Chronotype, Night Shift Work, and Diurnal Salivary Cortisol Rhythms Among Healthcare Professionals
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Study Design
2.1.1. Survey Sample
2.1.2. Physiological Subsample
2.2. Questionnaires
2.2.1. Reduced Morningness–Eveningness Questionnaire (rMEQ)
2.2.2. Perceived Stress Scale (PSS-14)
2.2.3. Patient Health Questionnaire Somatic Symptom Scale (PHQ-15)
2.2.4. Athens Insomnia Scale (AIS)
2.2.5. Sociodemographic and Work-Related Variables
2.3. Physiological Data Collection
2.4. Statistical Analysis
3. Results
3.1. Survey-Based Assessment of Stress, Sleep, and Health Behaviours in Healthcare Professionals
3.2. Cortisol Profiles and Physiological Stress Markers Across Chronotype Groups in a Subsample of Shift Workers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIS | Athens Insomnia Scale |
| AUC | area under the curve |
| BP | blood pressure |
| CAR | cortisol awakening response |
| GLMs | general linear models |
| HPA | hypothalamic–pituitary–adrenal |
| MSF | midpoint of sleep |
| PHQ-15 | Patient Health Questionnaire Somatic Symptom Scale |
| PSS, PSS-14 | Perceived Stress Scale |
| PTSD | post-traumatic stress syndrome |
| rMEQ | reduced Morningness–Eveningness Questionnaire |
| SCN | Suprachiamsatic Nucleus |
References
- Gnocchi, D.; Bruscalupi, G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology 2017, 6, 10. [Google Scholar] [CrossRef]
- Roenneberg, T.; Merrow, M. The Circadian Clock and Human Health. Curr. Biol. CB 2016, 26, R432–R443. [Google Scholar] [CrossRef]
- Knutsson, A. Health disorders of shift workers. Occup. Med. 2003, 53, 103–108. [Google Scholar] [CrossRef]
- James, S.M.; Honn, K.A.; Gaddameedhi, S.; Van Dongen, H.P.A. Shift work: Disrupted circadian rhythms and sleep—Implications for health and well-being. Curr. Sleep Med. Rep. 2017, 3, 104–112. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm 2022, 37, 3–28. [Google Scholar] [CrossRef]
- Burek, K.; Rabstein, S.; Kantermann, T.; Vetter, C.; Rotter, M.; Wang-Sattler, R.; Lehnert, M.; Pallapies, D.; Jöckel, K.H.; Brüning, T.; et al. Night work, chronotype and cortisol at awakening in female hospital employees. Sci. Rep. 2022, 12, 6525. [Google Scholar] [CrossRef] [PubMed]
- Fusz, K.; Kívés, Z.; Pakai, A.; Kutfej, N.; Deák, A.; Oláh, A. Health behaviour, sleep quality and subjective health status among Hungarian nurses working varying shifts. Work 2021, 68, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Tsai, Y.; Liu, C. Cortisol awakening response in nurses working rotating shifts. J. Occup. Health 2022, 64, e12345. [Google Scholar] [CrossRef]
- Fernández-Sánchez, M.; Méndez, M.; Ramírez, M. Salivary cortisol and shift work: A systematic review. J. Psychosom. Res. 2018, 112, 120–126. [Google Scholar] [CrossRef]
- Chida, Y.; Steptoe, A. Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biol. Psychol. 2009, 80, 265–278. [Google Scholar] [CrossRef]
