Maternal Systemic Inflammation and Fetal Thymic Size in Diabetic Pregnancies: Predictive Role of Hematological Biomarkers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Eligibility Criteria
2.3. Diabetes Screening and Group Stratification
2.4. Ultrasound Assessment of the Fetal Thymus
2.5. Calculation of Hematological Biomarkers
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and metabolic adaptations in physiological and complicated pregnancy: Focus on obesity and gestational diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A Clinical Update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, R.; Zera, C. Pregestational Diabetes in Pregnancy. Obstet. Gynecol. Clin. 2018, 45, 315–331. [Google Scholar] [CrossRef]
- Schaefer-Graf, U.; Napoli, A.; Nolan, C.J. Diabetes in Pregnancy: A New Decade of Challenges Ahead. Diabetologia 2018, 61, 1012–1021. [Google Scholar] [CrossRef]
- Burlina, S.; Dalfrà, M.; Lapolla, A. Short-and Long-Term Consequences for Offspring Exposed to Maternal Diabetes: A Review. J. Matern.-Fetal Neonatal Med. 2019, 32, 687–694. [Google Scholar] [CrossRef]
- Mitanchez, D.; Yzydorczyk, C.; Siddeek, B.; Boubred, F.; Benahmed, M.; Simeoni, U. The offspring of the diabetic mother—Short- and long-term implications. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 256–269. [Google Scholar] [CrossRef]
- Ornoy, A.; Reece, E.A.; Pavlinkova, G.; Kappen, C.; Miller, R.K. Effect of Maternal Diabetes on the Embryo, Fetus, and Children: Congenital Anomalies, Genetic and Epigenetic Changes and Developmental Outcomes. Birth Defects Res. Part C Embryo Today Rev. 2015, 105, 53–72. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, D. Maternal Diabetes Mellitus and Risk of Neonatal Respiratory Distress Syndrome: A Meta-Analysis. Acta Diabetol. 2019, 56, 729–740. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.; Dalman, C.; Karlsson, H.; Gardner, R. Association of maternal diabetes with neurodevelopmental disorders: Autism spectrum disorders, attention-deficit/hyperactivity disorder and intellectual disability. Int. J. Epidemiol. 2021, 50, 459–474. [Google Scholar] [CrossRef]
- Kumar, R.; Ouyang, F.; Story, R.E.; Pongracic, J.A.; Hong, X.; Wang, G.; Pearson, C.; Ortiz, K.; Bauchner, H.; Wang, X. Gestational diabetes, atopic dermatitis, and allergen sensitization in early childhood. J. Allergy Clin. Immunol. 2009, 124, 1031–1038.e4. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; McCarthy, F.P.; McCarthy, C.M. Gestational Diabetes Mellitus and Maternal Immune Dysregulation: What We Know So Far. Int. J. Mol. Sci. 2021, 22, 4261. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Silva, S.; Alencar, A.P.; Moreli, J.B.; Borbely, A.U.; Lima, L.d.S.; Scavone, C.; Damasceno, D.C.; Rudge, M.V.C.; Bevilacqua, E.; Calderon, I.M.P. Hyperglycemia induces inflammatory mediators in the human chorionic villous. Cytokine 2018, 111, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Farber, D.L. The role of the thymus in the immune response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef]
