Does Shock Wave Application Affect the Ureteral Wall Around an Impacted Stone? A Critical Evaluation Focusing on Ureteral Wall Thickness
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skolarikos, A.; Alivizatos, G.; de la Rosette, J. Extracorporeal shock wave lithotripsy 25 years later: Complications and their prevention. Eur. Urol. 2006, 50, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Kambadakone, A.R.; Eisner, B.H.; Catalano, O.A.; Sahani, D.V. New and evolvingconcepts in the imaging and management of urolithiasis: Urologists’ perspective. Radiographics 2010, 30, 603–623. [Google Scholar] [CrossRef] [PubMed]
- European Association of Urology Guidelines Office, Arnhem, The Netherlands. Available online: https://uroweb.org/guidelines/urolithiasis (accessed on 22 October 2025).
- Streem, S.B.; Yost, A.; Mascha, E. Clinical implications of clinically insignificantstore fragments after extracorporeal shock wave lithotripsy. J. Urol. 1996, 155, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.S.; Greene, T.D.; Gupta, M. Treatment of proximal ureteral calculi: Holmium: YAG laser ureterolithotripsy versus extracorporeal shock wave lithotripsy. J. Urol. 2002, 167, 1972–1976. [Google Scholar] [CrossRef] [PubMed]
- Constanti, M.; Calvert, R.C.; Thomas, K.; Dickinson, A.; Carlisle, S. Cost analysis of ureteroscopy (URS) vs extracorporeal shockwave lithotripsy (ESWL) in the management of ureteric stones <10 mm in adults: A UK perspective. BJU Int. 2020, 125, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Ur Rehman, M.F.; Adnan, M.; Hassan, A.; 3rd Humayun Akhtar, F.; Javed, N.; Ali, F. Comparison of ureteroscopic pneumatic lithotripsy and extracorporeal shock wave lithotripsy for proximal ureteral calculi. Cureus 2020, 12, e7840. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.J.; Eisner, B.; Porpiglia, F.; Preminger, G.M.; Tiselius, H.-G. Contemporary management of ureteral stones. Eur. Urol. 2012, 61, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Preminger, G.M.; Tiselius, H.G.; Assimos, D.G.; Alken, P.; Buck, A.C.; Gallucci, M.; Knoll, T.; Lingeman, J.E.; American Urological Association Education and Research, Inc.; European Association of Urology; et al. Guideline for the management of ureteral calculi. Eur. Urol. 2007, 52, 1610–1631. [Google Scholar] [CrossRef] [PubMed]
- Rassweiler, J.J.; Knoll, T.; Kohrmann, K.U.; McAteer, J.A.; Lingeman, J.E.; Cleveland, R.O.; Bailey, M.R.; Chaussy, C. Shock wave technology and application: An update. Eur. Urol. 2011, 59, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Pearle, M.S. Shock-wave lithotripsy for renal calculi. N. Engl. J. Med. 2012, 367, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.R.; Laudone, V.P.; Heston, W.D.; Zeitz, L.; Fair, W.R. Free radical formation by high energy shock waves–comapraison with ionizing irradiation. J. Urol. 1988, 139, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Crum, L.A. Cavitation microjects as a contributory