Prolonged Normal Thyroid Function After 131I Radioiodine Therapy Using a Minute LT3 Suppression Test (LT3s-RIT) in Patients with Thyroid Unifocal Autonomy and Baseline Detectable TSH
Abstract
1. Introduction
2. Patients and Methods
2.1. Baseline Procedure
2.2. Treatment Decision-Making
2.3. Suppressed Evaluation (S) and Treatment Procedure
2.4. Bioclinical and Follow-Up Ultrasounds
2.5. Statistics
3. Results
3.1. Population
3.2. Suppressed Procedure
3.3. Dosimetric Evaluation
3.4. Follow-Up
3.5. Absorbed-Dose–Effect Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 131I | iodine 131I |
| 123I | iodine 123I |
| Aa | therapeutic activity to be administered |
| AFTN | autonomously functioning thyroid nodule |
| B | baseline procedure |
| ENLobe | extra-nodular lobe |
| FMV90 | functional metabolic volume |
| G | grade |
| NLobe | nodular lobe (harboring the nodule) |
| LT3s-RIT | 131radioiodine therapy using a minute LT3 suppression test |
| mLT3SupT | minute LT3 suppression test |
| MPUS | multiparametric ultrasound |
| qTS | quantified thyroid scan |
| 131I-RIT | radioiodine therapy |
| SCH | subclinical hyperthyroidism |
| S | suppressed procedure |
| TS | thyroid scan |
| UFA | unifocal autonomy |
References
- Biondi, B.; Bartalena, L.; Cooper, D.S.; Hegedüs, L.; Laurberg, P.; Kahaly, G.J. The 2015 European Thyroid Association Guidelines on Diagnosis and Treatment of Endogenous Subclinical Hyperthyroidism. Eur. Thyroid J. 2015, 4, 149–163. [Google Scholar] [CrossRef]
- Wiener, J.D. Plummer’s disease: Localized thyroid autonomy. J. Endocrinol. Investig. 1987, 10, 207–224. [Google Scholar] [CrossRef]
- Sandrock, D.; Olbricht, T.; Emrich, D.; Benker, G.; Reinwein, D. Long-term follow-up in patients with autonomous thyroid adenoma. Acta Endocrinol. 1993, 128, 51–55. [Google Scholar] [CrossRef]
- Reiners, C.; Schneider, P. Radioiodine therapy of thyroid autonomy. Eur. J. Nucl. Med. Mol. Imaging 2002, 29 (Suppl. S2), S471–S478. [Google Scholar] [CrossRef]
- Corvilain, B. The natural history of thyroid autonomy and hot nodules. Ann. Endocrinol. 2003, 64, 17–22. [Google Scholar]
- Schouten, B.J.; Brownlie, B.E.; Frampton, C.M.; Turner, J.G. Subclinical thyrotoxicosis in an outpatient population—Predictors of outcome. Clin. Endocrinol. 2011, 74, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, J.I. Evolution of Toxicity in Solitary Nontoxic Autonomously Functioning Thyroid Nodules. J. Clin. Endocrinol. Metab. 1980, 50, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G.; Trimboli, P.; Verburg, F.A.; Luster, M.; Giovanella, L. Prevalence of normal TSH value among patients with autonomously functioning thyroid nodule. Eur. J. Clin. Investig. 2015, 45, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Chami, R.; Moreno-Reyes, R.; Corvilain, B. TSH measurement is not an appropriate screening test for autonomous functioning thyroid nodules: A retrospective study of 368 patients. Eur. J. Endocrinol. 2014, 170, 593–599. [Google Scholar] [CrossRef]
- Meller, J.; Becker, W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur. J. Nucl. Med. Mol. Imaging 2002, 29 (Suppl. S2), S425–S438. [Google Scholar] [CrossRef]
- Giovanella, L.; Avram, A.; Clerc, J. Molecular Imaging for Thyrotoxicosis and Thyroid Nodules. J. Nucl. Med. 2021, 62 (Suppl. S2), 20S–25S. [Google Scholar] [CrossRef]
