Serum Phosphorus Is a Fast and Highly Sensitive Marker Predictive of a Complete Cure of Tumor-Induced Osteomalacia
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement of Mineral Metabolism and Bone Turnover Markers
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and PMT Characteristics
3.2. Changes in Mineral Metabolism and Bone Turnover Markers During Treatment of TIO
3.3. Candidate Predictive Markers for Complete Cure of TIO
3.4. Predictive Performance of Pi for Complete Cure of TIO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rendina, D.; Abate, V.; Cacace, G.; D’Elia, L.; De Filippo, G.; Del Vecchio, S.; Galletti, F.; Cuocolo, A.; Strazzullo, P. Tumor-induced Osteomalacia: A Systematic Review and Individual Patient’s Data Analysis. J. Clin. Endocrinol. Metab. 2022, 107, e3428–e3436. [Google Scholar] [CrossRef] [PubMed]
- Jüppner, H. Phosphate and FGF-23. Kidney Int. Suppl. 2011, 79, S24–S27. [Google Scholar] [CrossRef] [PubMed]
- Broski, S.M.; Folpe, A.L.; Wenger, D.E. Imaging features of phosphaturic mesenchymal tumors. Skelet. Radiol. 2019, 48, 119–127. [Google Scholar] [CrossRef]
- Gupta, A.; Kandasamy, D.; Sharma, R.; Damle, N.; Goyal, A.; Goyal, A.; Agarwal, S.; Dharmashaktu, Y. Imaging characteristics of phosphaturic mesenchymal tumors. Acta Radiol. 2023, 64, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hong, N.; Shin, S.; Kim, S.I.; Yun, M.; Kim, S.K.; Rhee, Y. Diagnostic Utility of Somatostatin Receptor 2A Immunohistochemistry for Tumor-induced Osteomalacia. J. Clin. Endocrinol. Metab. 2022, 107, 1609–1615. [Google Scholar] [CrossRef]
- Kato, A.; Nakamoto, Y.; Ishimori, T.; Hayakawa, N.; Ueda, M.; Temma, T.; Sano, K.; Shimizu, Y.; Saga, T.; Togashi, K. Diagnostic performance of (68)Ga-DOTATOC PET/CT in tumor-induced osteomalacia. Ann. Nucl. Med. 2021, 35, 397–405. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Zhong, D.; Dang, Y.; Xing, H.; Du, Y.; Jing, H.; Qiao, Z.; Xing, X.; Zhuang, H.; et al. 68Ga DOTATATE PET/CT is an Accurate Imaging Modality in the Detection of Culprit Tumors Causing Osteomalacia. Clin. Nucl. Med. 2015, 40, 642–646. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Park, H.-S.; Han, S.; Lim, J.K.; Hong, N.; Park, S.I.; Rhee, Y. Localization of Oncogenic Osteomalacia by Systemic Venous Sampling of Fibroblast Growth Factor 23. Yonsei Med. J. 2017, 58, 981–987. [Google Scholar] [CrossRef]
- de Beur, S.M.J.; Miller, P.D.; Weber, T.J.; Peacock, M.; Insogna, K.; Kumar, R.; Rauch, F.; Luca, D.; Cimms, T.; Roberts, M.S.; et al. Burosumab for the Treatment of Tumor-Induced Osteomalacia. J. Bone Miner. Res. 2021, 36, 627–635. [Google Scholar] [CrossRef]
