Importance of Intraoperative Neuromonitoring for Corrective Surgery in Patients with Adolescent Idiopathic Scoliosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Neuromonitoring Technique
2.3. Definitions
2.3.1. Intraoperative Neuromonitoring Alert Definition
2.3.2. True Positive Definition
2.3.3. False Positive Definition
2.3.4. True Negative Definition
2.3.5. False Negative Definition
2.3.6. Sensitivity and Specificity
2.4. Anesthetic Protocol
2.5. Statistical Analysis
3. Results
Patient Demographics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delank, K.S.; Delank, H.W.; König, D.P.; Popken, F.; Fürderer, S.; Eysel, P. Iatrogenic paraplegia in spinal surgery. Arch. Orthop. Trauma Surg. 2005, 125, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hyun, S.J. Intraoperative neurophysiological monitoring in spinal surgery. World J. Clin. Cases 2015, 3, 765–773. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamaki, T.; Yamashita, T.; Kobayashi, H.; Hiryama, H. Spinal cord evoked potential after stimulation to the spinal cord (SCEP). Spinal cord monitoring—Basic data obtained from animal experimental studies. Nouha Kindennzu (Jpn. J. Electroenceph. Electromyogr.) 1972, 1, 196. [Google Scholar]
- Kurokawa, T. Spinal cord action potentials evoked by epidural stimulation of the spinal cord—A report of human and animal record. Nouha Kindennzu (Jpn. J. Electroenceph. Electromyogr.) 1972, 1, 64–66. [Google Scholar]
- Gonzalez, A.A.; Jeyanandarajan, D.; Hansen, C.; Zada, G.; Hsieh, P.C. Intraoperative neurophysiological monitoring during spine surgery: A review. Neurosurg. Focus 2009, 27, E6. [Google Scholar] [CrossRef] [PubMed]
- Shimoji, K.; Higashi, H.; Kano, T. Epidural recording of spinal electrogram in man. Electrencephalogr. Clin. Neurophysiol. 1971, 30, 236–239. [Google Scholar] [CrossRef]
- Jones, S.J.; Edgar, M.A.; Ransford, A.O.; Thomas, N.P. A system for the electrophysiological monitoring of the spinal cord during operations for scoliosis. J. Bone Joint Surg. 1983, 65, 134–139. [Google Scholar] [CrossRef]
- Lesser, R.P.; Raudzens, P.; Lüders, H.; Nuwer, M.R.; Goldie, W.D.; Morris, H.H., 3rd; Dinner, D.S.; Klem, G.; Hahn, J.F.; Shetter, A.G.; et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann. Neurol. 1986, 19, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Toleikis, J.R.; Pace, C.; Jahangiri, F.R.; Hemmer, L.B.; Toleikis, S.C. Intraoperative somatosensory evoked potential (SEP) monitoring: An updated position statement by the American Society of Neurophysiological Monitoring. J. Clin. Monit. Comput. 2024, 38, 1003–1042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kai, Y.; Owen, J.H.; Lenke, L.G.; Bridwell, K.H.; Oakley, D.M.; Sugioka, Y. Use of sciatic neurogenic motor evoked potentials versus spinal potentials to predict early-onset neurologic deficits when intervention is still possible during overdistraction. Spine 1993, 18, 1134–1139. [Google Scholar] [CrossRef]
- Vucicevic, R.S.; Salazar, L.M.; Federico, V.P.; Sayari, A.J. Use of Intraoperative Neuromonitoring: A Review. Contemp. Spine Surg. 2024, 25, 9–10. [Google Scholar] [CrossRef]
- Merton, P.A.; Morton, H.B. Stimulation of the cerebral cortex in the intact human subject. Nature 1980, 285, 227. [Google Scholar] [CrossRef]
- de Haan, P.; Kalkman, C.J. Spinal cord monitoring: Somatosensory- and motor-evoked potentials. Anesthesiol. Clin. N. Am. 2001, 19, 923–945. [Google Scholar] [CrossRef]
- Kundnani, V.K.; Zhu, L.; Tak, H.; Wong, H. Multimodal intraoperative neuromonitoring in corrective surgery for adolescent idiopathic scoliosis: Evaluation of 354 consecutive cases. Indian J. Orthop. 2010, 44, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Journée, H.L.; Berends, H.I.; Kruyt, M.C. The Percentage of Amplitude Decrease Warning Criteria for Transcranial MEP Monitoring. J. Clin. Neurophysiol. 2017, 34, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ushirozako, H.; Yoshida, G.; Hasegawa, T.; Yamato, Y.; Yasuda, T.; Banno, T.; Arima, H.; Oe, S.; Yamada, T.; Ide, K.; et al. Characteristics of false-positive alerts on transcranial motor evoked potential monitoring during pediatric scoliosis and adult spinal deformity surgery: An "anesthetic fade" phenomenon. J. Neurosurg. Spine 2019, 32, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Tamkus, A.A.; Rice, K.S.; Kim, H.L. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014, 14, 1440–1446. [Google Scholar] [CrossRef]
