Meldonium Improves Functional Capacity in Patients with Right Ventricular Failure
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 6MWT | six-minute walk test |
| ACEis | angiotensin-converting enzyme inhibitor |
| Aes | adverse events |
| ARBs | angiotensin receptor blockers |
| ARNIs | angiotensin receptor–neprilysin inhibitor |
| BDS | Borg dyspnea score |
| BMI | body mass index |
| CCBs | calcium channel blockers |
| CHD | coronary heart disease |
| CHF | chronic heart failure |
| CTD PAH | PAH associated with connective tissue disease |
| ERAs | endothelin receptor antagonists |
| IPAH | idiopathic PAH |
| LV | left ventricle |
| MCS | mental component summary |
| NYHA | New York Heart Association |
| OSA | obstructive sleep apnea |
| PAH | pulmonary arterial hypertension |
| PCS | physical component summary. |
| PDE5is | phosphodiesterase type 5 inhibitors |
| PH | pulmonary hypertension |
| QoL | quality of life |
| RHC | Right heart catheterization |
| RV | right ventricle |
| RVEF | RV ejection fraction |
| RVF | RV failure |
| SAEs | serious adverse events |
| SF-36 | 36-Item Short Form Survey |
| VTE | venous thromboembolism |
| WHO | World Health Organization |
| WHO FC | World Health Organization functional class |
| wmc | The weighted median change |
Appendix A
| Right Heart Catheterization | Measure ± SD |
|---|---|
| RAP, mmHg | 8.2 ± 4.7 |
| Mean pulmonary arterial pressure, mmHg | 42.0 ± 13.4 |
| Cardiac output, L/min | 4.6 ± 1.1 |
| Cardiac index, L/min/m2 | 2.2 ± 0.9 |
| Pulmonary capillary wedge pressure, mmHg | 12.4 ± 5.6 |
| Pulmonary vascular resistance, Wood units | 7.3 ± 5.1 |
| Transthoracic echocardiography | |
| Aorta, mm | 33.6 ± 4.5 |
| LAVI, mL/m2 | 44.4 ± 18.2 |
| IVSd, mm | 11.0 ± 2.0 |
| PWd, mm | 10.3 ± 1.5 |
| LVEF, % | 60.0 ± 4.2 |
| LVEDD, mm | 49.0 ± 6.8 |
| LVESD, mm | 30.6 ± 7.0 |
| LVMI, g/m2 | 107.2 ± 29.5 |
| RVOT, mm | 30.7 ± 2.1 |
| RVD, mm | 41.3 ± 8.3 |
| RVSP, mmHg | 66.8 ± 16.2 |
| TAPSE, mm | 20.3 ± 3.4 |
| IVC, mm | 18.7 ± 4.2 |
| IVC collapse, >50% | N = 13 |
| Pericardial effusion | N = 0 |
| Parameter/Time Point | Baseline Measurement Before 6MWT | Baseline Measurement After 6MWT | Measurement Before 6MWT After 30 Days | Measurement After 6MWT After 30 Days | Measurement Before 6MWT After 60 Days | Measurement After 6MWT After 60 Days |
|---|---|---|---|---|---|---|
| SBP, mmHg | 134.6 ± 15.3 | 141.7 ± 18.9 | 132.1 ± 19.8 | 139.1 ± 19.6 | 130.6 ± 16.9 | 137.9 ± 19.2 |
| DBP, mmHg | 79.4 ± 9.7 | 80.5 ± 10.8 | 79.9 ± 10.9 | 74.4 ± 12.7 * | 77.1 ± 11.8 | 80.1 ± 10.0 |
| Heart rate, bpm | 71.4 ± 8.7 | 85.7 ± 13.9 | 76.2 ± 13.4 | 82.9 ± 14.8 | 72.9 ± 10.2 | 80.0 ± 14.3 * |
| SpO2, % | 95.8 ± 2.2 | 92.2 ± 5.7 | 95.3 ± 3.9 | 93.6 ± 4.3 | 95.6 ± 2.3 | 94.2 ± 4.0 |
| RR, rpm | 17.9 ± 1.8 | 19.8 ± 3.5 | 18.1 ± 0.5 | 20.5 ± 3.3 | 17.9 ± 0.8 | 20.3 ± 2.1 |
| Baseline Measurement | Measurement After 30 Days | |
|---|---|---|
| Erythrocytes, 1012/L | 4.5 ± 0.6 | 4.5 ± 0.6 |
| Hemoglobin, g/L | 135.0 ± 16.3 | 133.6 ± 14.3 |
| Platelets, 109/L | 219 ± 50.4 | 224.6 ± 54.3 |
| Leucocytes, 109/L | 7.1 ± 2.1 | 7.0 ± 1.7 |
| Neutrophils, 109/L | 4.7 ± 1.7 | 4.7 ± 1.5 |
| Urea, mmol/L | 8.8 ± 2.9 | 8.8 ± 2.7 |