- Dahir, K.; Zanchetta, M.B.; Stanciu, I.; Robinson, C.; Lee, J.Y.; Dhaliwal, R.; Charles, J.; Civitelli, R.; Roberts, M.S.; Krolczyk, S.; et al. Diagnosis and Management of Tumor-induced Osteomalacia: Perspectives From Clinical Experience. J. Endocr. Soc. 2021, 5, bvab099. [Google Scholar] [CrossRef]
- Sun, Z.-J.; Jin, J.; Qiu, G.-X.; Gao, P.; Liu, Y. Surgical treatment of tumor-induced osteomalacia: A retrospective review of 40 cases with extremity tumors. BMC Musculoskelet. Disord. 2015, 16, 1–8. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, X.; Liang, A.; Xing, J.; Liu, Y.; Jin, J.; Zhang, J.; Xia, W. Orthopedic Surgical Treatment of Patients with Tumor-induced Osteomalacia Located in the Hip Bones: A Retrospective Analysis of 10 Years in a Single Center. Orthop. Surg. 2024, 16, 1871–1883. [Google Scholar] [CrossRef]
- Hidaka, N.; Koga, M.; Kimura, S.; Hoshino, Y.; Kato, H.; Kinoshita, Y.; Makita, N.; Nangaku, M.; Horiguchi, K.; Furukawa, Y.; et al. Clinical Challenges in Diagnosis, Tumor Localization and Treatment of Tumor-Induced Osteomalacia: Outcome of a Retrospective Surveillance. J. Bone Miner. Res. 2022, 37, 1479–1488. [Google Scholar] [CrossRef]
- Shan, C.; Wei, Z.; Li, S.; Zhang, Z.; Yue, H.; Yu, W.; Yang, Q.; Zhang, Z. Postoperative outcome and clinical management of tumor-induced osteomalacia: A single-center retrospective cohort study on 117 patients. Osteoporos. Int. 2025, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, D.; Liu, Y.; Jiang, Y.; Qiu, G.; Weng, X.; Xing, X.; Li, M.; Meng, X.; Li, F.; et al. Surgical Treatments of Tumor-Induced Osteomalacia Lesions in Long Bones: Seventeen Cases with More Than One Year of Follow-up. J. Bone Jt. Surg. Am. 2015, 97, 1084–1894. [Google Scholar] [CrossRef]
- Sipos, D.; Debreczeni-Máté, Z.; Ritter, Z.; Freihat, O.; Simon, M.; Kovács, Á. Complex Diagnostic Challenges in Glioblastoma: The Role of 18F-FDOPA PET Imaging. Pharmaceuticals 2024, 17, 1215. [Google Scholar] [CrossRef] [PubMed]
- Masselli, G.; Casciani, E.; De Angelis, C.; Sollaku, S.; Gualdi, G. Clinical application of (18)F-DOPA PET/TC in pediatric patients. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 64–76. [Google Scholar]
- Tietz, N.W.; A Burtis, C.; Duncan, P.; Ervin, K.; Petitclerc, C.J.; Rinker, A.D.; Shuey, D.; Zygowicz, E.R. A reference method for measurement of alkaline phosphatase activity in human serum. Clin. Chem. 1983, 29, 751–761. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.; Moon, S.; Jang, J.; Kim, H.S.; Suh, J.; Yang, W. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 2017, 6, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, Y.; Huo, L.; Wu, H.; Liu, Y.; Jin, J.; Yu, W.; Lv, W.; Zhou, L.; Xia, Y.; et al. Nonremission and Recurrent Tumor-Induced Osteomalacia: A Retrospective Study. J. Bone Miner. Res. 2020, 35, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Rivas, N.; Lugo-Rodríguez, G.; Maneiro, J.R.; Iñiguez-Ubiaga, C.; Melero-Gonzalez, R.B.; Iglesias-Cabo, T.; Carmona, L.; García-Porrúa, C.; de Toro-Santos, F.J. Tumor-induced osteomalacia: A systematic literature review. Bone Rep. 2024, 21, 101772. [Google Scholar] [CrossRef]