- Bähre, M.; Hilgers, R.; Lindemann, C.; Emrich, D. Thyroid autonomy: Sensitive detection in vivo and estimation of its functional relevance using quantified high-resolution scintigraphy. Acta Endocrinol. 1988, 117, 145–153. [Google Scholar] [CrossRef]
- Ianni, F.; Perotti, G.; Prete, A.; Paragliola, R.M.; Ricciato, M.P.; Carrozza, C.; Salvatori, M.; Pontecorvi, A.; Corsello, S.M. Thyroid scintigraphy: An old tool is still the gold standard for an effective diagnosis of autonomously functioning thyroid nodules. J. Endocrinol. Investig. 2013, 36, 233–236. [Google Scholar] [CrossRef]
- Giovanella, L.; Avram, A.M.; Iakovou, I.; Kwak, J.; Lawson, S.A.; Lulaj, E.; Luster, M.; Piccardo, A.; Schmidt, M.; Tulchinsky, M.; et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2514–2525. [Google Scholar] [CrossRef]
- Miller, J.M.; Hamburger, J.I. The thyroid scintigram: I. The hot nodule. Radiology 1965, 84, 66–74. [Google Scholar] [CrossRef]
- Ferrari, C.; Reschini, E.; Paracchi, A. Treatment of the autonomous thyroid nodule: A review. Eur. J. Endocrinol. 1996, 135, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Sawin, C.T.; Geller, A.; Wolf, P.A.; Belanger, A.J.; Baker, E.; Bacharach, P.; Wilson, P.W.; Benjamin, E.J.; D’Agostino, R.B. Low Serum Thyrotropin Concentrations as a Risk Factor for Atrial Fibrillation in Older Persons. N. Engl. J. Med. 1994, 331, 1249–1252. [Google Scholar] [CrossRef]
- Parle, J.V.; Maisonneuve, P.; Sheppard, M.C.; Boyle, P.; Franklyn, J.A. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: A 10-year cohort study. Lancet 2001, 358, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Haentjens, P.; Van Meerhaeghe, A.; Poppe, K.; Velkeniers, B. Subclinical thyroid dysfunction and mortality: An estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur. J. Endocrinol. 2008, 159, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Lillevang-Johansen, M.; Abrahamsen, B.; Jørgensen, H.L.; Brix, T.H.; Hegedüs, L. Excess Mortality in Treated and Untreated Hyperthyroidism Is Related to Cumulative Periods of Low Serum TSH. J. Clin. Endocrinol. Metab. 2017, 102, 2301–2309. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Lee, E.; Lee, M.K.; Lee, J.H. The Association of Overt and Subclinical Hyperthyroidism with the Risk of Cardiovascular Events and Cardiovascular Mortality: Meta-Analysis and Systematic Review of Cohort Studies. Endocrinol. Metab. 2020, 35, 786–800. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, B.; Hegedüs, L.; Nielsen, K.G.; Ulriksen, P.; Hansen, J.M. Long-term effect of radioactive iodine on thyroid function and size in patients with solitary autonomously functioning toxic thyroid nodules. Clin. Endocrinol. 1999, 50, 197–202. [Google Scholar] [CrossRef]
- Ceccarelli, C.; Bencivelli, W.; Vitti, P.; Grasso, L.; Pinchera, A. Outcome of radioiodine-131 therapy in hyperfunctioning thyroid nodules: A 20 years’ retrospective study. Clin. Endocrinol. 2005, 62, 331–335. [Google Scholar] [CrossRef]
- Durante, C.; Hegedüs, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 12, e230067. [Google Scholar] [CrossRef]
- Clerc, J. Quantified 123I-Thyroid Scan based classification of hyperthyroidism. J. Nucl. Med. 2020, 44, 231–249. [Google Scholar] [CrossRef]