| Creatinine, µmol/L | 103.1 ± 29.7 | 103.5 ± 32.5 |
| Bilirubin, µmol/L | 13.4 ± 6.9 | 14.6 ± 5.7 |
| ALAT, U/L | 22.9 ± 13.0 | 22.9 ± 12.3 |
| ASAT, U/L | 28.7 ± 8.1 | 28.0 ± 8.1 |
| BNP, pg/ml | 159.0 ± 133.9 | 165.3 ± 135.9 |
References
- Mehra, M.R.; Park, M.H.; Landzberg, M.J.; Lala, A.; Waxman, A.B. Right heart failure: Toward a common language. Pulm. Circ. 2014, 33, 123–126. [Google Scholar] [CrossRef]
- Galiè, N.; McLaughlin, V.V.; Rubin, L.J.; Simonneau, G. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur. Respir. J. 2019, 53, 1802148. [Google Scholar] [CrossRef]
- A McDonagh, T.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. Erratum: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special co. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Voelkel, N.F.; Quaife, R.A.; Leinwand, L.A.; Barst, R.J.; McGoon, M.D.; Meldrum, D.R.; Dupuis, J.; Long, C.S.; Rubin, L.J.; Smart, F.W.; et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006, 114, 1883–1891. [Google Scholar] [CrossRef]
- Campo, A.; Mathai, S.; Le Pavec, J.; Zaiman, A.; Hummers, L.; Boyce, D.; Housten, T.; Lechtzin, N.; Chami, H.; Girgis, R.; et al. Outcomes of hospitalisation for right heart failure in pulmonary arterial hypertension. Eur. Respir. J. 2011, 38, 359–367. [Google Scholar] [CrossRef]
- Winter, M.M.; Bouma, B.J.; van Dijk, A.P.; Groenink, M.; Nieuwkerk, P.T.; van der Plas, M.N.; Sieswerda, G.T.; Konings, T.C.; Mulder, B.J. Relation of Physical Activity, Cardiac Function, Exercise Capacity, and Quality of Life in Patients with a Systemic Right Ventricle. Am. J. Cardiol. 2008, 102, 1258–1262. [Google Scholar] [CrossRef]
- Prisco, S.Z.; Thenappan, T.; Prins, K.W. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl. Sci. 2020, 5, 1244–1260. [Google Scholar] [CrossRef]
- Ren, X.; Johns, R.A.; Gao, W.D. Right heart in pulmonary hypertension: From adaptation to failure. Pulm. Circ. 2019, 9, 2045894019845611. [Google Scholar] [CrossRef]
- Gorter, T.M.; van Veldhuisen, D.J.; Bauersachs, J.; Borlaug, B.A.; Celutkiene, J.; Coats, A.J.; Crespo-Leiro, M.G.; Guazzi, M.; Harjola, V.; Heymans, S.; et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: Mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 16–37. [Google Scholar] [CrossRef]
- Koop, A.C.; Bossers, G.P.L.; Ploegstra, M.; Hagdorn, Q.A.J.; Berger, R.M.F.; Silljé, H.H.W.; Bartelds, B. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism—A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e012086. [Google Scholar] [CrossRef]
- Rupp, H.; Zarain-Herzberg, A.; Maisch, B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 2002, 27, 621–636. [Google Scholar] [CrossRef]
- Marzilli, M.; Vinereanu, D.; Lopaschuk, G.; Chen, Y.; Dalal, J.J.; Danchin, N.; Etriby, E.; Ferrari, R.; Gowdak, L.H.; Lopatin, Y.; et al. Trimetazidine in cardiovascular medicine. Int. J. Cardiol. 2019, 293, 39–44. [Google Scholar] [CrossRef]
- NCT03273387. The Role of Trimetazidine on Right Ventricle Function in Pulmonary Arterial Hypertension in National Cardiovascular Center Harapan Kita Hospital. 2017. Available online: https://clinicaltrials.gov/show/NCT03273387 (accessed on 22 July 2023).
