Acute Respiratory Distress Syndrome Definitions in Adults and Children: A Comparative Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
- Oxygenation criteria
- Imaging criteria
- Hemodynamic criteria
- Other diagnostic considerations
4. Discussion
- Oxygenation criteria in the ARDS definition
- Relevance of Oxygenation Index (OI) in Mechanically Ventilated Pediatric Patients
- Strengths and weaknesses of Berlin 2.0 and PALICC-2
- Gender considerations:
- Key sources of heterogeneity and reporting standards
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABG | Arterial Blood Gas |
| ARDS | Acute Respiratory Distress Syndrome |
| BiPAP | Bilevel Positive Airway Pressure |
| CPAP | Continuous Positive Airway Pressure |
| CT | Computed Tomography |
| CXR | Chest Radiography |
| ECMO | Extracorporeal Membrane Oxygenation |
| HFNO | High-Flow Nasal Oxygen |
| LUS | Lung Ultrasound |
| MAP | Mean Airway Pressure |
| NIV | Non-Invasive Ventilation |
| OI | Oxygenation Index |
| OSI | Oxygen Saturation Index |
| PALICC | Pediatric Acute Lung Injury Consensus Conference |
| PARDS | Pediatric Acute Respiratory Distress Syndrome |
| PEEP | Positive End-Expiratory Pressure |
| SpO2 | Pulse Oximetry |
References
- Ashbaugh, D.G.; Bigelow, D.B.; Petty, T.L.; Levine, B.E. Acute respiratory distress in adults. Lancet 1967, 2, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Rubenfeld, G.D.; Taylor Thompson, B.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. ARDS Definition Task Force. Acute respiratory distress syndrome: The Berlin definition. J. Am. Med. Assoc. 2012, 307, 2526–2533. [Google Scholar]
- Ferguson, N.D.; Fan, E.; Camporota, L.; Antonelli, M.; Anzueto, A.; Beale, R.; Brochard, L.; Brower, R.; Esteban, A.; Gattinoni, L.; et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012, 38, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.J.; Dünser, M.W.; Dondorp, A.M.; Adhikari, N.K.; Iyer, S.; Kwizera, A.; Lubell, Y.; Papali, A.; Pisani, L.; Riviello, E.D.; et al. Current challenges in the management of sepsis in ICUs in resource-poor settings and suggestions for the future. Intensive Care Med. 2017, 43, 612–624. [Google Scholar] [CrossRef]
- Riviello, E.D.; Kiviri, W.; Twagirumugabe, T.; Mueller, A.; Banner-Goodspeed, V.M.; Officer, L.; Novack, V.; Mutumwinka, M.; Talmor, D.S.; Fowler, R.A. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am. J. Respir. Crit. Care Med. 2016, 193, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Arabi, Y.; Arroliga, A.C.; Bernard, G.; Bersten, A.D.; Brochard, L.J.; Calfee, C.S.; Combes, A.; Daniel, B.M.; Ferguson, N.D.; et al. A New Global Definition of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2024, 209, 37–47. [Google Scholar] [CrossRef]
- Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: Consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16, 428–439. [Google Scholar] [CrossRef]
- Emeriaud, G.; López-Fernández, Y.M.; Iyer, N.P.; Bembea, M.M.; Agulnik, A.; Barbaro, R.P.; Baudin, F.; Bhalla, A.; De Carvalho, W.B.; Carroll, C.L.; et al. Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2). Pediatr. Crit. Care Med. 2023, 24, 143–168. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Hayden, D.L.; Schoenfeld, D.A.; Ware, L.B.; National Institutes of Health National Heart Lung Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007, 132, 410–417. [Google Scholar] [CrossRef]
- Brown, S.M.; Grissom, C.K.; Moss, M.; Rice, T.W.; Schoenfeld, D.; Hou, P.C.; Thompson, B.T.; Brower, R.G. Nonlinear imputation of PaO2/FIO2 from SpO2/FIO2 among patients with acute respiratory distress syndrome. Chest 2016, 150, 307–313. [Google Scholar] [CrossRef]