- Campennì, A.; Avram, A.M.; Verburg, F.A.; Iakovou, I.; Hänscheid, H.; de Keizer, B.; Petranović Ovčariček, P.; Giovanella, L. The EANM guideline on radioiodine therapy of benign thyroid disease. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3324–3348. [Google Scholar] [CrossRef]
- Emrich, D.; Reinhardt, M. Ergebnisse der definitiven Behandlung der Autonomie bei Jodmangelstruma [Results of the definitive treatment of autonomy in iodine deficiency goiter]. Nuklearmedizin. 1989, 28, 11–16. (In German) [Google Scholar]
- Meller, J.; Sahlman, C.O.; Becker, W. Radioiodine-treatment (RIT) of functional thyroidal autonomy. Nucl. Med. Rev. Cent. East. Eur. 2002, 5, 1–10. [Google Scholar] [PubMed]
- Bonnema, S.J.; Hegedüs, L. Radioiodine therapy in benign thyroid diseases: Effects, side effects, and factors affecting therapeutic outcome. Endocr. Rev. 2012, 33, 920–980. [Google Scholar] [CrossRef]
- Gammage, M.D.; Parle, J.V.; Holder, R.L.; Roberts, L.M.; Hobbs, F.D.; Wilson, S.; Sheppard, M.C.; Franklyn, J.A. Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 2007, 167, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Selmer, C.; Olesen, J.B.; Hansen, M.L.; Lindhardsen, J.; Olsen, A.M.; Madsen, J.C.; Faber, J.; Hansen, P.R.; Pedersen, O.D.; Torp-Pedersen, C.; et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: A large population cohort study. BMJ 2012, 345, e7895. [Google Scholar] [CrossRef]
- Faber, J.; Jensen, I.W.; Petersen, L.; Nygaard, B.; Hegedüs, L.; Siersbaek-Nielsen, K. Normalization of serum thyrotrophin by means of radioiodine treatment in subclinical hyperthyroidism: Effect on bone loss in postmenopausal women. Clin. Endocrinol. 1998, 48, 285–290. [Google Scholar] [CrossRef]
- Goichot, B.; Lefebvre, F.; Vinzio, S.; Cailleux, A.; Kuhn, J.M.; Schneegans, O.; Catargi, B.; Gilly, O.; Baltzinger, P.; Meyer, N.; et al. Treatment of subclinical hyperthyroidism in patients older than 50 years: A randomized controlled study. Eur. Thyroid J. 2024, 13, e240121. [Google Scholar] [CrossRef] [PubMed]
- Reschini, E.; Matheoud, R.; Canzi, C.; Castellani, M.; Galelli, M.; Ferrari, C.; Paracchi, A.; Gerundini, P. Dosimetry study in patients with autonomous thyroid nodule who are candidates for radioiodine therapy. J. Nucl. Med. 1999, 40, 1928–1934. [Google Scholar]
- Werner, S.C.; Spooner, M. A new and simple test for hyperthyroidism employing l-triiodothyronine and the twenty-four hour I131 uptake method. Bull. N. Y. Acad. Med. 1995, 31, 137. [Google Scholar]
- Huysmans, D.A.; Corstens, F.H.; Kloppenborg, P.W. Long-term follow-up in toxic solitary autonomous thyroid nodules treated with radioactive iodine. J. Nucl. Med. 1991, 32, 27–30. [Google Scholar]
- Ramos, C.D.; Zantut-Wittmann, D.E.; Tambascia, M.A.; Assumpção, L.; Etchebehere, E.C.; Camargo, E.E. Thyroid suppression test with L-thyroxine and [99mTc] pertechnetate. Clin. Endocrinol. 2000, 52, 471–477. [Google Scholar]
- Nieuwlaat, W.A.; Hermus, A.R.; Sivro-Prndelj, F.; Corstens, F.H.; Huysmans, D.A. Pretreatment with recombinant human TSH changes the regional distribution of radioiodine on thyroid scintigrams of nodular goiters. J. Clin. Endocrinol. Metab. 2001, 86, 5330–5336. [Google Scholar] [CrossRef]