- Gunes, Y.; Guntekin, U.; Tuncer, M.; Sahin, M. Improved left and right ventricular functions with trimetazidine in patients with heart failure: A tissue Doppler study. Heart Vessel. 2009, 24, 277–282. [Google Scholar] [CrossRef]
- Coppini, R.; Ferrantini, C.; Mazzoni, L.; Sartiani, L.; Olivotto, I.; Poggesi, C.; Cerbai, E.; Mugelli, A. Regulation of intracellular Na+ in health and disease: Pathophysiological mechanisms and implications for treatment. Glob. Cardiol. Sci. Pract. 2013, 2013, 222–242. [Google Scholar] [CrossRef]
- Khan, S.S.; Cuttica, M.J.; Beussink-Nelson, L.; Kozyleva, A.; Sanchez, C.; Mkrdichian, H.; Selvaraj, S.; Dematte, J.E.; Lee, D.C.; Shah, S.J. Effects of ranolazine on exercise capacity, right ventricular indices, and hemodynamic characteristics in pulmonary arterial hypertension: A pilot study. Pulm. Circ. 2015, 5, 547–556. [Google Scholar] [CrossRef]
- Han, Y.; Forfia, P.; Vaidya, A.; Mazurek, J.A.; Park, M.H.; Ramani, G.; Chan, S.Y.; Waxman, A.B. Ranolazine Improves Right Ventricular Function in Patients with Precapillary Pulmonary Hypertension: Results from a Double-Blind, Randomized, Placebo-Controlled Trial. J. Card. Fail. 2021, 27, 253–257. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Vilskersts, R.; Makarova, E.; Kuka, J.; Liepinsh, E. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacol. Res. 2016, 113, 771–780. [Google Scholar] [CrossRef]
- Dzerve, V.; Matisone, D.; Kukulis, I.; Romanova, J.; Putane, L.; Grabauskienė, V. Mildronate improves peripheral circulation in patients with chronic heart failure: Results of clinical trial (the first report). Semin. Cardiol. 2005, 11, 56–64. [Google Scholar]
- Tsverava, M.D. Influence of mildronat on left ventricular systolic, diastolic functional parameters, pulmonary arterial flow and systolic dyssynchrony in patients with congestive heart failure. Georgian Med. News 2013, 218, 34–40. [Google Scholar]
- Statsenko, M.E.; Shilina, N.N.; Turkina, S.V. Use of meldonium in the combination treatment of patients with heart failure in the early postinfarction period. Ter. Arkhiv 2014, 86, 30–35. [Google Scholar]
- Vilskersts, R.; Kigitovica, D.; Korzh, S.; Videja, M.; Vilks, K.; Cirule, H.; Skride, A.; Makrecka-Kuka, M.; Liepinsh, E.; Dambrova, M. Protective effects of meldonium in experimental models of cardiovascular complications with a potential application in covid-19. Int. J. Mol. Sci. 2022, 23, 45. [Google Scholar] [CrossRef]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Sommer, N.; Ghofrani, H.A.; Pak, O.; Bonnet, S.; Provencher, S.; Sitbon, O.; Rosenkranz, S.; Hoeper, M.M.; Kiely, D.G. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol. 2021, 178, 6–30. [Google Scholar] [CrossRef]
- Martynyuk, T.V.; Konosova, I.D.; Chazova, I.E. Use of nebivolol in patients with idiopathic pulmonary hypertension: Results of the pilot study. Ter. Arkhiv 2012, 84, 49–53. [Google Scholar]
- Perros, F.; Ranchoux, B.; Izikki, M.; Bentebbal, S.; Happé, C.; Antigny, F.; Jourdon, P.; Dorfmüller, P.; Lecerf, F.; Fadel, E.; et al. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J. Am. Coll. Cardiol. 2015, 65, 668–680. [Google Scholar] [CrossRef]
- Perros, F.; de Man, F.S.; Bogaard, H.J.; Antigny, F.; Simonneau, G.; Bonnet, S.; Provencher, S.; Galiè, N.; Humbert, M. Use of β-Blockers in Pulmonary Hypertension. Circ. Heart Fail. 2017, 10, e003703. [Google Scholar] [CrossRef]