- Lubitz, S.E.; Keith, R.W.; Crawford, A.H. Intraoperative experience with neuromotor evoked potentials. A review of 60 consecutive cases. Spine 1999, 24, 2033–2034. [Google Scholar] [CrossRef]
- Luk, K.D.; Hu, Y.; Wong, Y.W.; Cheung, K.M. Evaluation of various evoked potential techniques for spinal cord monitoring during scoliosis surgery. Spine 2001, 26, 1772–1777. [Google Scholar] [CrossRef]
- Noonan, K.J.; Walker, T.; Feinberg, J.R.; Nagel, M.; Didelot, W.; Lindseth, R. Factors related to false- versus true-positive neuromonitoring changes in adolescent idiopathic scoliosis surgery. Spine 2002, 27, 825–830. [Google Scholar] [CrossRef]
- Zuccaro, M.; Zuccaro, J.; Samdani, A.F.; Pahys, J.M.; Hwang, S.W. Intraoperative neuromonitoring alerts in a pediatric deformity center. Neurosurg. Focus 2017, 43, E8. [Google Scholar] [CrossRef]
- Neira, V.M.; Ghaffari, K.; Bulusu, S.; Moroz, P.J.; Jarvis, J.G.; Barrowman, N.; Splinter, W. Diagnostic accuracy of neuromonitoring for identification of new neurologic deficits in pediatric spinal fusion surgery. Anesth. Analg. 2016, 123, 1556–1566. [Google Scholar] [CrossRef]
- Skinner, S.A.; Nagib, M.; Bergman, T.A.; Maxwell, R.E.; Msangi, G. The initial use of free-running electromyography to detect early motor tract injury during resection of intramedullary spinal cord lesions. Neurosurgery 2005, 56 (Suppl. 2), 299–314. [Google Scholar] [CrossRef] [PubMed]
- Cioni, B.; Meglio, M.; Rossi, G.F. Intraoperative motor evoked potential monitoring in spinal neurosurgery. Arch. Ital. Biol. 1999, 137, 115–126. [Google Scholar] [PubMed]
- Gillilan, L.A. The arterial blood supply of the human spinal cord. J. Comp. Neurol. 1958, 110, 75–103. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.N.; Suh, S.W.; Yang, J.H.; Yoon, J.Y. False-negative transcranial motor-evoked potentials during scoliosis surgery causing paralysis: A case report with literature review. Spine 2009, 34, E896–E900. [Google Scholar] [CrossRef]
- Padberg, A.M.; Wilson-Holden, T.J.; Lenke, L.G.; Bridwell, K.H. Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery: An accepted standard of care. Spine 1998, 23, 1392–1400. [Google Scholar] [CrossRef]
- Lyon, R.; Feiner, J.; Lieberman, J.A. Progressive suppression of motor evoked potentials during general anesthesia: The phenomenon of “anesthetic fade”. J. Neurosurg. Anesthesiol. 2005, 17, 13–19. [Google Scholar] [PubMed]
- Wang, A.C.; Than, K.D.; Etame, A.B.; La Marca, F.; Park, P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: A review of the literature. Neurosurg. Focus. 2009, 27, E7. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Tabaraud, F.; Lacroix, F.; Mouliès, D.; Viviand, X.; Lansade, A.; Terrier, G.; Feiss, P. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br. J. Anaesth. 2003, 91, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Ando, K.; Kobayashi, K.; Nakashima, H.; Machino, M.; Kanbara, S.; Inoue, T.; Yamaguchi, H.; Segi, N.; Koshimizu, H.; et al. Larger muscle mass of the upper limb correlates with lower amplitudes of deltoid MEPs following transcranial stimulation. J. Clin. Neurosci. 2020, 81, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Thirumala, P.D.; Crammond, D.J.; Loke, Y.K.; Cheng, H.L.; Huang, J.; Balzer, J.R. Diagnostic accuracy of motor evoked potentials to detect neurological deficit during idiopathic scoliosis correction: A systematic review. J. Neurosurg. Spine. 2017, 26, 374–383. [Google Scholar] [CrossRef]