- Caissutti, C.; Familiari, A.; Khalil, A.; Flacco, M.E.; Manzoli, L.; Scambia, G.; Cagnacci, A.; D’Antonio, F. Small fetal thymus and adverse obstetrical outcome: A systematic review and a meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 97, 111–121. [Google Scholar] [CrossRef]
- Hu, M.; Eviston, D.; Hsu, P.; Marino, E.; Chidgey, A.; Santner-Nanan, B.; Wong, K.; Richards, J.L.; Yap, Y.A.; Collier, F.; et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat. Commun. 2019, 10, 3031. [Google Scholar] [CrossRef]
- Chaoui, R.; Heling, K.-S.; Sarut Lopez, A.; Thiel, G.; Karl, K. The Thymic–Thoracic Ratio in Fetal Heart Defects: A Simple Way to Identify Fetuses at High Risk for Microdeletion 22q11. Ultrasound Obstet. Gynecol. 2011, 37, 397–403. [Google Scholar] [CrossRef]
- Rackaityte, E.; Halkias, J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020, 11, 588. [Google Scholar] [CrossRef]
- Lewis, D.B.; Wilson, C.B. Developmental Immunology and Role of Host Defenses in Fetal and Neonatal Susceptibility to Infection. In Infectious Diseases of the Fetus and Newborn Infant, 6th ed.; Remington, J.S., Klein, J.O., Wilson, C.B., Baker, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 87–210. [Google Scholar]
- Parisi, F.; Milazzo, R.; Savasi, V.M.; Cetin, I. Maternal low-grade chronic inflammation and intrauterine programming of health and disease. Int. J. Mol. Sci. 2021, 22, 1732. [Google Scholar] [CrossRef]
- Fink, N.R.; Chawes, B.; Bønnelykke, K.; Thorsen, J.; Stokholm, J.; Rasmussen, M.A.; Brix, S.; Bisgaard, H. Levels of Systemic Low-Grade Inflammation in Pregnant Mothers and Their Offspring Are Correlated. Sci. Rep. 2019, 9, 3043. [Google Scholar] [CrossRef]
- Woods, R.M.; Lorusso, J.M.; Fletcher, J.; ElTaher, H.; McEwan, F.; Harris, I.; Kowash, H.M.; D’Souza, S.W.; Harte, M.; Hager, R.; et al. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal. 2023, 7, NS20220064. [Google Scholar] [CrossRef]
- Couture, C.; Brien, M.E.; Boufaied, I.; Duval, C.; Soglio, D.D.; Enninga, E.A.L.; Cox, B.; Girard, S. Proinflammatory changes in the maternal circulation, maternal-fetal interface, and placental transcriptome in preterm birth. Am. J. Obstet. Gynecol. 2022, 228, 332-e1. [Google Scholar] [CrossRef]
- Gomez-Lopez, N.; Galaz, J.; Miller, D.; Farias-Jofre, M.; Liu, Z.; Arenas-Hernandez, M.; Garcia-Flores, V.; Shaffer, Z.; Greenberg, J.M.; Theis, K.R.; et al. The immunobiology of preterm labor and birth: Intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022, 164, R11–R45. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Couture, C.; Girard, S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Musa, E.; Salazar-Petres, E.; Arowolo, A.; Levitt, N.; Matjila, M.; Sferruzzi-Perri, A.N. Obesity and Gestational Diabetes Independently and Collectively Induce Specific Effects on Placental Structure, Inflammation and Endocrine Function in a Cohort of South African Women. J. Physiol. 2023, 7, 1287–1306. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-H.; Wen, W.-X.; Jiang, Z.-P.; Du, Z.-P.; Ma, Z.-H.; Lu, A.-L.; Li, H.-P.; Yuan, F.; Wu, S.-B.; Guo, J.-W.; et al. The Clinical Value of Neutrophil-to-Lymphocyte Ratio (NLR), Systemic Immune-Inflammation Index (SII), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Inflammation Response Index (SIRI) for Predicting the Occurrence and Severity of Pneumonia in Patients with Intracerebral Hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar]