- Andersen, S.; Andersen, A.; De Man, F.S.; Nielsen-Kudsk, J.E. Sympathetic nervous system activation and β-adrenoceptor blockade in right heart failure. Eur. J. Heart Fail. 2015, 17, 358–366. [Google Scholar] [CrossRef]
- Liepinsh, E.; Dambrova, M. The unusual pharmacokinetics of meldonium: Implications for doping. Pharmacol. Res. 2016, 111, 100. [Google Scholar] [CrossRef]
- Rabin, O.; Uiba, V.; Miroshnikova, Y.; Zabelin, M.; Samoylov, A.; Karkischenko, V.; Semyonov, S.; Astrelina, T.; Razinkin, S. Meldonium long-term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers. Drug Test. Anal. 2019, 11, 554–566. [Google Scholar] [CrossRef]
- Dzerve, V.; Matisone, D.; Pozdnyakov, Y.; Oganov, R. Mildronate improves the exercise tolerance in patients with stable angina: Results of a long term clinical trial. Semin. Cardiovasc. Med. 2010, 16, 1–8. [Google Scholar]
- Dzerve, V.; Matisone, D.; Kukulis, I.; Mintale, I.; Lietuvietis, L.; Krievins, D.; Lacis, A.; Mednis, G.; Rits, J.; Gedins, M. Partial inhibition of fatty acid oxydation increases the exercise tolerance of patients with peripheral arterial disease: The Mildronate Study. Semin. Cardiovasc. Med. 2011, 17, 1–8. [Google Scholar]
- Rival, G.; Lacasse, Y.; Martin, S.; Bonnet, S.; Provencher, S. Effect of pulmonary arterial hypertension-specific therapies on health-related quality of life a systematic review. Chest 2014, 146, 686–708. [Google Scholar] [CrossRef]
- Chen, H.; Taichman, D.B.; Doyle, R.L. Health-related quality of life and patient-reported outcomes in pulmonary arterial hypertension. Proc. Am. Thorac. Soc. 2008, 5, 623–630. [Google Scholar] [CrossRef]
- Halank, M.; Einsle, F.; Lehman, S.; Bremer, H.; Ewert, R.; Wilkens, H.; Meyer, F.J.; Grünig, E.; Seyfarth, H.-J.; Kolditz, M.; et al. Exercise capacity affects quality of life in patients with pulmonary hypertension. Lung 2013, 191, 337–343. [Google Scholar] [CrossRef]
- Taichman, D.B.; Shin, J.; Hud, L.; Archer-Chicko, C.; Kaplan, S.; Sager, J.S.; Gallop, R.; Christie, J.; Hansen-Flaschen, J.; Palevsky, H. Health-related quality of life in patients with pulmonary arterial hypertension. Respir. Res. 2005, 6, 92. [Google Scholar] [CrossRef]
- Blok, I.; van Riel, A.; Schuuring, M.; Duffels, M.; Vis, J.; van Dijk, A.; Hoendermis, E.; Mulder, B.; Bouma, B. Decrease in quality of life predicts mortality in adult patients with pulmonary arterial hypertension due to congenital heart disease. Netherlands Hear. J. 2015, 23, 278–284. [Google Scholar] [CrossRef]
- Mathai, S.C.; Suber, T.; Khair, R.M.; Kolb, T.M.; Damico, R.L.; Hassoun, P.M. Health-related quality of life and survival in pulmonary arterial hypertension. Ann. Am. Thorac. Soc. 2016, 13, 31–39. [Google Scholar] [CrossRef]
- Johansson, I.; Joseph, P.; Balasubramanian, K.; McMurray, J.J.V.; Lund, L.H.; Ezekowitz, J.A.; Kamath, D.; Alhabib, K.; Bayes-Genis, A.; Budaj, A.; et al. Health-Related Quality of Life and Mortality in Heart Failure the Global Congestive Heart Failure Study of 23000 Patients From 40 Countries. Circulation 2021, 143, 2129–2142. [Google Scholar] [CrossRef]
