gracia, P. Next-Generation Spectacle Lenses for Myopia Control: Optical Designs, Mechanisms, and Clinical Efficacy. J. Clin. Med. 2025, 14, 7872. https://doi.org/10.3390/jcm14217872
Singh NK, De Gracia P. Next-Generation Spectacle Lenses for Myopia Control: Optical Designs, Mechanisms, and Clinical Efficacy. Journal of Clinical Medicine. 2025; 14(21):7872. https://doi.org/10.3390/jcm14217872
Chicago/Turabian StyleSingh, Neeraj K., and Pablo De Gracia. 2025. "Next-Generation Spectacle Lenses for Myopia Control: Optical Designs, Mechanisms, and Clinical Efficacy" Journal of Clinical Medicine 14, no. 21: 7872. https://doi.org/10.3390/jcm14217872
APA StyleSingh, N. K., & De Gracia, P. (2025). Next-Generation Spectacle Lenses for Myopia Control: Optical Designs, Mechanisms, and Clinical Efficacy. Journal of Clinical Medicine, 14(21), 7872. https://doi.org/10.3390/jcm14217872