- Bowles, N.P.; Thosar, S.S.; Butler, M.P.; Clemons, N.A.; Robinson, L.D.; Ordaz, O.H.; Herzig, M.X.; McHill, A.W.; Rice, S.P.M.; Emens, J.; et al. The circadian system modulates the cortisol awakening response in humans. Front. Neurosci. 2022, 16, 995452. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm 2006, 18, 80–90. [Google Scholar] [CrossRef]
- Juda, M.; Vetter, C.; Roenneberg, T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J. Biol. Rhythm 2013, 28, 141–151. [Google Scholar] [CrossRef]
- Yang, H.; Kim, S.; Yoo, S.H.; Mun, Y.; Choi, M.L.; Lee, J.A.; Song, E. Sleep quality according to chronotype in nurses working 8-hour shifts. Occup. Med. 2024, 74, 290–296. [Google Scholar] [CrossRef]
- Horne, J.A.; Östberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Urbán, R.; Magyaródi, T.; Rigó, A. Morningness-eveningness, chronotypes and health-impairing behaviours in adolescents. Chronobiol. Int. 2011, 28, 238–247. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Stauder, A.; Konkolÿ Thege, B.; Kovács, M. A PSS magyar változatának pszichometriai jellemzői. Mentálhigiéné Pszichoszomatika 2006, 3, 203–216. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-15: Validity of a new measure for evaluating the severity of somatic symptoms. Psychosom. Med. 2002, 64, 258–266. [Google Scholar] [CrossRef]
- Stauder, A.; Witthöft, M.; Köteles, F. Validation of the Hungarian PHQ-15: A latent variable approach. Ideggyógyászati Szemle. 2021, 74, 183–190. [Google Scholar] [CrossRef]
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. Athens Insomnia Scale: Validation of an instrument based on ICD-10 criteria. J. Psychosom. Res. 2000, 48, 555–560. [Google Scholar] [CrossRef]
- Novák, M. Sleep Disorders and Quality of Life. Ph.D. Thesis, Semmelweis University, Budapest, Hungary, 2005. [Google Scholar]
- Sateia, M.J. International classification of sleep disorders, third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Steptoe, A. Cortisol awakening response. In Encyclopedia of Stress, 2nd ed.; Fink, G., Ed.; Academic Press: Oxford, UK, 2007; pp. 649–653. [Google Scholar] [CrossRef]
- Fries, E.; Dettenborn, L.; Kirschbaum, C. The cortisol awakening response (CAR): Facts and future directions. Int. J. Psychophysiol. 2009, 72, 67–73. [Google Scholar] [CrossRef] [PubMed]
- IBL–International G.m.b.H. Cortisol Saliva ELISA (RE52611); IBL International: Hamburg, Germany, 2024; Available online: https://ibl-international.com/en/re52611-cortisol-saliva-elisa (accessed on 1 December 2024).
- Trilck, M.; Flitsch, J.; Lüdecke, D.K.; Jung, R.; Petersenn, S. Salivary cortisol measurement: A reliable method for the diagnosis of Cushing’s syndrome. Exp. Clin. Endocrinol. Diabetes 2005, 113, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Kirschbaum, C.; Kudielka, B.M.; Adam, E.K.; Pruessner, J.C.; Wüst, S.; Dockray, S.; Smyth, N.; Evans, P.; Hellhammer, D.H.; et al. Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology 2016, 63, 414–432. [Google Scholar] [CrossRef]