- Vercesi, V.; Pisani, L.; van Tongeren, P.S.; Lagrand, W.K.; Leopold, S.J.; Huson, M.M.; Henwood, P.C.; Walden, A.; Smit, M.; Riviello, E.D.; et al. External confirmation exploration of the Kigali modification for diagnosing moderate or severe ARDS. Intensive Care Med. 2018, 44, 523–524. [Google Scholar] [CrossRef]
- Moss, M.; Huang, D.T.; Brower, R.G.; Ferguson, N.D.; Ginde, A.A.; Gong, M.N.; Grissom, C.K.; Gundel, S.; Hayden, D.; Hite, R.D.; et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N. Engl. J. Med. 2019, 380, 1997–2008. [Google Scholar]
- Wick, K.D.; Matthay, M.A.; Ware, L.B. Pulse oximetry for the diagnosis and management of acute respiratory distress syndrome. Lancet Respir. Med. 2022, 10, 1086–1098. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Tonetti, T.; Navalesi, P.; Nava, S.; Antonelli, M.; Pesenti, A.; Grasselli, G.; Grieco, D.L.; Menga, L.S.; Pisani, L.; et al. High flow nasal oxygen for severe hypoxemia: Oxygenation response and outcome in COVID-19 patients. Am. J. Respir. Crit. Care Med. 2022, 205, 431–439. [Google Scholar] [CrossRef]
- Gershengorn, H.B.; Hu, Y.; Chen, J.T.; Hsieh, S.J.; Dong, J.; Gong, M.N.; Chan, C.W. The impact of high-flow nasal cannula use on patient mortality and the availability of mechanical ventilators in COVID-19. Ann. Am. Thorac. Soc. 2021, 18, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Calligaro, G.L.; Lalla, U.; Audley, G.; Gina, P.; Miller, M.G.; Mendelson, M.; Dlamini, S.; Wasserman, S.; Meintjes, G.; Peter, J.; et al. The utility of high-flow nasal oxygen for severe COVID-19 pneumonia in a resource-constrained setting: A multi-centre prospective observational study. EClinicalMedicine 2020, 28, 100570. [Google Scholar] [CrossRef]
- Ware, L.B. Go with the flow: Expanding the definition of acute respiratory distress syndrome to include high-flow nasal oxygen. Am. J. Respir. Crit. Care Med. 2022, 205, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Thompson, B.T.; Ware, L.B. The Berlin definition of acute respiratory distress syndrome: Should patients receiving high-flow nasal oxygen be included? Lancet Respir. Med. 2021, 9, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Wooten, W.M.; Shaffer, L.E.T.; Hamilton, L.A. Bedside ultrasound versus chest radiography for detection of pulmonary edema: A prospective cohort study. J. Ultrasound Med. 2019, 38, 967–973. [Google Scholar] [CrossRef]
- Sachdev, A.; Khatri, A.; Saxena, K.K.; Gupta, D.; Gupta, N.; Menon, G.R. Chest sonography versus chest radiograph in children admitted to paediatric intensive care—A prospective study. Trop. Dr. 2021, 51, 296–301. [Google Scholar] [CrossRef]
- Smit, M.R.; Hagens, L.A.; Heijnen, N.F.L.; Pisani, L.; Cherpanath, T.G.V.; Dongelmans, D.A.; de Grooth, H.-J.S.; Pierrakos, C.; Tuinman, P.R.; Zimatore, C.; et al. Lung ultrasound prediction model for acute respiratory distress syndrome: A multicenter prospective observational study. Am. J. Respir. Crit. Care Med. 2023, 207, 1591–1601. [Google Scholar] [CrossRef]
- Thomas, N.J.; Jouvet, P.; Willson, D. Acute lung injury in children—Kids really aren’t just little adults. Pediatr. Crit. Care Med. 2013, 14, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S.; Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology: Proceedings from the pediatric acute lung injury consensus conference. Pediatr. Crit. Care Med. 2015, 16, S23–S40. [Google Scholar] [CrossRef]