- Zhang, Y.; Xing, Z.; Zhou, K.; Jiang, S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin. Interv. Aging 2021, 16, 1997–2007. [Google Scholar] [CrossRef]
- Xiu, J.; Lin, X.; Chen, Q.; Yu, P.; Lu, J.; Yang, Y.; Chen, W.; Bao, K.; Wang, J.; Zhu, J.; et al. The Aggregate Index of Systemic Inflammation (AISI): A Novel Predictor for Hypertension. Front. Cardiovasc. Med. 2023, 10, 1163900. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes. Diabetes Care 2025, 48, S27. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.d.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676. [Google Scholar] [CrossRef]
- Felker, R.; Cartier, M.; Emerson, D.; Brown, D. Ultrasound of the fetal thymus. J. Ultrasound Med. 1989, 8, 669–673. [Google Scholar] [CrossRef]
- Zalel, Y.; Gamzu, R.; Mashiach, S.; Achiron, R. The development of the fetal thymus: An in utero sonographic evaluation. Prenat. Diagn. 2002, 22, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Warrington, R.; Watson, W.; Kim, H.L.; Antonetti, F.R. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2011, 7, S1. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Ander, S.E.; Diamond, M.S.; Coyne, C.B. Immune responses at the maternal-fetal interface. Sci. Immunol. 2019, 4, eaat6114. [Google Scholar] [CrossRef]
- PrabhuDas, M.; Bonney, E.; Caron, K.; Dey, S.; Erlebacher, A.; Fazleabas, A.; Fisher, S.; Golos, T.; Matzuk, M.; McCune, J.M.; et al. Immune mechanisms at the maternal-fetal interface: Perspectives and challenges. Nat. Immunol. 2015, 16, 328–334. [Google Scholar] [CrossRef]
- Catalano, P.; deMouzon, S.H. Maternal obesity and metabolic risk to the offspring: Why lifestyle interventions may have not achieved the desired outcomes. Int. J. Obes. 2015, 39, 642–649. [Google Scholar] [CrossRef]
- Lebold, K.M.; Jacoby, D.B.; Drake, M.G. Inflammatory mechanisms linking maternal and childhood asthma. J. Leukoc. Biol. 2020, 108, 113–121. [Google Scholar] [CrossRef]
- Fujimura, T.; Lum, S.Z.C.; Nagata, Y.; Kawamoto, S.; Oyoshi, M.K. Influences of maternal factors over offspring allergies and the application for food allergy. Front. Immunol. 2019, 10, 1933. [Google Scholar] [CrossRef]
- García-Serna, A.M.; Martín-Orozco, E.; Hernández-Caselles, T.; Morales, E. Prenatal and perinatal environmental influences shaping the neonatal immune system: A focus on asthma and allergy origins. Int. J. Environ. Res. Public Health 2021, 18, 3962. [Google Scholar] [CrossRef]
- Nakata, K.; Kobayashi, K.; Ishikawa, Y.; Yamamoto, M.; Funada, Y.; Kotani, Y.; Blumberg, R.S.; Karasuyama, H.; Yoshida, M.; Nishimura, Y. The transfer of maternal antigen-specific IgG regulates the development of allergic airway inflammation early in life in an FcRn-dependent manner. Biochem. Biophys. Res. Commun. 2010, 395, 238–243. [Google Scholar] [CrossRef]