- Hung, C.W.; Hassan, F.M.; Lee, N.J.; Roth, S.G.; Scheer, J.K.; Lewerenz, E.; Lombardi, J.M.; Sardar, Z.M.; Lehman, R.A.; Lenke, L.G. Higher intraoperative blood loss is associated with increased risk of intraoperative neuromonitoring data loss for the type 3 spinal cord shape during spinal deformity surgery. Spine Deform. 2025, 13, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Rocos, B.; Wong, I.H.; Jentzsch, T.; Strantzas, S.; Lewis, S.J. The Effect of Anaemia on Intra-operative Neuromonitoring Following Correction of Large Scoliosis Curves: Two Case Reports. Cureus 2024, 16, e59353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawaguchi, M.; Furuya, H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: A consideration in anesthesia. J. Anesth. 2004, 18, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, F.R.; Jahangiri, R.H.; Asad, H.; Farooq, L.; Khattak, W.H. Scoliosis Corrective Surgery With Continuous Intraoperative Neurophysiological Monitoring (IONM). Cureus 2022, 14, e29958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.S.; Hwang, C.J.; Lee, D.H.; Cho, J.H.; Park, S. Risk Factors and Exit Strategy of Intraoperative Neurophysiological Monitoring Alert During Deformity Correction for Adolescent Idiopathic Scoliosis. Global Spine J. 2024, 14, 2012–2021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsirikos, A.I.; Duckworth, A.D.; Henderson, L.E.; Michaelson, C. Multimodal Intraoperative Spinal Cord Monitoring during Spinal Deformity Surgery: Efficacy, Diagnostic Characteristics, and Algorithm Development. Med. Princ. Pract. 2020, 29, 6–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macdonald, D.B.; Al Zayed, Z.; Al Saddigi, A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: Results in 206 thoracolumbar spine surgeries. Eur. Spine J. 2007, 16 (Suppl. 2), S171–S187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, S.J.; Wong, I.H.Y.; Strantzas, S.; Holmes, L.M.; Vreugdenhil, I.; Bensky, H.; Nielsen, C.J.; Zeller, R.; Lebel, D.E.; de Kleuver, M.; et al. Responding to Intraoperative Neuromonitoring Changes During Pediatric Coronal Spinal Deformity Surgery. Glob. Spine J. 2019, 9 (Suppl. 1), 15S–21S. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]




| Positive IONM Alert | Negative IONM Alert | p Value | |
|---|---|---|---|
| Male | 2 | 17 | 0.516 |
| Female | 14 | 70 | |
| Age (years) | 16.2 ± 4.8 | 16.2 ± 3.9 | 0.487 |
| Duration of surgery (minutes) | 296.5 ± 56.5 | 272.2 ± 64.5 | 0.211 |
| Blood loss (mL) | 1560.6 ± 1066.9 | 1071.6 ± 599.2 | 0.028 * |
| Level of fusion | 10.2 ± 3.0 | 9.7 ± 3.3 | 0.478 |
| Inhalational anesthesia | 4 | 14 | 0.389 |
| TIVA | 12 | 73 |
| IONM Alert Positive | IONN Alert Negative | |
|---|---|---|
| Neurological deficit present | 2 (true positive) | 0 (false negative) |
| No neurological deficit | 14 (false positive) | 87 (true negative) |
| Sensitivity | 100% | |
| Specificity | 86.1% | |
| Positive predictive value | 12.5% | |
| Negative predictive value | 100% | |
| False positive | 13.9% | |
| False negative | 0% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.J.; Tanaka, M.; Nakagawa, T.; Arataki, S.; Komatsubara, T.; Miyamoto, A.; Gurudip, D.; Patil, M.; Uotani, K.; Oda, Y.; et al. Importance of Intraoperative Neuromonitoring for Corrective Surgery in Patients with Adolescent Idiopathic Scoliosis. J. Clin. Med. 2025, 14, 7693. https://doi.org/10.3390/jcm14217693
Chen BJ, Tanaka M, Nakagawa T, Arataki S, Komatsubara T, Miyamoto A, Gurudip D, Patil M, Uotani K, Oda Y, et al. Importance of Intraoperative Neuromonitoring for Corrective Surgery in Patients with Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine. 2025; 14(21):7693. https://doi.org/10.3390/jcm14217693
Chicago/Turabian StyleChen, Boon Jein, Masato Tanaka, Takeshi Nakagawa, Shinya Arataki, Tadashi Komatsubara, Akiyoshi Miyamoto, Das Gurudip, Maitreya Patil, Koji Uotani, Yoshiaki Oda, and et al. 2025. "Importance of Intraoperative Neuromonitoring for Corrective Surgery in Patients with Adolescent Idiopathic Scoliosis" Journal of Clinical Medicine 14, no. 21: 7693. https://doi.org/10.3390/jcm14217693
APA StyleChen, B. J., Tanaka, M., Nakagawa, T., Arataki, S., Komatsubara, T., Miyamoto, A., Gurudip, D., Patil, M., Uotani, K., Oda, Y., Shinohara, K., & Sakaguchi, T. (2025). Importance of Intraoperative Neuromonitoring for Corrective Surgery in Patients with Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine, 14(21), 7693. https://doi.org/10.3390/jcm14217693