- Memon, S.S.; Patel, M.A.; Lila, A.; Jadhav, S.; Sarathi, V.; Karlekar, M.; Barnabas, R.; Patil, V.; Kulkarni, S.; Rathod, K.; et al. Long-Term Follow-Up Data of Tumor-Induced Osteomalacia Managed with Surgery and/or Radiofrequency Ablation from a Single Center. Calcif. Tissue Int. 2024, 115, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Rayamajhi, S.J.; Yeh, R.; Wong, T.; Dumeer, S.; Mittal, B.R.; Remotti, F.; Chikeka, I.; Reddy, A.K. Tumor-induced osteomalacia—Current imaging modalities and a systematic approach for tumor localization. Clin. Imaging 2019, 56, 114–123. [Google Scholar] [CrossRef] [PubMed]
- de Beur, S.M.J.; Minisola, S.; Xia, W.; Abrahamsen, B.; Body, J.; Brandi, M.L.; Clifton-Bligh, R.; Collins, M.; Florenzano, P.; Houillier, P.; et al. Global guidance for the recognition, diagnosis, and management of tumor-induced osteomalacia. J. Intern. Med. 2023, 293, 309–328. [Google Scholar] [CrossRef] [PubMed]


| Case No. | Patient No. | Sex | Age (Years) | Duration (Years) | Multiple Insufficiency Fractures 1 | Tissue Involved | Tumor Location | Tumor Size (cm3) 2 | 1st Treatment Procedure | 2nd Treatment Procedure | Interval Until 2nd Treatment (Months) | Follow-Up Period (Months) | Cure |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | M | 52 | 2 | Yes | Bone | fibula head | 3.77 | Surgery 3 | 9.6 | Yes | ||
| 2 | 2 | M | 59 | 1.5 | Yes | Bone and Soft | femur neck | 0.92 | Surgery 4 | Surgery 4 | 47.8 | No | |
| 3 5 | 9.5 | Yes | |||||||||||
| 4 | 3 | F | 31 | 1 | Yes | Bone | femur head | 1.97 | Surgery 3 | 73.1 | Yes | ||
| 5 | 4 | M | 69 | 15 | Yes | Bone | femur head | 22.61 | Surgery 4 | 60.0 | Yes | ||
| 6 | 5 | F | 58 | 1.5 | Yes | Soft tissue | adjacent to GT tip | 1.83 | Surgery 4 | 55.1 | Yes | ||
| 7 | 6 | M | 44 | 3.3 | Yes | Bone | acetabulum | 3.14 | RFA | Surgery 3 | 55.5 | No | |
| 8 5 | 20.5 | Yes | |||||||||||
| 9 | 7 | M | 31 | 7 | Yes | Bone | distal femur | 20.76 | Surgery 3 | 41.8 | Yes | ||
| 10 | 8 | M | 24 | 2 | Yes | Bone | tibia plateau | 0.68 | Surgery 3 | 76.0 | Yes | ||
| 11 | 9 | M | 54 | 3.5 | Yes | Bone | acetabulum | 2.64 | Surgery 3 | - | 2.7 | No | |
| 12 | 10 | F | 54 | 5 | Yes | Soft tissue | 2nd toe | 0.69 | Surgery 4 | 34.7 | Yes | ||
| 13 | 11 | F | 25 | 6 | Yes | Bone | proximal tibia | 0.46 | Surgery 4 | 38.7 | Yes | ||
| 14 | 12 | M | 63 | 8 | No | Bone | GT tip | 0.55 | RFA | Surgery 4 | 48.3 | No | |