- Clerc, J.; Dagousset, F.; Izembart, M.; Jais, J.P.; Heshmati, H.M.; Alcaïs, A.; Chevalier, A.; Léger, A.F.; Barritault, L. Radioiodine therapy of the autonomous thyroid nodule in patients with or without visible extranodular activity. J. Nucl. Med. 1995, 36, 217–223. [Google Scholar] [PubMed]
- Mozziconacci, J.G.; Ayivi, J.; Loat, A.; Ifergan, J.; Mourbrun, M.; Drevet, B. Place of the radiation safety officer in the implementation of the ALARA principle through European directive 97-43 items. J. Radiol. 2005, 86 Pt 1, 455–460. (In French) [Google Scholar] [CrossRef] [PubMed]
- Ben Hamou, A.; Ghanassia, E.; Muller, A.; Ladsous, M.; Paladino, N.C.; Brunaud, L.; Leenhardt, L.; Russ, G. SFE-AFCE-SFMN 2022 consensus on the management of thyroid nodules: Thermal ablation. Ann. Endocrinol. 2022, 83, 423–430. [Google Scholar] [CrossRef]
- Chen, F.; Tian, G.; Kong, D.; Zhong, L.; Jiang, T. Radiofrequency ablation for treatment of benign thyroid nodules: A PRISMA-compliant systematic review and meta-analysis of outcomes. Medicine 2016, 95, e4659. [Google Scholar] [CrossRef] [PubMed]
- Borson-Chazot, F.; Buffet, C.; Decaussin-Petrucci, M.; Do Cao, C.; Drui, D.; Leboulleux, S.; Leenhardt, L.; Menegaux, F.; Pattou, F.; Lussey-Lepoutre, C.; et al. SFE-AFCE-SFMN 2022 consensus on the management of thyroid nodules: Synthesis and algorithms. Ann. Endocrinol. 2022, 83, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Bahn Chair, R.S.; Burch, H.B.; Cooper, D.S.; Garber, J.R.; Greenlee, M.C.; Klein, I.; Laurberg, P.; McDougall, I.R.; Montori, V.M.; Rivkees, S.A.; et al. Hyperthyroidism and other causes of thyrotoxicosis: Management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 2011, 21, 593–646. [Google Scholar]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef]
- Kreissl, M.C.; Ovčariček, P.P.; Campenni, A.; Vrachimis, A.; Tuncel, M.; Giovanella, L. The European Association of Nuclear Medicine (EANM)’s Response to the 2023 European Thyroid Association (ETA) clinical practice guidelines for thyroid nodule management and nuclear medicine: A deliberate oversight? Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1678–1681. [Google Scholar] [CrossRef]
- Thuillier, P.; Benisvy, D.; Ansquer, C.; Corvilain, B.; Mirallié, E.; Taïeb, D.; Borson-Chazot, F.; Lussey-Lepoutre, C. SFE-AFCE-SFMN 2022 Consensus on the management of thyroid nodules: What is the role of functional imaging and isotopic treatment? Ann. Endocrinol. 2022, 83, 401–406. [Google Scholar] [CrossRef]
- Andersen, S.; Bruun, N.H.; Pedersen, K.M.; Laurberg, P. Biologic variation is important for interpretation of thyroid function tests. Thyroid 2003, 13, 1069–1078. [Google Scholar] [CrossRef] [PubMed]




| Baseline | All (95) | Men (N = 14) | Women (N = 81) | p (Mann–Whitney) |
|---|---|---|---|---|
| Age at 131I-RIT (y) | 53.3 ± 16.3 | 60.5 ± 13.9 | 52.0 ± 16.4 | 0.096 |
| Addressing TSH (mUI/L) [10th–90th] | 0.35 ± 0.28 [0.10–0.43] | 0.37 ± 0.27 | 0.34 ± 0.28 | 0.797 |
| UFA Volume (mL) | 5.52 ± 3.94 | 9.03 ± 6.37 | 4.90 ± 2.98 | 0.017 |
| Thyroid Volume (mL) | 17.45 ± 6.53 | 23.22 ± 7.72 | 16.40 ± 6.75 | 0.001 |
| Delay (months) between Baseline and Suppression | 3.71 ± 3.70 | 3.91 ± 2.71 | 3.65 ± 3.83 | 0.812 |
| Clinical Evaluation at Baseline | ||||
| No Complaint | 57/95 (60.0%) | |||
| Palpitations | 28.4% | |||
