Salivary and Serum Liquid Biopsy Biomarkers for HPV-Associated Oral and Oropharyngeal Cancer: A Narrative Review
Abstract
1. Introduction
2. Biological Basis of Liquid Biopsies in Oral Oncology
2.1. Tumor Biology of HPV-Associated Oral Cancer
2.2. Shedding of Tumor Biomarkers into Biofluids
2.3. Shedding of Tumor Biomarkers into Blood
2.4. Saliva vs. Blood Dynamics
3. Saliva-Derived Biomarkers
3.1. Salivary DNA Biomarkers: Host Tumor Mutations and ctHPV DNA
3.2. Host–Virus Hybrid Markers (Integration Sites)
3.3. Transcriptomic Analytes (Cell-Free RNA and MicroRNAs)
3.4. Epigenomic Markers (DNA Methylation)
3.5. Proteomic and Metabolomic Biomarkers
3.6. Extracellular Vesicles (EVs) and Exosome Cargo
3.7. Diagnostic and Prognostic Performance
4. Blood-Based Biomarkers
4.1. Circulating Tumor HPV DNA (ctHPV DNA) in Plasma
4.2. Circulating Tumor Cells (CTCs)
4.3. Cell-Free Tumor DNA (Tumor Mutations & Methylation in Plasma)
4.4. Circulating Cell-Free RNA (cfRNA)
4.5. Extracellular Vesicles in Blood
4.6. Serologic Immune Biomarkers
5. Integration into Precision Medicine Paradigms
5.1. Companion Diagnostics and Therapeutic Decision-Making
5.2. Digital Health and Point-of-Care (POC) Devices
5.3. Cost-Effectiveness and Health Equity
5.4. Precision Surveillance and Personalized Screening
5.5. Regulatory and Implementation Considerations
6. Current Challenges and Knowledge Gaps
6.1. Pre-Analytical Variability
6.2. Sensitivity vs. Specificity Trade-Offs
6.3. Tumor Heterogeneity and Evolution
6.4. False Negatives and “Occult” Disease
6.5. Data Interpretation and Bioinformatics
6.6. Regulatory Hurdles
7. Future Directions
7.1. Multi-Omics and Machine Learning Integration
7.2. Liquid Biopsy in Immuno-Oncology
7.3. “Saliva-on-a-Chip” and At-Home Testing
7.4. Addressing Unknowns and Broadening Scope
8. Clinical Implications
8.1. Earlier Detection and Diagnosis
8.2. Enhanced Surveillance and Survivorship Care
8.3. Empowerment and Compliance
8.4. Challenges in Implementation
9. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HPV | Human Papillomavirus |
| OPSCC | Oropharyngeal Squamous Cell Carcinoma |
| OSCC | Oral Squamous Cell Carcinoma (in context, often refers to oral cavity SCC) |
| HNSCC | Head and Neck Squamous Cell Carcinoma |
| ctDNA | Circulating Tumor DNA (tumor-derived fragmented DNA in bloodstream) |
| ctHPV DNA | Circulating tumor HPV DNA (refers to HPV DNA fragments derived from tumor in blood or saliva) |
| cfDNA | Cell-Free DNA (generic term for DNA fragments in blood plasma) |
| CTC | Circulating Tumor Cell |
| EV | Extracellular Vesicle (includes exosomes, microvesicles, etc.) |
| ddPCR | Droplet Digital Polymerase Chain Reaction |
| NGS | Next-Generation Sequencing |
| MRD | Minimal Residual Disease (microscopic disease remaining post-treatment) |
| PPV/NPV | Positive Predictive Value/Negative Predictive Value |
| TP53 | Tumor Protein p53 gene (commonly mutated in cancers) |
| PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (often mutated in HPV(+) cancers) |
| EpCAM | Epithelial Cell Adhesion Molecule (a surface protein used to capture CTCs) |