- Rozmann, N.; Fusz, K.; Macharia, J.M.; Sipos, D.; Kivés, Z.; Kövesdi, O.; Raposa, B. Occupational stress and sleep quality among Hungarian nurses in the post-COVID era: A cross-sectional study. Healthcare 2025, 13, 2029. [Google Scholar] [CrossRef]
- Fusz, K.; Faludi, B.; Pusztai, D.; Sebők, N.; Oláh, A. Insomnia és elalvást segítő szokások felmérése felnőttek körében [Insomnia and habits to help to fall asleep among adults]. Orvosi Hetil. 2016, 157, 1955–1959. [Google Scholar] [CrossRef]
- Hinz, A.; Ernst, J.; Glaesmer, H.; Brähler, E.; Rauscher, F.G.; Petrowski, K.; Kocalevent, R.D. Frequency of somatic symptoms in the general population: Normative values for the Patient Health Questionnaire-15 (PHQ-15). J. Psychosom. Res. 2017, 96, 27–31. [Google Scholar] [CrossRef]
- Paparrigopoulos, T.; Tzavara, C.; Theleritis, C.; Psarros, C.; Soldatos, C.; Tountas, Y. Insomnia and its correlates in a representative sample of the Greek population. BMC Public Health 2010, 10, 531. [Google Scholar] [CrossRef]
- de Azevedo Bringel, J.M.; Abreu, I.; Muniz, M.C.M.C.; de Almeida, P.C.; Silva, M.R.G. Health professionals’ chronotype association with salivary cortisol and occupational stress in neonatal intensive care units. Int. J. Environ. Res. Public Health 2023, 20, 5683. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef]
- Akerstedt, T.; Kecklund, G.; Axelsson, J. Impaired sleep after bedtime stress and worries. Biol. Psychol. 2007, 76, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Debono, M.; Ross, R.J.; Newell-Price, J. Inadequacies of glucocorticoid replacement and improvements by physiological circadian therapy. Eur. J. Endocrinol. 2009, 160, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C.; Fischer, D.; Matera, J.L.; Roenneberg, T. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. Curr. Biol. CB 2015, 25, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Chung, M.H. Dose-response effects of light therapy on sleepiness and circadian phase shift in shift workers: A meta-analysis and moderator analysis. Sci. Rep. 2021, 11, 11976. [Google Scholar] [CrossRef]
- Crowther, M.E.; Ferguson, S.A.; Vincent, G.E.; Reynolds, A.C. Non-pharmacological interventions to improve chronic disease risk factors and sleep in shift workers: A systematic review and meta-analysis. Clocks Sleep 2021, 3, 132–178. [Google Scholar] [CrossRef]
- Hannemann, J.; Laing, A.; Middleton, B.; Cridland, J.; Staels, B.; Marx, N.; Grant, P.J.; Federici, M.; Stenberg, T.; Skene, D.J.; et al. Light therapy improves diurnal blood pressure control in night shift workers via reduction of catecholamines: The EuRhythDia study. J. Hypertens. 2021, 39, 1678–1688. [Google Scholar] [CrossRef]
- Jeon, B.M.; Kim, S.H.; Shin, S.H. Effectiveness of sleep interventions for rotating night shift workers: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1187382. [Google Scholar] [CrossRef]