| Atrial Fibrillation | 2.1% (1 transitory, 1 permanent) | |||
| Stroke | 2.1% (1 transitory, 1 constituted) | |||
| Osteopenia/Osteoporosis | 8.9% | |||
| Baseline | Suppressed | p | |
|---|---|---|---|
| TSH (mUI/L) | 0.455 ± 0.317 | 0.047 ± 0.034 | <0.0001 |
| fT4 (pmol/L) | 13.99 ± 2.24 | 13.48 ± 2.17 | 0.0094 |
| fT3 (pmol/L) | 5.23 ± 0.70 | 11.7 ± 3.27 | <0.0001 |
| Early 123I Uptake (120 min) | 11.01 ± 3.98 | 8.38 ± 4.78 | <0.0001 |
| NLobe Uptake (%) | 9.01 ± 3.46 | 7.78 ± 4.91 | <0.0001 |
| ENLobe Uptake (%) | 1.77 ± 1.23 | 0.73 ± 0.52 | <0.0001 |
| UFA Uptake (%) | 7.03 ± 2.80 | 4.22 ± 0.47 | <0.0001 |
| Uptake Ratio (UFA/ENLobe) | 8.29 ± 13.12 | 20.31 ± 45.0 | <0.0001 |
| Metabolic Functional Volume 90 | 10.5 ± 4.4 | 9.48 ± 4.56 | <0.0001 |
| Administered Activity 181 ± 98 MBq | Absorbed Dose at Baseline (Simulation) | Absorbed Dose on LT3 (Actual Values) | p | |
|---|---|---|---|---|
| Mean AD (Gy) Whole Gland | All | 108 ± 41 | 95 ± 36 | <0.0001 |
| Low Dose | 92 ± 29 | 84 ± 29 | ||
| High Dose | 143 ± 41 | 120 ± 38 | ||
| Mean AD (Gy) NLobe | All | 137 ± 57 | 127 ± 51 | <0.0001 |
| Low Dose | 115 ± 38 | 113 ± 44 | ||
| High Dose | 185 ± 61 | 157 ± 53 | ||
| Mean AD (Gy) UFA | All | 259 ± 238 | 257 ± 143 | 0.3975 |
| Low Dose | 244 ± 125 | 254 ± 135 | ||
| High Dose | 292 ± 162 | 263 ± 160 | ||
| Mean AD (Gy) Extra-Nodular Lobe | All | 61 ± 31 | 37 ± 20 | <0.0001 |
| Low Dose | 54 ± 23 | 35 ± 19 | ||
| High Dose | 75 ± 40 | 43 ± 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clerc, J.; Bodin-Cufi, P.; Giraud, L.; Forbes, A.; Laroche-Masse, E.; Groussin Rouiller, L.; Schubert, L.; Mouraeff, Y.; Hilmy, K.; Cottereau, A.-S.; et al. Prolonged Normal Thyroid Function After 131I Radioiodine Therapy Using a Minute LT3 Suppression Test (LT3s-RIT) in Patients with Thyroid Unifocal Autonomy and Baseline Detectable TSH. J. Clin. Med. 2025, 14, 7871. https://doi.org/10.3390/jcm14217871
Clerc J, Bodin-Cufi P, Giraud L, Forbes A, Laroche-Masse E, Groussin Rouiller L, Schubert L, Mouraeff Y, Hilmy K, Cottereau A-S, et al. Prolonged Normal Thyroid Function After 131I Radioiodine Therapy Using a Minute LT3 Suppression Test (LT3s-RIT) in Patients with Thyroid Unifocal Autonomy and Baseline Detectable TSH. Journal of Clinical Medicine. 2025; 14(21):7871. https://doi.org/10.3390/jcm14217871
Chicago/Turabian StyleClerc, Jérôme, Paul Bodin-Cufi, Louise Giraud, Aurélie Forbes, Emmanuelle Laroche-Masse, Lionel Groussin Rouiller, Louis Schubert, Yvan Mouraeff, Kawtar Hilmy, Anne-Ségolène Cottereau, and et al. 2025. "Prolonged Normal Thyroid Function After 131I Radioiodine Therapy Using a Minute LT3 Suppression Test (LT3s-RIT) in Patients with Thyroid Unifocal Autonomy and Baseline Detectable TSH" Journal of Clinical Medicine 14, no. 21: 7871. https://doi.org/10.3390/jcm14217871
APA StyleClerc, J., Bodin-Cufi, P., Giraud, L., Forbes, A., Laroche-Masse, E., Groussin Rouiller, L., Schubert, L., Mouraeff, Y., Hilmy, K., Cottereau, A.-S., & Piekarski, E. (2025). Prolonged Normal Thyroid Function After 131I Radioiodine Therapy Using a Minute LT3 Suppression Test (LT3s-RIT) in Patients with Thyroid Unifocal Autonomy and Baseline Detectable TSH. Journal of Clinical Medicine, 14(21), 7871. https://doi.org/10.3390/jcm14217871