- Gómez-Roig, M.D.; Pascal, R.; Cahuana, M.J.; García-Algar, O.; Sebastiani, G.; Andreu-Fernández, V.; Martínez, L.; Rodríguez, G.; Iglesia, I.; Ortiz-Arrabal, O.; et al. Environmental Exposure during Pregnancy: Influence on Prenatal Development and Early Life: A Comprehensive Review. Fetal Diagn. Ther. 2021, 48, 245–257. [Google Scholar] [CrossRef]
- Sciaky-Tamir, Y.; Hershkovitz, R.; Mazor, M.; Shelef, I.; Erez, O. The use of imaging technology in the assessment of the fetal inflammatory response syndrome-imaging of the fetal thymus. Prenat. Diagn. 2015, 35, 413–419. [Google Scholar] [CrossRef]
- Di Naro, E.; Cromi, A.; Ghezzi, F.; Raio, L.; Uccella, S.; D’Addario, V.; Loverro, G. Fetal thymic involution: A sonographic marker of the fetal inflammatory response syndrome. Am. J. Obstet. Gynecol. 2006, 194, 153–159. [Google Scholar] [CrossRef]
- Ghalandarpoor-Attar, S.N.; Borna, S.; Ghalandarpoor-Attar, S.M.; Hantoushzadeh, S.; Khezerdoost, S.; Ghotbizadeh, F. Measuring fetal thymus size: A new method for diabetes screening in pregnancy. J. Matern.-Fetal Neonatal Med. 2020, 33, 1157–1161. [Google Scholar] [CrossRef]
- Gök, K.; Özden, S. Finding the best method for screening for gestational diabetes mellitus: Fetal thymic-thoracic ratio or fetal thymus transverse diameter. Rev. Assoc. Médica Bras. 2023, 69, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Dörnemann, R.; Koch, R.; Möllmann, U.; Falkenberg, M.K.; Möllers, M.; Klockenbusch, W.; Schmitz, R. Fetal thymus size in pregnant women with diabetic diseases. J. Perinat. Med. 2017, 45, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Warncke, K.; Lickert, R.; Eitel, S.; Gloning, K.P.; Bonifacio, E.; Sedlmeier, E.M.; Becker, P.; Knoop, J.; Beyerlein, A.; Ziegler, A.G. Thymus growth and fetal immune responses in diabetic pregnancies. Horm. Metab. Res. 2017, 49, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Hrubaru, I.; Motoc, A.; Moise, M.L.; Miutescu, B.; Citu, I.M.; Pingilati, R.A.; Popescu, D.-E.; Dumitru, C.; Gorun, F.; Olaru, F.; et al. The predictive role of maternal biological markers and inflammatory scores NLR, PLR, MLR, SII, and SIRI for the risk of preterm delivery. J. Clin. Med. 2022, 11, 6982. [Google Scholar] [CrossRef]
- Zinellu, A.; Paliogiannis, P.; Mangoni, A.A. Aggregate Index of Systemic Inflammation (AISI), Disease Severity, and Mortality in COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4584. [Google Scholar] [CrossRef]
- Arck, P.C.; Hecher, K. Fetomaternal Immune Cross-Talk and its Consequences for Maternal and Offspring’s Health. Nat. Med. 2013, 19, 548–556. [Google Scholar] [CrossRef]
- Fujiwara, H. Immune cells contribute to systemic cross-talk between the embryo and mother during early pregnancy in cooperation with the endocrine system. Reprod. Med. Biol. 2006, 5, 19–29. [Google Scholar] [CrossRef]