| Sociodemographic, Occupational, and Psychological Characteristics of Participants Across Chronotype Groups (n = 451) | ||||
|---|---|---|---|---|
| Morning | Intermediate | Evening | p Value | |
| Sociodemographic characteristics | ||||
| n (%) | ||||
| Participants | 151 (34%) | 240 (53%) | 60 (13%) | - |
| Sex, female | 123 (86%) | 183 (80%) | 43 (75%) | 0.15 |
| Marital status, married/partnership | 113 (58%) b,c | 180 (75%)a | 45 (75%) a | 0.003 |
| Living together with children | 82 (54%) c | 100 (42%) | 16 (27%) a | 0.001 |
| Degree, nurse | 119 (79%) | 182 (76%) | 40 (67%) | 0.18 |
| Hospital ward, emergency department | 37 (41%) | 57 (25%) | 24 (41%) | 0.07 |
| Having side job | 26 (17%) | 50 (21%) | 12 (20%) | 0.45 |
| Studying at university (nurse) | 21 (18%) | 37 (20%) | 10 (25%) | 0.62 |
| mean (min-max) | ||||
| Age (year) | 44.7 (22–70) b,c | 41.7 (21–66) a,c | 37.2 (25–65) a,b | <0.001 |
| Health behaviours and health status | ||||
| n (%) | ||||
| Healthy eating | 1 (2%) | 36 (15%) | 24 (16%) | 0.051 |
| Regular exercise | 22 (37%) | 88 (37%) | 64 (43%) | 0.59 |
| Energy drink consumption, everyday | 5 (3%) c | 21 (9%) | 10 (17%) a | <0.001 |
| Insomnia (based on AIS) | 74 (49%)c | 132 (55%) | 42 (70%) a | 0.02 |
| Subjective health status, bad | 14 (9%) | 20 (8%) | 9 (15%) | 0.34 |
| Work schedule characteristics | ||||
| mean (min-max) | ||||
| Years in this shift type | 15.0 (1–42) c | 13.1 (1–40 | 11.0 (1–40) a | 0.04 |
| Night shifts per month | 4.7 (0–16.5) c | 5.7 (0–18) | 6.3 (0–17) a | 0.001 |
| Perceived suitability of night shifts (1–10 scale) | 4.7 (1–10) b,c | 5.6 (1–10) a | 6.4 (1–10) a | <0.001 |
| Well-being during day shifts (point) | 6.9 (1–10) b,c | 6.3 (1–10) a,c | 5.5 (1–9) a,b | <0.001 |
| Well-being during night shifts (point) | 4.5 (1–10) b,c | 5.5 (1–10) a | 6.2 (1–10) a | <0.001 |
| Mean number of symptoms reported per night shift | 1.7 (0–7) | 1.5 (0–5) | 1.2 (0–6) | 0.07 |
| n (%) | ||||
| Working at night as well | 113 (75%) b,c | 218 (91%)a | 54 (90%) a | <0.001 |
| Day shifts with on-call duties (physician) | 15 (47%) | 40 (70%) | 11 (55%) | 0.25 |
| Multi-shift work schedule (nurse) | 84 (72%) b,c | 158 (87%) a | 37 (93%) a | <0.001 |
| Flexible work schedule (nurse) | 59 (54%) | 113 (63%) | 23 (58%) | 0.38 |
| Having symptoms during night shifts | 101 (67%) | 174 (73%)c | 30 (50%) b | 0.02 |
| No preference for night work | 78 (52%) c | 89 (37%) | 18 (30%) a | <0.001 |
| Night illumination, adequate | 75 (66%) | 146 (68%) | 39 (72%) | 0.60 |
| Chronotype and psychological measures | ||||
| mean (min-max) | ||||
| rMEQ (point) | 19.6 (18–24) b,c | 14.9 (12–17) a,c | 10.1(6–11) a,b | <0.001 |
| MSF (hh:mm) | 2:45 (1:15–3:00) b,c | 3:38 (3:00–5:00) a,c | 4:47 (4:30–7:30) a,b | <0.001 |
| mean (±SD) | ||||
| BMI (kg/m2) | 27.9 (±5.3) b | 26.4 (±5.3) a | 26.1 (±6.1) | 0.02 |
| PHQ-15 (point) | 8.3 (5.4) | 9.1 (5.5) | 9.3 (6.2) | 0.29 |