| 15 5 | 9.8 | Yes | |||||||||||
| 16 | 13 | M | 20 | 1.5 | Yes | Bone | ischial tuberosity | 2.03 | Surgery 3 | Surgery 3 | 31.3 | No | |
| 17 5 | 5.7 | Yes | |||||||||||
| 18 | 14 | M | 52 | 1.8 | Yes | Bone and Soft | distal tibia | 1.16 | Surgery 3 | 73.0 | Yes | ||
| 19 | 15 | F | 33 | 3 | Yes | Bone | PSIS | 23.27 | Surgery 4 | 2.9 | Yes | ||
| Mean ± SD (min–max) | 44.6 ± 15.9 (20–69) | 4.1 ± 3.7 (1–15) | 5.77 ± 8.58 (0.46–23.27) | 11.38 ± 6.36 (5.7–20.5) | 43.37 ± 24.07 (2.7–76.0) | ||||||||
| Case No. | Mineral Metabolism Marker | Bone Turnover Marker | ||||||
|---|---|---|---|---|---|---|---|---|
| Bone Formation | Bone Resorption | |||||||
| FGF23 (pg/mL) | Ca (mg/dL) | Pi (mg/dL) | PTH (pg/mL) | 25(OH)D (ng/mL) | ALP (IU/L) | P1NP (ng/mL) | CTX (ng/mL) | |
| 1 | 163.88 | 8.7 | 2.8 | 81.8 | 29.440 | 358.0 | 196.0 | 1.760 |
| 2 | 252.14 | 9.0 | 1.7 | 112.1 | 11.220 | 451.0 | 220.0 | 0.958 |
| 3 1 | 50.90 | 8.9 | 2.4 | 42.2 | 29.440 | 331.0 | 315.0 | 1.630 |
| 4 | 159.04 | 8.7 | 1.7 | 101.8 | 27.420 | 272.0 | 62.3 | 0.375 |
| 5 | 3832.00 | 8.3 | 2.2 | 10.8 | 22.180 | 92.0 | 36.0 | 0.208 |
| 6 | 182.72 | 8.9 | 1.9 | 109.2 | 27.290 | 142.0 | 74.4 | 0.339 |
| 7 | - | 9.0 | 3.1 | 52.6 | 23.370 | 376.0 | 139.0 | 0.889 |
| 8 1 | 235.00 | 8.7 | 2.1 | 90.0 | 29.290 | 173.0 | 61.0 | 0.429 |
| 9 | 4244.70 | 9.4 | 1.8 | 98.9 | 25.240 | 745.0 | 245.0 | 1.740 |
| 10 | 699.50 | 8.6 | 2.8 | 52.9 | 47.410 | 130.0 | 88.5 | 0.708 |
| 11 | 163.20 | 9.2 | 1.5 | 29.6 | 41.600 | 344.0 | 122.0 | 1.140 |
| 12 | 47.41 | 8.4 | 2.0 | 70.1 | 57.620 | 83.0 | 19.4 | 0.083 |
| 13 | 124.99 | 9.4 | 1.8 | 166.2 | 24.040 | 196.0 | 76.7 | 0.568 |
| 14 | 1676.90 | 9.3 | 4.2 | 42.3 | 14.170 | 75.0 | 62.5 | 0.709 |
| 15 1 | - | 10.2 | 3.5 | 28.9 | 10.140 | 45.0 | 43.0 | 0.334 |
| 16 | 314.78 | 9.9 | 1.6 | 37.7 | 47.600 | 724.0 | 283.0 | 0.939 |
| 17 1 | - | 9.4 | 1.4 | 96.5 | 46.770 | 379.0 | - | - |
| 18 | 210.65 | 8.0 | 2.0 | 91.2 | 47.420 | 237.0 | 193.0 | 0.987 |
| 19 | 303.38 | 8.9 | 2.7 | 86.4 | 22.090 | 116.0 | - | - |
| Mean ± SD | 791.32 ± 1328.43 | 9.00 ± 0.54 | 2.27 ± 0.74 | 73.75 ± 38.08 | 30.724 ± 13.589 | 277.32 ± 202.01 | 131.58 ± 92.73 | 0.812 ± 0.52 |
| Case No. | Elemental Ca (mg/Day) | Elemental Phosphorus (mg/Day) | Vitamin D Supplements | ||
|---|---|---|---|---|---|
| 1,25(OH)2D (μg/Day) | Cholecalciferol (mg/Day) | Alfacalcidol (μg/Day) | |||
| 1 | 100 | 3000 | 250 | 10 | |
| 2 | 200 | 3000 | 500 | 20 | |
| 3 1 | 100 | - | 250 | 10 | |
| 4 | 100 | 3000 | 500 | 10 | |
| 5 | 2100 | 750 | 500 | 10 | |
| 6 | 100 | 2250 | 500 | 10 | |
| 7 | - | 1500 | - | - | 1.5 |
| 8 1 | 100 | 2250 | - | 10 | 1.5 |
| 9 | 200 | 3000 | 500 | 20 | |
| 10 | 100 | 2250 | 500 | 10 | |