- Zhao, A.; Xu, H.; Kang, X.; Zhao, A.; Lu, L. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk. J. Reprod. Immunol. 2016, 113, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.C.; Jansson, T.; Bale, T.L.; Powell, T.L. Maternal-fetal cross-talk via the placenta: Influence on offspring development and metabolism. Development 2023, 150, dev202088. [Google Scholar] [CrossRef] [PubMed]
- Santner-Nanan, B.; Seddiki, N.; Zhu, E.; Quent, V.; Kelleher, A.; Fazekas de St Groth, B.; Nanan, R. Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. Int. Immunol. 2008, 3, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Diemert, A.; Hartwig, I.; Pagenkemper, M.; Mehnert, R.; Hansen, G.; Tolosa, E.; Hecher, K.; Arck, P. Fetal thymus size in human pregnancies reveals inverse association with regulatory T cell frequencies in cord blood. J. Reprod. Immunol. 2016, 113, 76–82. [Google Scholar] [CrossRef]
- Yessoufou, A.; Moutairou, K. Maternal Diabetes in Pregnancy: Early and Long-Term Outcomes on the Offspring and the Concept of “Metabolic Memory”. Exp. Diabetes Res. 2011, 2011, 218598. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50. [Google Scholar] [CrossRef]
- Denizli, M.; Capitano, M.L.; Kua, K.L. Maternal Obesity and the Impact of Associated Early-Life Inflammation on Long-Term Health of Offspring. Front. Cell. Infect. Microbiol. 2022, 12, 940937. [Google Scholar] [CrossRef]
- Pan, X.; Jin, X.; Wang, J.; Hu, Q.; Dai, B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am. J. Transl. Res. 2021, 13, 4068–4079. [Google Scholar]

| Diabetes Group (n = 166) | Control Group (n = 366) | p Value * | |
|---|---|---|---|
| Age (years) | 31.5 ± 4.30 | 28 ± 5.12 | <0.001 a |
| Gravidity | 2.48 ± 1.24 | 2.34 ± 1.18 | 0.326 b |
| Parity | 1.16 ± 1.32 | 1.02 ± 0.81 | 0.642 a |
| Pre-pregnancy BMI (kg/m2) | 30.5 ± 2.25 | 26.9 ± 1.24 | <0.001 a |
| Gestational age at delivery (weeks) | 38.2 ± 1.4 | 39.3 ± 1.7 | <0.001 a |
| Birth weight (g) | 3345 ± 654.2 | 3265 ± 458.5 | 0.076 a |
| 1 min Apgar score | 8 (5–9) | 9 (7–9) | <0.001 b |
| 5 min Apgar score | 8 (7–10) | 9 (8–10) | <0.001 b |
| NICU admission | 35 (21%) | 10 (3%) | <0.001 c |
| Umbilical artery pH | 7.36 ± 0.02 | 7.39 ± 0.08 | 0.003 a |
| PGDM a (n = 44) | GDM (Diet-Controlled) b (n = 73) | GDM (Insulin-Treated) c (n = 49) | Control d (n = 366) | p Value | p Value * | |
|---|---|---|---|---|---|---|
| WBC (109/L) (mean ± SD) | 11.67 ± 2.49 | 10.75 ± 6.71 | 11.92 ± 1.25 | 10.2 ± 3.40 | <0.001 | a = c > b > d |
| NEU (109/L) (mean ± SD) | 8.94 ± 4.31 | 7.98 ± 2.14 | 8.73 ± 4.35 | 7.65 ± 1.82 | 0.002 | a > c > b > d |
| LNF (109/L) (mean ± SD) | 1.48 ± 0.44 | 1.88 ± 0.25 | 1.54 ± 0.29 | 1.91 ± 0.14 | 0.048 | d = b > c = a |
| MON (109/L) (mean ± SD) | 0.65 ± 0.31 | 0.51 ± 0.47 | 0.62 ± 0.17 | 0.49 ± 0.31 | 0.009 | a = c > b = d |
| PLT (109/L) (mean ± SD) | 225.26 ± 43.38 | 230.37 ± 56.81 | 227.17 ± 31.37 | 232.17 ± 18.21 | 0.054 | b = c = d = a |
| MPV (fL) (mean ± SD) | 9.78 ± 0.56 | 7.98 ± 0.73 | 8.62 ± 0.21 | 7.55 ± 0.97 | 0.001 | a > c > b >d |
| NLR (mean ± SD) | 5.32 ± 2.31 | 3.25 ± 1.64 | 3.98 ± 5.21 | 2.78 ± 1.93 | 0.002 | a >c > b > d |
| PLR (mean ± SD) | 168.22 ± 29.41 | 132.18 ± 64.19 | 152.54 ± 46.57 | 118.74 ± 38.73 | 0.002 | a > c > b > d |