| PET-CT | Positron Emission Tomography–Computed Tomography (imaging modality) |
| AI | Artificial Intelligence |
| PCR | Polymerase Chain Reaction |
| EBV | Epstein–Barr Virus |
| DNA | Deoxyribonucleic Acid |
| TKIs | Tyrosine Kinase Inhibitors |
| miRs | MicroRNAs |
| ESCC | Esophageal Squamous Cell Carcinoma |
| SCC | Squamous Cell Carcinoma |
| ccfDNA | circulating cell-free DNA |
| PFS | Progression-Free Survival |
| qPCR | Quantitative Polymerase Chain Reaction |
| CNI | Copy Number Instability |
| ML | Machine Learning |
| ENT | Ear, Nose, and Throat, medically referred to as Otorhinolaryngology |
| CHIP | Clonal hematopoiesis of indeterminate potential |
| FDA | The U.S. Food and Drug Administration |
References
- Lim, Y.X.; D’Silva, N.J. HPV-Associated Oropharyngeal Cancer: In Search of Surrogate Biomarkers for Early Lesions. Oncogene 2024, 43, 543–554. [Google Scholar] [CrossRef]
- Ndon, S.; Singh, A.; Ha, P.K.; Aswani, J.; Chan, J.Y.-K.; Xu, M.J. Human Papillomavirus-Associated Oropharyngeal Cancer: Global Epidemiology and Public Policy Implications. Cancers 2023, 15, 4080. [Google Scholar] [CrossRef]
- Pimolbutr, K.; Poomsawat, S.; Na-Ek, N.; Warnakulasuriya, S.; Buajeeb, W. Prevalence of Human Papillomavirus in Oral Cancer in Asia: A Systematic Review and Meta-Analysis. Oral Dis. 2025, 31, 1479–1489. [Google Scholar] [CrossRef]
- Tang, K.D.; Vasani, S.; Taheri, T.; Walsh, L.J.; Hughes, B.G.M.; Kenny, L.; Punyadeera, C. An Occult HPV-Driven Oropharyngeal Squamous Cell Carcinoma Discovered Through a Saliva Test. Front. Oncol. 2020, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Attard, G.; Bidard, F.-C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO Recommendations on the Use of Circulating Tumour DNA Assays for Patients with Cancer: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef] [PubMed]
- Ciccioli, M.; Kim, K.; Khazan, N.; Khoury, J.D.; Cooke, M.J.; Miller, M.C.; O’Shannessy, D.J.; Pailhes-Jimenez, A.-S.; Moore, R.G. Identification of Circulating Tumor Cells Captured by the FDA-Cleared Parsortix® PC1 System from the Peripheral Blood of Metastatic Breast Cancer Patients Using Immunofluorescence and Cytopathological Evaluations. J. Exp. Clin. Cancer Res. 2024, 43, 240. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.J.; Bratman, S.V. Liquid Biopsies in Head and Neck Cancers: Recent Developments Across Biofluids, Analytes, and Molecular Features. Head Neck 2025, 47, 3150–3171. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015, 517, 576–582. [CrossRef]
- Van Arsdale, A.; Mescheryakova, O.; Gallego, S.; Maggi, E.C.; Harmon, B.; Kuo, D.Y.S.; Van Doorslaer, K.; Einstein, M.H.; Haas, B.J.; Montagna, C.; et al. Serum, Cell-Free, HPV-Human DNA Junction Detection and HPV Typing for Predicting and Monitoring Cervical Cancer Recurrence. medRxiv 2025. [Google Scholar] [CrossRef]