| 11 | 100 | 2250 | 500 | 10 | |
| 12 | 100 | 2250 | 750 | 10 | |
| 13 | 100 | 3000 | 750 | 10 | |
| 14 | - | - | - | - | |
| 15 1 | - | - | - | - | |
| 16 | 200 | 2250 | 1000 | 20 | |
| 17 1 | 200 | 2500 | 1250 | 20 | |
| 18 | 100 | 4000 | - | 10 | 1.5 |
| 19 | - | 1000 | - | 1.0 | |
| Mineral Metabolism Marker | Bone Turnover Marker | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bone Formation | Bone Resorption | |||||||||||||
| Ca | Pi | PTH | 25(OH)D | ALP | P1NP | CTX | ||||||||
| E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | |
| Intercept | 8.10 ± 0.16 (7.77 to 8.42) | <0.000 | 1.63 ± 0.26 (1.11 to 2.15) | <0.000 | 91.79 ± 10.10 (71.36 to 112.21) | <0.000 | 31.63 ± 3.65 (24.23 to 39.03) | <0.000 | 246.60 ± 58.43 (123.79 to 369.40) | 0.001 | 89.10 ± 28.48 (29.61 to 148.58) | 0.005 | 0.66 ± 0.25 (0.14 to 1.18) | 0.015 |
| Complete cure | 0.73 ± 0.32 (0.09 to 1.37) | 0.027 | 1.03 ± 0.51 (0.01 to 2.05) | 0.047 | −40.15 ± 19.56 (−79.80 to −0.50) | 0.047 | −6.55 ± 7.12 (−20.97 to 7.87) | 0.363 | 131.00 ± 114.20 (−108.87 to 370.87) | 0.266 | 78.97 ± 53.93 (−33.71 to 191.65) | 0.159 | 0.36 ± 0.48 (−0.63 to 1.35) | 0.456 |
| Time since treatment | 0.25 ± 0.05 (0.15 to 0.35) | <0.000 | 0.58 ± 0.08 (0.41 to 0.75) | <0.000 | −10.35 ± 2.65 (−15.83 to −4.87) | 0.001 | −1.20 ± 0.92 (−3.11 to 0.70) | 0.204 | −6.14 ± 7.35 (−21.51 to 9.24) | 0.414 | 23.15 ± 7.46 (7.64 to 38.65) | 0.005 | 0.23 ± 0.09 (0.05 to 0.41) | 0.015 |
| Complete cure * Time since treatment 2 | −0.16 ± 0.09 (−0.35 to 0.03) | 0.104 | −0.75 ± 0.16 (−1.07 to −0.42) | <0.000 | 12.83 ± 5.22 (2.02 to 23.64) | 0.022 | 2.67 ± 1.82 (−1.10 to 6.43) | 0.156 | −7.69 ± 14.22 (−37.53 to 22.14) | 0.595 | −20.04 ± 15.76 (−52.66 to 12.58) | 0.216 | −0.20 ± 0.19 (−0.60 to 0.19) | 0.302 |
| Pi | PTH | |||||||
|---|---|---|---|---|---|---|---|---|
| 2 wk | 6 wk | 2 wk | 6 wk | |||||
| E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | E ± SE (95% CI) | p | |
| Intercept | 0.95 ± 0.31 (0.30 to 1.59) | 0.007 | 1.09 ± 0.27 (0.51 to 1.66) | 0.001 | 100.40 ± 14.01 (70.93 to 129.86) | <0.000 | 93.09 ± 11.65 (69.44 to 116.75) | <0.000 |
| Complete cure | 1.61 ± 0.60 (0.34 to 2.87) | 0.016 | 1.41 ± 0.54 (0.28 to 2.54) | 0.017 | −41.28 ± 26.530 (−97.30 to 14.75) | 0.138 | −31.90 ± 22.89 (−78.41 to 14.61) | 0.172 |
| Time since treatment | 0.93 ± 0.130 (0.66 to 1.21) | <0.000 | 0.87 ± 0.11 (0.64 to 1.10) | <0.000 | −17.47 ± 6.84 (−33.64 to −1.30) | 0.038 | −11.31 ± 3.89 (−19.41 to −3.20) | 0.009 |
| Complete cure * Time since treatment 2 | −1.03 ± 0.25 (−1.57 to−0.50) | 0.001 | −0.94 ± 0.22 (−1.39 to −0.49) | <0.000 | 17.39 ± 12.22 (−12.28 to 47.06) | 0.203 | 8.280 ± 8.12 (−8.61 to 25.17) | 0.320 |