mechanism for renal calculi disintegration in ESWL. J. Urol. 1988, 140, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Pancaroglu, K. Urine cytology to evaluate urinary urothelial damage of shock-wave lithotripsy. Urol. Res. 2011, 39, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Aburas, H.; Helo, F.M.; Qarawi, L. Electromagnetic and electrohydrolic shock wave lithotripsy induced urothelial damage: Is there a difference? J. Endourol. 2017, 31, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Tugcu, V.; Gürbüz, G.; Aras, B.; Gurkan, L.; Otunctemur, A.; Tasci, A.I. Primary ureteroscopy for distal-ureteral stones compared with ureteroscopy after failed extracorporeal lithotripsy. J. Endourol. 2006, 20, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, M.F.; Doluoglu, O.G.; Karakan, T.; Dalkilic, A.; Sonmez, N.C.; Aydogmus, Y.; Resorlu, B. Ureteroscopy in proximal ureteral stones after shock wave lithotripsy failure: Is it safe and efficient or dangerous? Can. Urol. Assoc. J. 2015, 9, E718–E722. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.L.; Connors, B.A.; Evan, A.P.; Handa, R.K.; Gao, S. Effect of shock wave number on renal oxidative stress and inflammation. BJU Int. 2011, 107, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Senyucel, M.F.; Boybeyi, O.; Ayva, S.; Aslan, M.K.; Soyer, T.; Demet, A.I.; Kısa, U.; Basar, M.; Cakmak, M.A. Evaluation of contralateral kidney, liver and lung after extracorporeal shock wave lithotripsy in rabbits. Urolithiasis 2013, 41, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Philippou, P.; Payne, D.; Davenport, K.; Timoney, A.G.; Keeley, F.X. Does previous failed ESWL have a negative impact of on the outcome of ureterorenoscopy? A matched pair analysis. Urolithiasis 2013, 41, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Akkas, F.; Sam, E.; Ayten, A.; Atar, F.A.; Guner, E. Can shock wave lithotripsy lead to impaction of ureteral stones? Minerva Urol. Nephrol. 2023, 75, 85–91. [Google Scholar] [CrossRef] [PubMed]
| Variable | 1 Session (42/114) | 2 Session (40/114) | 3 Session (32/114) | p Value | 
|---|---|---|---|---|
| Age (Years) | 39.31 ± 9.96 | 45.10 ± 14.48 | 43.88 ± 10.86 | 0.076 | 
| Gender | ||||
| Male | 32 (76.2%) | 28 (70%) | 27 (84.4%) | |
| Female | 10 (23.8%) | 12 (30%) | 5 (15.6%) | 0.362 | 
| BMI | 26.82 ± 3.49 | 26.94 ± 4.35 | 27.19 ± 5.9 | 0.942 | 
| Comorbidities | ||||
| Non | 29 (69.04%) | 16 (40%) | 20 (62.5%) | |
| HT | 5 (11.9%) | 6 (15%) | 5 (15.6%) | 0.88 | 
| DM | 4 (9.5%) | 4 (10%) | 5 (15.6%) | 0.674 | 
| Other | 4 (9.5%) | 4 (10%) | 2 (6.3%) | 0.514 | 
| Family History | ||||
| Yes | 25 (59.5%) | 22 (60%) | 19 (68.8%) | |
| No | 17 (40.5%) | 18 (40%) | 13 (31.3%) | 0.801 | 
| Ureteral Location | ||||
| Upper | 28 (66.7%) | 22 (55%) | 13 (40.6%) | |
| Middle | 6 (14.3%) | 10 (25%) | 6 (18.8%) | |
| Lower | 8 (19%) | 8 (20%) | 13 (40.6%) | 0.112 | 
| Radiologic Parameters | ||||
| Hounsfield Unit | 754.12 ± 99.21 | 904.32 ± 42.39 | 928 ± 67.08 | 0.006 | 