- Spector, M.E.; Sacco, A.G.; Bellile, E.; Taylor, J.M.G.; Jones, T.; Sun, K.; Brown, W.C.; Birkeland, A.C.; Bradford, C.R.; Wolf, G.T.; et al. E6 and E7 Antibody Levels Are Potential Biomarkers of Recurrence in Patients with Advanced-Stage Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. Clin. Cancer Res. 2017, 23, 2723–2729. [Google Scholar] [CrossRef]
- Rosenthal, M.; Huang, B.; Katabi, N.; Migliacci, J.; Bryant, R.; Kaplan, S.; Blackwell, T.; Patel, S.; Yang, L.; Pei, Z.; et al. Detection of HPV Related Oropharyngeal Cancer in Oral Rinse Specimens. Oncotarget 2017, 8, 109393–109401. [Google Scholar] [CrossRef]
- Absolute Risk of Oropharyngeal Cancer after an HPV16-E6 Serology Test and Potential Implications for Screening: Results from the Human Papillomavirus Cancer Cohort Consortium. J. Clin. Oncol. 2022, 40, 3613–3622. [CrossRef]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. J. Clin. Oncol. 2020, 38, 1050–1058. [Google Scholar] [CrossRef]
- Deorah, S.; Singh, A.; Gupta, S. Beyond Tissue: Liquid Biopsy’s Promise in Unmasking Oral Cancer. Oral Oncol. Rep. 2024, 9, 100162. [Google Scholar] [CrossRef]
- Mesri, E.A.; Feitelson, M.A.; Munger, K. Human Viral Oncogenesis: A Cancer Hallmarks Analysis. Cell Host Microbe 2014, 15, 266–282. [Google Scholar] [CrossRef]
- Wang, Y.; Springer, S.; Mulvey, C.L.; Silliman, N.; Schaefer, J.; Sausen, M.; James, N.; Rettig, E.M.; Guo, T.; Pickering, C.R.; et al. Detection of Somatic Mutations and HPV in the Saliva and Plasma of Patients with Head and Neck Squamous Cell Carcinomas. Sci. Transl. Med. 2015, 7, 293ra104. [Google Scholar] [CrossRef]
- Chantre-Justino, M.; Alves, G.; Delmonico, L. Clinical Applications of Liquid Biopsy in HPV-Negative and HPV-Positive Head and Neck Squamous Cell Carcinoma: Advances and Challenges. Explor. Target. Antitumor Ther. 2022, 3, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Shing, J.Z.; Giuliano, A.R.; Brenner, N.; Michels, B.; Hildesheim, A.; Srivastava, S.; Sirak, B.A.; Schussler, J.; Liu, D.; Wang, W.; et al. Natural History of HPV-16 E6 Serology among Cancer-Free Men in a Multicenter Longitudinal Cohort Study. J. Natl. Cancer Inst. 2025, 117, 915–923. [Google Scholar] [CrossRef]
- Patel, A.; Patel, S.; Patel, P.; Tanavde, V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We from the Clinic? Front. Oncol. 2022, 12, 828434. [Google Scholar] [CrossRef] [PubMed]
- Pittella-Silva, F.; Chin, Y.M.; Chan, H.T.; Nagayama, S.; Miyauchi, E.; Low, S.-K.; Nakamura, Y. Plasma or Serum: Which Is Preferable for Mutation Detection in Liquid Biopsy? Clin. Chem. 2020, 66, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Li, S.; Cheng, H. Circulating DNA in EGFR-Mutated Lung Cancer. Ann. Transl. Med. 2017, 5, 379. [Google Scholar] [CrossRef]
- Parikh, A.R.; Van Seventer, E.E.; Siravegna, G.; Hartwig, A.V.; Jaimovich, A.; He, Y.; Kanter, K.; Fish, M.G.; Fosbenner, K.D.; Miao, B.; et al. Minimal Residual Disease Detection Using a Plasma-Only Circulating Tumor DNA Assay in Patients with Colorectal Cancer. Clin. Cancer Res. 2021, 27, 5586–5594. [Google Scholar] [CrossRef] [PubMed]