- Khemani, R.G.; Smith, L.; Lopez-Fernandez, Y.M.; Kwok, J.; Morzov, R.; Klein, M.J.; Yehya, N.; Willson, D.; Kneyber, M.C.; Lillie, J.; et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): An international, observational study. Lancet Respir. Med. 2019, 7, 115–128. [Google Scholar] [CrossRef]
- Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Brochard, L.; Slutsky, A.; Pesenti, A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am. J. Respir. Crit. Care Med. 2017, 195, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Rehder, K.J.; Williford, L.; Cheifetz, I.M.; Turner, D.A. Use of high flow nasal cannula in critically ill infants, children, and adults: A critical review of the literature. Intensive Care Med. 2013, 39, 247–257. [Google Scholar] [CrossRef]
- Rowan, C.M.; Klein, M.J.; Hsing, D.D.; Dahmer, M.K.; Spinella, P.C.; Emeriaud, G.; Hassinger, A.B.; Piñeres-Olave, B.E.; Flori, H.R.; Haileselassie, B.; et al. Early use of adjunctive therapies for pediatric acute respiratory distress syndrome: A PARDIE study. Am. J. Respir. Crit. Care Med. 2020, 201, 1389–1397. [Google Scholar] [CrossRef]
- Khemani, R.G.; Parvathaneni, K.; Yehya, N.; Bhalla, A.K.; Thomas, N.J.; Newth, C.J. PEEP lower than the ARDS network protocol is associated with higher pediatric ARDS mortality. Am. J. Respir. Crit. Care Med. 2018, 198, 77–89. [Google Scholar] [CrossRef]
- Bhalla, A.K.M.; Klein, M.J.; Emeriaud, G.; Lopez-Fernandez, Y.M.; Napolitano, N.R.-N.; Fernandez, A.; Al-Subu, A.M.; Gedeit, R.; Shein, S.L.; Nofziger, R.; et al. Adherence to lung-protective ventilation principles in pediatric acute respiratory distress syndrome: A pediatric acute respiratory distress syndrome incidence and epidemiology study. Crit. Care Med. 2021, 49, 1779–1789. [Google Scholar] [CrossRef]
- McNicholas, B.A.; Madotto, F.; Pham, T.; Rezoagli, E.; Masterson, C.H.; Horie, S.; Bellani, G.; Brochard, L.; Laffey, J.G. Demographics, management and outcome of females and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study. Eur. Respir. J. 2019, 54, 1900609. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Hyzy, R.C. Short people got no reason: Gender, height, and disparities in the management of acute lung injury. Crit. Care 2011, 15, 1010. [Google Scholar] [CrossRef]
- Swart, P.; Nijbroek, S.G.L.H.; Paulus, F.; Neto, A.S.; Schultz, M.J. Sex Differences in Use of Low Tidal Volume Ventilation in COVID-19—Insights From the PRoVENT–COVID Study. Front. Med. 2022, 8, 780005. [Google Scholar] [CrossRef]
- Osmundo, G.S., Jr.; Paganotti, C.F.; da Costa, R.A.; Silva, T.H.D.S.; Bombonati, P.C.; Malbouisson, L.M.S.; Francisco, R.P.V. Prone Positioning: A Safe and Effective Procedure in Pregnant Women Presenting with Severe Acute Respiratory Distress Syndrome. Vaccines 2022, 10, 2182. [Google Scholar] [CrossRef]
- Villar, J.; Mora-Ordoñez, J.M.; Soler, J.A.; Mosteiro, F.; Vidal, A.; Ambrós, A.; Fernández, L.; Murcia, I.; Civantos, B.; Romera, M.A.; et al. The PANDORA Study: Prevalence and Outcome of Acute Hypoxemic Respiratory Failure in the Pre-COVID-19 Era. Crit Care Explor. 2022, 4, e0684. [Google Scholar] [CrossRef]
- Yehya, N.; Thomas, N.J.; Khemani, R.G. Risk Stratification Using Oxygenation in the First 24 Hours of Pediatric Acute Respiratory Distress Syndrome. Crit Care Med. 2018, 46, 619–624. [Google Scholar] [CrossRef]
- Wong, J.J.-M.; Phan, H.P.; Phumeetham, S.; Ong, J.S.M.; Chor, Y.K.; Qian, S.; Samransamruajkit, R.; Anantasit, N.; Gan, C.S.; Xu, F.; et al. Risk Stratification in Pediatric Acute Respiratory Distress Syndrome: A Multicenter Observational Study. Crit Care Med. 2017, 45, 1820–1828. [Google Scholar] [CrossRef]