- Jorge, A.J.L.; Rosa, M.L.G.; Correia, D.M.D.S.; Martins, W.D.A.; Ceron, D.M.M.; Coelho, L.C.F.; Soussume, W.S.N.; Kang, H.C.; Moscavitch, S.D.; Mesquita, E.T. Evaluation of Quality of Life in Patients with and without Heart Failure in Primary Care. Arq. Bras. Cardiol. 2017, 109, 248–252. [Google Scholar] [CrossRef]
- Ivanovs, A.; Eksteina, I.; Viksna, L. Normative data of the population of Latvia for the SF-36 (The short Form 36) Health Survey. Med. Basic Sci. 2011, 149–160. [Google Scholar]






| Characteristics | Overall Study Group; N = 20 |
|---|---|
| Women, No. (%) | 15 (75) |
| Age, mean ± SD, years | 70.4 ± 13.2 |
| BMI, kg/m2 | 28.1 ± 6.0 |
| Time from PAH diagnosis, median (IQR) range, years | 3.0 (0.9–4.0) |
| WHO FC II/III, (%) | 35/65 |
| Comorbidity | |
| Arterial hypertension, No. (%) | 13 (65) |
| CHD, No. (%) | 4 (20) |
| VTE in anamnesis, No. (%) | 0 (0) |
| Diabetes mellitus, No. (%) | 3 (15) |
| Thyroid dysfunction, No. (%) | 2 (10) |
| OSA, No. (%) | 1 (5) |
| Current smoking, No. (%) | 1 (5) |
| Medication | |
| Anticoagulants, No. (%) | 12 (60) |
| Digoxin, No. (%) | 11 (55) |
| Spironolactone, No. (%) | 18 (90) |
| Loop diuretics, No. (%) | 18 (90) |
| Statins, No. (%) | 14 (70) |
| ACEis, ARBs, or ARNIs, No. (%) | 6 (30) |
| ACEis or ARBs plus thiazide, No. (%) | 3 (15) |
| PDE5is, No. (%) | 10 (50) |
| PDE5is plus ERAs, No. (%) | 4 (20) |
| PDE5is, ERAs, and CCBs, No. (%) | 3 (15) |
| PDE5is plus CCBs, No. (%) | 1 (5) |
| ERAs plus CCBs, No. (%) | 2 (10) |
| Use of psychopharmacological drugs | |
| Benzodiazepines, No. (%) | 6 (30) |
| Antipsychotics, No. (%) | 2 (10) |
| Hypnotics, No. (%) | 3 (15) |
| Baseline Measurement, Points | Measurement After 30 Days, Points | Measurement at Follow-Up, Points | |
|---|---|---|---|
| Physical functioning | 58.0 ± 25.9 | 71.0 ± 23.0 * | 67.8 ± 25.8 * |
| Role limitations due to physical health | 60.0 ± 42.5 | 85.0 ± 28.6 * | 73.8 ± 40.1 |
| Role limitations due to emotional problems | 90.0 ± 26.7 | 95.0 ± 16.3 | 88.3 ± 27.1 |
| Energy/fatigue | 76.5 ± 21.0 | 82.3 ± 15.2 | 76.0 ± 21.9 |
| Emotional well-being | 86.4 ± 15.9 | 86.2 ± 16.7 | 81.8 ± 17.1 * |
| Social functioning | 86.9 ± 21.6 | 92.5 ± 19.6 | 88.1 ± 23.5 |
| Pain | 67.5 ± 30.6 | 83.3 ± 24.1 * | 89.1 ± 16.7 * |
| General health | 55.8 ± 23.2 | 61.3 ± 20.5 | 52.3 ± 23.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kigitovica, D.; Dzirnieks, K.; Lejnieks, A.; Dambrova, M.; Skride, A.; Vilskersts, R. Meldonium Improves Functional Capacity in Patients with Right Ventricular Failure. J. Clin. Med. 2025, 14, 7787. https://doi.org/10.3390/jcm14217787
Kigitovica D, Dzirnieks K, Lejnieks A, Dambrova M, Skride A, Vilskersts R. Meldonium Improves Functional Capacity in Patients with Right Ventricular Failure. Journal of Clinical Medicine. 2025; 14(21):7787. https://doi.org/10.3390/jcm14217787
Chicago/Turabian StyleKigitovica, Dana, Krisjanis Dzirnieks, Aivars Lejnieks, Maija Dambrova, Andris Skride, and Reinis Vilskersts. 2025. "Meldonium Improves Functional Capacity in Patients with Right Ventricular Failure" Journal of Clinical Medicine 14, no. 21: 7787. https://doi.org/10.3390/jcm14217787
APA StyleKigitovica, D., Dzirnieks, K., Lejnieks, A., Dambrova, M., Skride, A., & Vilskersts, R. (2025). Meldonium Improves Functional Capacity in Patients with Right Ventricular Failure. Journal of Clinical Medicine, 14(21), 7787. https://doi.org/10.3390/jcm14217787