| MLR (mean ± SD) | 0.439 ± 0.339 | 0.271 ± 0.286 | 0.403 ± 0.187 | 0.257 ± 0.182 | <0.001 | a > c > b = d |
| SII (mean ± SD) | 1328.7 ± 901.4 | 985.43 ± 675.7 | 1245.25 ± 312.9 | 868.32 ± 585.3 | <0.001 | a = c > b > d |
| SIRI (mean ± SD) | 3.58 ± 1.18 | 2.01 ± 1.11 | 3.18 ± 1.32 | 1.61 ± 1.02 | 0.002 | a > c > b > d |
| AISI median (IQR) | 861 (125) | 499 (93) | 798 (141) | 456 (136) | <0.001 | a > c > b > d |
| Albumin (g/L) (mean ± SD) | 34 ± 3.31 | 35 ± 3.36 | 33 ± 3.32 | 38 ± 3.39 | <0.001 | d > b > a = c |
| Fibrinogen (g/L) (mean ± SD) | 4.24 ± 1.2 | 4.10 ± 1.2 | 4.35 ± 1.3 | 3.78 ± 1.1 | <0.001 | c > a > b > d |
| CRP (mg/L) (mean ± SD) | 8.4 ± 3.71 | 7.5 ± 3.11 | 8.9 ± 4.23 | 6.3 ± 2.81 | <0.001 | a = c > b > d |
| FAR (mean ± SD) | 0.125 ± 0.03 | 0.117 ± 0.02 | 0.132 ± 0.03 | 0.100 ± 0.02 | <0.001 | c > a > b > d |
| CAR (mean ± SD) | 0.247 ± 0.06 | 0.214 ± 0.05 | 0.270 ± 0.06 | 0.166 ± 0.05 | <0.001 | c > a > b > d |
| PGDM a (n = 44) | GDM (Diet-Controlled) b (n = 73) | GDM (Insulin-Treated) c (n = 49) | Control d (n = 366) | p Value | p Value * | |
|---|---|---|---|---|---|---|
| Gestational age at ultrasound (weeks) median (min-max) | 30.5 (29.0–31.6) | 30.6 (29.1–32.0) | 30.52 (29.2–31.5) | 30.56 (29.0–31.6) | 0.17 | NS |
| Thymic-thoracic ratio (TTR) median (min-max) | 0.290 (0.24–0.441) | 0.400 (0.29–0.431) | 0.340 (0.250–0.421) | 0.435 (0.389–0.472) | <0.001 | d > b > c > a |
| Analyzed Marker | Cut-Off Value | Sensitivity | Specificity | AUC | 95% CI | p Value |
|---|---|---|---|---|---|---|
| AISI | 640.3 | 0.823 | 0.867 | 0.891 | 0.723–0.955 | <0.001 |
| CAR | 0.239 | 0.646 | 0.882 | 0.775 | 0.614–0.925 | 0.001 |
| SII | 1085.23 | 0.632 | 0.764 | 0.723 | 0.631–0.913 | <0.001 |
| SIRI | 2.388 | 0.642 | 0.824 | 0.786 | 0.591–0.887 | <0.001 |
| PLR | 132.764 | 0.728 | 0.748 | 0.821 | 0.603–0.891 | 0.001 |
| MLR | 0.418 | 0.636 | 0.753 | 0.754 | 0.596–0.917 | <0.001 |
| FAR | 0.114 | 0.7432 | 0.887 | 0.879 | 0.686–0.919 | <0.001 |
| NLR | 4.18 | 0.783 | 0.875 | 0.793 | 0.613–0.931 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balkas, G.; Çelen, Ş. Maternal Systemic Inflammation and Fetal Thymic Size in Diabetic Pregnancies: Predictive Role of Hematological Biomarkers. J. Clin. Med. 2025, 14, 7619. https://doi.org/10.3390/jcm14217619
Balkas G, Çelen Ş. Maternal Systemic Inflammation and Fetal Thymic Size in Diabetic Pregnancies: Predictive Role of Hematological Biomarkers. Journal of Clinical Medicine. 2025; 14(21):7619. https://doi.org/10.3390/jcm14217619
Chicago/Turabian StyleBalkas, Gülay, and Şevki Çelen. 2025. "Maternal Systemic Inflammation and Fetal Thymic Size in Diabetic Pregnancies: Predictive Role of Hematological Biomarkers" Journal of Clinical Medicine 14, no. 21: 7619. https://doi.org/10.3390/jcm14217619
APA StyleBalkas, G., & Çelen, Ş. (2025). Maternal Systemic Inflammation and Fetal Thymic Size in Diabetic Pregnancies: Predictive Role of Hematological Biomarkers. Journal of Clinical Medicine, 14(21), 7619. https://doi.org/10.3390/jcm14217619