| PSS (point) | 25.1 (8.9) | 25.5 (8.5) | 25.6 (10.0) | 0.91 |
| AIS (point) | 5.8 (3.7) c | 6.3 (3.9) c | 8.2 (4.2) a,b | <0.001 |
| Sleep duration after day shift (hour) | 7.1 (1.4) | 7.3 (1.4) | 7.5 (1.8) | 0.17 |
| Sleep duration after night shift (hour) | 4.6 (2.0) | 4.9 (2.2) | 5.2 (1.9) | 0.25 |
| Predictors of Somatic Symptoms, Insomnia, and Perceived Stress in a General Linear Model (n = 451) | |||
|---|---|---|---|
| PHQ-15 | AIS | PSS | |
| Predictor | B, (95% CI), p | ||
| Age | n.s. | +0.033 (0.002–0.063), p = 0.036 | n.s. |
| Night shifts/month | n.s. | +0.151 (0.023–0.279), p = 0.021 | n.s. |
| Night complaints | +1.360 (1.072–1.648), p < 0.001 | n.s. | n.s. |
| rMEQ | n.s. | −0.122 (−0.225–0.018), p = 0.021 | n.s. |
| PHQ-15 | — | +0.302 (0.222–0.382), p < 0.001 | +0.585 (0.392–0.779), p < 0.001 |
| AIS | +0.472 (0.347–0.597), p < 0.001 | — | +0.729 (0.487–0.971), p < 0.001 |
| PSS | +0.165 (0.111–0.220), p < 0.001 | +0.131 (0.088–0.175), p < 0.001 | — |
| Sociodemographic, Behavioural, and Physiological Characteristics of Participants by Chronotype Group (n = 40) | ||||
|---|---|---|---|---|
| Morning | Intermediate | Evening | p Value | |
| Sociodemographic characteristics | ||||
| n (%) | ||||
| Participants | 14 (35%) | 14 (35%) | 12 (30%) | - |
| Sex, female | 9 (64%) | 7 (50%) | 7 (58%) | 0.59 |
| Marital status, married/partnership | 10 (71%) | 10 (71%) | 7 (58%) | 0.53 |
| Living together with children | 8 (57%) c | 3 (21%) | 1 (8%) a | 0.02 |
| Having side job | 3 (21%) | 2 (14%) | 1 (8%) | 0.66 |
| Studying at university | 2 (14%) | 3 (21%) | 2 (16%) | 0.83 |
| mean (min-max) | ||||
| Age (year) | 34.6 (26–45) c | 30.4 (25–44) | 29.3 (25–36) a | 0.02 |
| Health behaviours and health status | ||||
| n (%) | ||||
| Healthy eating | 1 (7%) | 4 (29%) | 1 (8%) | 0.46 |
| Regular exercise | 7 (50%) | 9 (64%) | 5 (42%) | 0.41 |
| Coffee and/or energy drink consumption, 3 or more times a day | 4 (29%) | 6 (43%) | 5 (42%) | 0.77 |
| Insomnia (based on AIS) | 3 (21%) c | 8 (57%) | 8 (67%) a | 0.04 |
| Subjective health status, good | 7 (50%) | 7 (50%) | 4 (32%) | 0.28 |
| Work schedule characteristics | ||||
| mean (min-max) | ||||
| Work years in this shift type (year) | 8.9 (2–25) | 6.5 (1–20) | 5,8 (2–10) | 0.22 |
| Night shifts per month | 7.1 (5.5–12.0) | 6.7 (4.0–8.5) | 7.0 (6.0–8.0) | 0.77 |
| Perceived suitability of night shifts (1–10 scale) | 6.7 (4–10) | 7.5 (3–10) | 8.2 (6–10) | 0.14 |
| Well-being during day shifts (point) | 7.3 (5–9) | 7.3 (4–9) | 5.9 (3–8) | 0.05 |
| Well-being during night shifts (point) | 6.1 (3–10) | 7.3 (3–10) | 7.4 (5–10) | 0.17 |
| Mean number of symptoms reported per night shift | 0.7 (0–2) | 0.6 (0–3) | 0 | 0.03 |
| n (%) | ||||
| Presence of symptoms during night shifts (% reporting ≥1 symptom) | 7 (50%) | 4 (29%) | 0 | 0.01 |
| Night illumination, adequate | 7 (50%) | 10 (71%) | 7 (58%) | 0.15 |