- Pisani, L.; Roozeman, J.-P.; Simonis, F.D.; Giangregorio, A.; van der Hoeven, S.M.; Schouten, L.R.; Horn, J.; Neto, A.S.; Festic, E.; Dondorp, A.M.; et al. Risk stratification using SpO2/FiO2 and PEEP at initial ARDS diagnosis and after 24 h in patients with moderate or severe ARDS. Ann Intensive Care. 2017, 7, 108. [Google Scholar] [CrossRef]
- Rowan, C.M.; Hege, K.M.; Speicher, R.H.; Goodman, M.; Perkins, S.M.; Slaven, J.E.; Westenkirchner, D.F.; Haut, P.R.; Nitu, M.E. Oxygenation index predicts mortality in pediatric stem cell transplant recipients requiring mechanical ventilation. Pediatr Transplant. 2012, 16, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, L.; Pei, Y.; Huang, H.; Chen, C.; Tang, W.; Jiang, X.; Li, Y. The Association Between Oxygenation Status at 24 h After Diagnosis of Pulmonary Acute Respiratory Distress Syndrome and the 30-Day Mortality among Pediatric Oncological Patients. Front. Pediatr. 2022, 10, 805264. [Google Scholar] [CrossRef] [PubMed]
- Trachsel, D.; McCrindle, B.W.; Nakagawa, S.; Bohn, D. Oxygenation index predicts outcome in children with acute hypoxemic respiratory failure. Am. J. Respir. Crit. Care Med. 2005, 172, 206–211. [Google Scholar] [CrossRef]
- Khemani, R.G.; Markovitz, B.P.; Curley, M.A.Q. Characteristics of children intubated and mechanically ventilated in 16 PICUs. Chest 2009, 136, 765–771. [Google Scholar] [CrossRef]
- Batchinsky, A.I.; Wendorff, D.B.; Jones, J.B.; Beely, B.R.; Roberts, T.; Choi, J.H.P.; Harea, G.B.; Cancio, L.C.; Davis, M.; Cannon, J.; et al. Noninvasive SpO2/FiO2 ratio as surrogate for PaO2/FiO2 ratio during simulated prolonged field care and ground and high-altitude evacuation. J. Trauma Acute Care Surg. 2020, 89 (Suppl. 2), S126–S131. [Google Scholar] [CrossRef]
- Reddy, M.; Kulkarni, M.; Kanakalakshmi, S.T.; Shenoy, L.; KrishnaBhat, R.R. Non-invasive SpO2/FiO2 ratio (SFR) as surrogate for PaO2/FiO2 ratio (PFR): A scoping review. J. Crit. Care Med. 2025, 11, 221–232. [Google Scholar] [CrossRef]
- Sjoding, M.W.; Dickson, R.P.; Iwashyna, T.J.; Gay, S.E.; Valley, T.S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 2020, 383, 2477–2478. [Google Scholar] [CrossRef]
- Bickler, P.E.; Feiner, J.R.; Severinghaus, J.W. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 2005, 102, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Jubran, A. Pulse oximetry. Crit. Care 2015, 19, 272. [Google Scholar] [CrossRef]
- Yehya, N.; Thomas, N.J. Disassociating lung mechanics and oxygenation in pediatric acute respiratory distress syndrome. Crit. Care Med. 2017, 45, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Newth, C.J.; Sward, K.A.; Khemani, R.G.; Page, K.; Meert, K.L.; Carcillo, J.A.; Shanley, T.P.; Moler, F.W.; Pollack, M.M.; Dalton, H.J.; et al. Variability in usual care mechanical ventilation for pediatric acute respiratory distress syndrome: Time for a Decision Support Protocol? Pediatr. Crit. Care Med. 2017, 18, e521–e529. [Google Scholar] [CrossRef] [PubMed]
- Zabrocki, L.A.; Brogan, T.V.; Statler, K.D.; Poss, W.B.; Rollins, M.D.; Bratton, S.L. Extracorporeal membrane oxygenation for pediatric respiratory failure: Survival and predictors of mortality. Crit. Care Med. 2011, 39, 364–370. [Google Scholar] [CrossRef]
- Dalton, H.J.; Reeder, R.; Garcia-Filion, P.; Holubkov, R.; Berg, R.A.; Zuppa, A.; Moler, F.W.; Shanley, T.; Pollack, M.M.; Newth, C.; et al. Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation. Am. J. Respir. Crit. Care Med. 2017, 196, 762–771. [Google Scholar] [CrossRef]