| Continuous Variable | Categorical Variable: Contingency Table Analysis | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Logistic Regression | ROC Curve | Youden Index | χ2 Square Test | Diagnostic Test | ||||||||||
| OR (95% CI) | p | AUC (95% CI) | p | Cutoff value (mg/dL, pg/mL) | Sen | 1-Spe | Pearson χ2 | p 1 | Sen (%) (95% CI) | Spe (%) (95% CI) | PPV (%) (95% CI) | NPV (%) (95% CI) | ||
| Pi | 2 wk | 7.314 (1.239 to 43.175) | 0.028 | 0.907 (0.750 to 1.000) | 0.008 | 3.6 | 0.786 | 0.200 | 9.975 | 0.010 | 100.0 (0.860 to 1.000) | 60.0 (0.208 to 0.600) | 87.5 (0.753 to 0.875) | 100.0 (0.347 to 1.000) |
| 6 wk | 9.127 (0.378 to 220.654) | 0.174 | 0.929 (0.741 to 1.000) | 0.079 | 4.2 | 0.857 | 0.000 | 3.938 | 0.222 | 100.0 (0.865 to 1.000) | 50.0 (0.028 to 0.500) | 87.5 (0.757 to 0.875) | 100.0 (0.056 to 1.000) | |
| 3 M | 16.894 (0.426 to 669.677) | 0.132 | 0.955 (0.850 to 1.000) | 0.009 | 2.7 | 0.909 | 0.000 | 7.111 | 0.027 | 91.7 (0.752 to 0.993) | 75.0 (0.256 to 0.978) | 91.7 (0.752 to 0.993) | 75.0 (0.256 to 0.978) | |
| PTH | 2 wk | 0.992 (0.913 to 1.077) | 0.840 | 0.444 (0.020 to 0.869) | 0.796 | 47.7 | 0.333 | 0.667 | 0.321 | 1.000 | 83.3 (0.676 to 0.991) | 33.3 (0.018 to 0.6484) | 71.4 (0.579 to 0.849) | 50.0 (0.027 to 0.972) |
| 6 wk | 1.013 (0.944 to 1.086) | 0.722 | 0.500 (0.138 to 0.862) | 1.000 | 45.1 | 0.500 | 0.500 | 0.625 | 1.000 | 75.0 (0.750 to 0.930) | 0.0 (0.000 to 0.718) | 75.0 (0.750 to 0.930) | 0.0 (0.000 to 0.718) | |
| 3 M | 0.943 (0.881 to 1.009) | 0.088 | 0.750 (0.406 to 1.000) | 0.157 | 41.1 | 0.700 | 0.250 | 2.715 | 0.176 | 90.0 (0.741 to 0.994) | 50.0 (0.103 to 0.736) | 81.8 (0.674 to 0.904) | 66.7 (0.137 to 0.982) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Lee, Y.H.; Hong, N.; Cho, S.; Rhee, Y. Serum Phosphorus Is a Fast and Highly Sensitive Marker Predictive of a Complete Cure of Tumor-Induced Osteomalacia. J. Clin. Med. 2025, 14, 7870. https://doi.org/10.3390/jcm14217870
Kim SH, Lee YH, Hong N, Cho S, Rhee Y. Serum Phosphorus Is a Fast and Highly Sensitive Marker Predictive of a Complete Cure of Tumor-Induced Osteomalacia. Journal of Clinical Medicine. 2025; 14(21):7870. https://doi.org/10.3390/jcm14217870
Chicago/Turabian StyleKim, Seung Hyun, Young Han Lee, NamKi Hong, Sungjoon Cho, and Yumie Rhee. 2025. "Serum Phosphorus Is a Fast and Highly Sensitive Marker Predictive of a Complete Cure of Tumor-Induced Osteomalacia" Journal of Clinical Medicine 14, no. 21: 7870. https://doi.org/10.3390/jcm14217870
APA StyleKim, S. H., Lee, Y. H., Hong, N., Cho, S., & Rhee, Y. (2025). Serum Phosphorus Is a Fast and Highly Sensitive Marker Predictive of a Complete Cure of Tumor-Induced Osteomalacia. Journal of Clinical Medicine, 14(21), 7870. https://doi.org/10.3390/jcm14217870