| Stone-Skin Distance | 116.2 ± 17.48 | 117.22 ± 16.45 | 116.99 ± 12.8 | 0.960 | 
| Stone Size (mm) | 8.55 ± 2.3 | 9.29 ± 2.3 | 9.28 ± 2.39 | 0.277 | 
| Stone Side | ||||
| Left | 22 (52.4%) | 18 (45%) | 17 (53.1%) | |
| Right | 20 (47.6%) | 22 (55%) | 15 (46.9%) | 0.733 | 
| Ureteral Wall Thickness | ||||
| Before Treatment | 3.33 ± 1.04 | 3.86 ± 1.13 | 3.29 ± 1.12 | |
| After Treatment (1 week) | 2.54 ± 1.19 | 2.69 ± 0.87 | 2.95 ± 1.19 | |
| Change | 0.79 ± 1.07 | 1.16 ± 1.49 | 0.34 ± 1.15 | 0.024 | 
| Hydronephrosis Grade | ||||
| Grade 0 | 11 (26.2%) | 6 (15%) | 2 (6.3%) | |
| Grade 1 | 20 (47.6%) | 14 (35%) | 11 (34.4%) | |
| Grade 2 | 10 (23.8%) | 12 (30%) | 17 (53.1%) | |
| Grade 3 | 1 (2.4%) | 20 (20%) | 2 (6.3%) | 0.007 | 
| Treatment Success | ||||
| Successful | 38 (90.5%) | 30 (75%) | 26 (81.3%) | |
| Residual Stone | 1 (2.4%) | 6 (15%) | 2 (6.3%) | |
| Failure | 3 (7.1%) | 4 (10%) | 4 (12.5%) | 0.245 | 
| Ureteral Catheter | ||||
| Yes | 6 (14.3%) | 10 (25%) | 3 (9.4%) | |
| No | 36 (85.7%) | 30 (75%) | 29 (90.6%) | 0.183 | 
| Predictor | aOR | 95% CI (Low) | 95% CI (High) | p-Value | 
|---|---|---|---|---|
| 2 sessions vs. 1 session | 1.42 | 0.24 | 8.42 | 0.696 | 
| 3 sessions vs. 1 session | 0.62 | 0.10 | 3.85 | 0.610 | 
| Female vs. male | 0.73 | 0.15 | 3.65 | 0.701 | 
| Pre UWT | 1.04 | 0.50 | 2.16 | 0.908 | 
| Stone size | 0.79 | 0.59 | 1.06 | 0.114 | 
| HU | 1.00 | 1.00 | 1.00 | 0.083 | 
| SSD (stone skin distance) | 1.03 | 0.97 | 1.09 | 0.291 | 
| Hydroneprosis | 0.94 | 0.38 | 2.34 | 0.900 | 
| BMI | 0.85 | 0.67 | 1.08 | 0.177 | 
| Age | 0.94 | 0.87 | 1.01 | 0.070 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasar, H.; Yildirim, S.; Asik, A.; Sahinler, E.B.; Simsek, G.; Sahin, C.; Sarica, K. Does Shock Wave Application Affect the Ureteral Wall Around an Impacted Stone? A Critical Evaluation Focusing on Ureteral Wall Thickness. J. Clin. Med. 2025, 14, 7636. https://doi.org/10.3390/jcm14217636
Yasar H, Yildirim S, Asik A, Sahinler EB, Simsek G, Sahin C, Sarica K. Does Shock Wave Application Affect the Ureteral Wall Around an Impacted Stone? A Critical Evaluation Focusing on Ureteral Wall Thickness. Journal of Clinical Medicine. 2025; 14(21):7636. https://doi.org/10.3390/jcm14217636
Chicago/Turabian StyleYasar, Hikmet, Salih Yildirim, Alper Asik, Emre Burak Sahinler, Gamze Simsek, Cahit Sahin, and Kemal Sarica. 2025. "Does Shock Wave Application Affect the Ureteral Wall Around an Impacted Stone? A Critical Evaluation Focusing on Ureteral Wall Thickness" Journal of Clinical Medicine 14, no. 21: 7636. https://doi.org/10.3390/jcm14217636
APA StyleYasar, H., Yildirim, S., Asik, A., Sahinler, E. B., Simsek, G., Sahin, C., & Sarica, K. (2025). Does Shock Wave Application Affect the Ureteral Wall Around an Impacted Stone? A Critical Evaluation Focusing on Ureteral Wall Thickness. Journal of Clinical Medicine, 14(21), 7636. https://doi.org/10.3390/jcm14217636
 
        



 
       