- Manning, J.C.; Pinto, N.P.; Rennick, J.E.; Colville, G.; Curley, M.A.Q. Conceptualizing post–intensive care syndrome in children—The PICS-p framework. Pediatr. Crit. Care Med. 2018, 19, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Knoester, H.; Bronner, M.B.; Bos, A.P. Surviving pediatric intensive care: Physical outcome after 3 months. Intensive Care Med. 2008, 34, 1076–1082. [Google Scholar] [CrossRef]
- Als, L.C.; Picouto, M.D.; Hau, S.M.; Nadel, S.; Cooper, M.; Wray, J. Mental and physical well-being following admission to pediatric intensive care. Pediatr. Crit. Care Med. 2015, 16, e141–e149. [Google Scholar] [CrossRef]
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung ultrasound for critically ill patients. Am. J. Respir. Crit. Care Med. 2019, 199, 701–714. [Google Scholar] [CrossRef]
- De Luca, D.; Piastra, M.; Chidini, G.; Tissieres, P.; Calderini, E.; Essouri, S.; Villanueva, A.M.; Allende, A.V.; Pons-Odena, M.; Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC); et al. The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: Multicenter evaluation and expert consensus. Intensive Care Med. 2013, 39, 2083–2091. [Google Scholar] [CrossRef]
- Bardají-Carrillo, M.; Martín-Fernández, M.; López-Herrero, R.; Priede-Vimbela, J.M.; Arroyo-Hernantes, I.; Cobo-Zubia, R.; Prieto-Utrera, R.; Gómez-Sánchez, E.; Villar, J.; Tamayo, E.; et al. Chest radiographs in acute respiratory distress syndrome: An Achilles’ heel of the Berlin criteria? Front. Med. 2025, 12, 1554752. [Google Scholar] [CrossRef]
- Palanidurai, S.; Phua, J.; Chan, Y.H.; Mukhopadhyay, A. P/FP ratio: Incorporation of PEEP into the PaO2/FiO2 ratio for prognostication and classification of acute respiratory distress syndrome. Ann. Intensive Care 2021, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-related causes of lung injury: The mechanical power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef] [PubMed]


| Oxygenation Criteria | Berlin 2.0 | PALICC-2 | |||
|---|---|---|---|---|---|
| NIV | BiPAP/CPAP HFNO ≥ 30 L/min | Full Face + BiPAP/CPAP ≥ 5 cmH2O | |||
| Moderate | Severe | ||||
| PaO2/FIO2 < 300 SpO2:FIO2 < 315 | PaO2/FiO2 > 100 SpO2/FIO2 > 150 | PaO2/FIO2 ≤ 100 SpO2/FIO2 ≤ 150 | |||
| Intubated Patients | PaO2/FIO2 ≤ 300 | OI ≥ 4 or OSI ≥ 5 | |||
| Mild | Moderate | Severe | Moderate | Severe | |
| PaO2/FIO2 | >200–≤300 | ≤200–>100 | ≤100 | OI < 16 | OI ≥ 16 |
| SpO2/FIO2 | >235–≤315 | ≤235–>148 | ≤148 | OSI < 12 | OSI ≥ 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Pizarro, P.; Suarez-Sipmann, F. Acute Respiratory Distress Syndrome Definitions in Adults and Children: A Comparative Narrative Review. J. Clin. Med. 2025, 14, 7644. https://doi.org/10.3390/jcm14217644
Gonzalez-Pizarro P, Suarez-Sipmann F. Acute Respiratory Distress Syndrome Definitions in Adults and Children: A Comparative Narrative Review. Journal of Clinical Medicine. 2025; 14(21):7644. https://doi.org/10.3390/jcm14217644
Chicago/Turabian StyleGonzalez-Pizarro, Patricio, and Fernando Suarez-Sipmann. 2025. "Acute Respiratory Distress Syndrome Definitions in Adults and Children: A Comparative Narrative Review" Journal of Clinical Medicine 14, no. 21: 7644. https://doi.org/10.3390/jcm14217644
APA StyleGonzalez-Pizarro, P., & Suarez-Sipmann, F. (2025). Acute Respiratory Distress Syndrome Definitions in Adults and Children: A Comparative Narrative Review. Journal of Clinical Medicine, 14(21), 7644. https://doi.org/10.3390/jcm14217644