| Psychological and physiological parameters | ||||
| mean (min-max) | ||||
| rMEQ (point) | 18.4 (18–20) b,c | 13.8 (12–17) a,c | 9.8 (9–11) a,b | <0.001 |
| Mid-sleep on free days (MSF, hh:mm) | 2:20 (1:15–3:00) b,c | 3:54 (3:00–5:00) a,c | 5:20 (5:00–7:30) a,b | <0.001 |
| mean (±SD) | ||||
| Cortisol awakening response (CAR) during day shift (nmol/L) | 13.0 (±10.6) | 15.9 (±10.1) c | 6.5 (±5.1) b | 0.02 |
| Cortisol awakening response (CAR) during night shift (nmol/L) | 7.1 (±3.2) | 13.3 (±7.6) | 7.9 (±6.7) | 0.09 |
| Cortisol slope between CAR and 18:00 during day shift (nmol/L/h) | −0.9 (±0.9) | −1.2 (±0.8) c | −0.4 (±0.4) b | 0.01 |
| Cortisol slope between CAR and 18:00 during night shift (nmol/L/h) | −0.4 (±0.3) | −0.9 (±0.7) | −0.3 (±0.3) | 0.23 |
| AUC during day shift (nmol/L* 16 h) | 89.9 (±55.4) | 110.0 (±62.3) | 63.2 (±41.0) | 0.18 |
| AUC during night shift (nmol/L* 16 h) | 65.8 (±23.2) | 102.5 (±48.0) | 71.1 (±39.9) | 0.10 |
| Systolic blood pressure at 18:00 during day shift | 119.3 (±12.9) | 121.4 (±11.4) | 123.6 (±13.6) | 0.69 |
| Diastolic pressure at 18:00 during day shift | 78.3 (±8.9) | 78.2 (±8.1) | 75.6 (±8.6) | 0.68 |
| Heart rate at 18:00 during day shift | 78.9 (±9.7) | 78.0 (±16.6) | 84.5 (±11.6) | 0.41 |
| BMI (kg/m2) | 25.5 (±5.0) | 24.0 (±2.1) | 27.2 (±6.7) | 0.27 |
| PHQ-15 (point) | 4.3 (±2.7) | 6.3 (±4.6) | 6.1 (±3.4) | 0.30 |
| PSS (point) | 17.1 (±4.7) | 22.2 (±8.8) | 21.2 (±6.2) | 0.13 |
| AIS (point) | 3.6 (±1.9) c | 6.4 (±3.7) | 6.7 (±2.7) a | 0.02 |
| Sleep duration after day shift (hour) | 8.0 (±1.5) | 7.0 (±1.7) | 7.5 (±2.0) | 0.47 |
| Sleep duration after night shift (hour) | 4.5 (±0.7) c | 4.9 (±1.1) | 6.0 (±1.3) a | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusz, K.; Deák, A.; Závodi, P.; Suszter, G.; Böröcz, K.; Szinger, D.; le Roux, A.; Rozmann, N.; Kanizsai, P.L. Chronotype, Night Shift Work, and Diurnal Salivary Cortisol Rhythms Among Healthcare Professionals. J. Clin. Med. 2025, 14, 7630. https://doi.org/10.3390/jcm14217630
Fusz K, Deák A, Závodi P, Suszter G, Böröcz K, Szinger D, le Roux A, Rozmann N, Kanizsai PL. Chronotype, Night Shift Work, and Diurnal Salivary Cortisol Rhythms Among Healthcare Professionals. Journal of Clinical Medicine. 2025; 14(21):7630. https://doi.org/10.3390/jcm14217630
Chicago/Turabian StyleFusz, Katalin, András Deák, Péter Závodi, Gergely Suszter, Katalin Böröcz, Dávid Szinger, Alain le Roux, Nóra Rozmann, and Peter Laszlo Kanizsai. 2025. "Chronotype, Night Shift Work, and Diurnal Salivary Cortisol Rhythms Among Healthcare Professionals" Journal of Clinical Medicine 14, no. 21: 7630. https://doi.org/10.3390/jcm14217630
APA StyleFusz, K., Deák, A., Závodi, P., Suszter, G., Böröcz, K., Szinger, D., le Roux, A., Rozmann, N., & Kanizsai, P. L. (2025). Chronotype, Night Shift Work, and Diurnal Salivary Cortisol Rhythms Among Healthcare Professionals. Journal of Clinical Medicine, 14(21), 7630. https://doi.org/10.3390/jcm14217630