- Califano, J.; Yousef, A.; Mostafa, H.; Valsamakis, A.; Zhang, X.; Batis, N.; Varghese, C.; Parish, J.; Forman, M.; Jarrett, J.; et al. Lead Time to Recurrence After Posttreatment Plasma and Saliva HPV DNA Testing in Patients with Low-Risk HPV Oropharynx Cancer. JAMA Otolaryngol. Head Neck Surg. 2023, 149, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Rettig, E.M.; Wang, A.A.; Tran, N.-A.; Carey, E.; Dey, T.; Schoenfeld, J.D.; Sehgal, K.; Guenette, J.P.; Margalit, D.N.; Sethi, R.; et al. Association of Pretreatment Circulating Tumor Tissue-Modified Viral HPV DNA with Clinicopathologic Factors in HPV-Positive Oropharyngeal Cancer. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 1120–1130. [Google Scholar] [CrossRef]
- Dal Secco, C.; Tel, A.; Allegri, L.; Baldan, F.; Curcio, F.; Sembronio, S.; Faletra, F.; Robiony, M.; Damante, G.; Mio, C. Longitudinal Detection of Somatic Mutations in the Saliva of Head and Neck Squamous Cell Carcinoma-Affected Patients: A Pilot Study. Front. Oncol. 2024, 14, 1480302. [Google Scholar] [CrossRef]
- Shanmugam, A.; Hariharan, A.K.; Hasina, R.; Nair, J.R.; Katragadda, S.; Irusappan, S.; Ravichandran, A.; Veeramachaneni, V.; Bettadapura, R.; Bhati, M.; et al. Ultrasensitive Detection of Tumor-Specific Mutations in Saliva of Patients with Oral Cavity Squamous Cell Carcinoma. Cancer 2021, 127, 1576–1589. [Google Scholar] [CrossRef]
- Sullivan-Chang, L.; Saraiya, M.; Dunne, E.F.; Brooks, J.T. More Testing, More Questions: Screening Tests for Oral Human Papillomavirus Infection. J. Am. Dent. Assoc. 2017, 148, 781–783. [Google Scholar] [CrossRef]
- Lakshmipathy, D.; Prasad, A.; Fritz, C.G.; Go, B.C.; Rajasekaran, K. Accuracy of Salivary Circulating Tumor Human Papillomavirus DNA in Detecting Oropharyngeal Cancer: A Systematic Review and Meta-Analysis. JAMA Otolaryngol. Head Neck Surg. 2024, 150, 580–586. [Google Scholar] [CrossRef]
- Ferrandino, R.M.; Chen, S.; Kappauf, C.; Barlow, J.; Gold, B.S.; Berger, M.H.; Westra, W.H.; Teng, M.S.; Khan, M.N.; Posner, M.R.; et al. Performance of Liquid Biopsy for Diagnosis and Surveillance of Human Papillomavirus-Associated Oropharyngeal Cancer. JAMA Otolaryngol. Head Neck Surg. 2023, 149, 971–977. [Google Scholar] [CrossRef]
- Veyer, D.; Wack, M.; Mandavit, M.; Garrigou, S.; Hans, S.; Bonfils, P.; Tartour, E.; Bélec, L.; Wang-Renault, S.-F.; Laurent-Puig, P.; et al. HPV Circulating Tumoral DNA Quantification by Droplet-Based Digital PCR: A Promising Predictive and Prognostic Biomarker for HPV-Associated Oropharyngeal Cancers. Int. J. Cancer 2020, 147, 1222–1227. [Google Scholar] [CrossRef]
- Chen, A.M.; Tjoa, T.; Armstrong, W.B. Circulating Tumor HPV-DNA in the Management of HPV-Positive Oropharyngeal Carcinoma: A Systematic Review. Head Neck 2025, 47, 1674–1679. [Google Scholar] [CrossRef]
- Jeannot, E.; Latouche, A.; Bonneau, C.; Calméjane, M.-A.; Beaufort, C.; Ruigrok-Ritstier, K.; Bataillon, G.; Larbi Chérif, L.; Dupain, C.; Lecerf, C.; et al. Circulating HPV DNA as a Marker for Early Detection of Relapse in Patients with Cervical Cancer. Clin. Cancer Res. 2021, 27, 5869–5877. [Google Scholar] [CrossRef]
- Emmett, S.; Whiteman, D.C.; Panizza, B.J.; Antonsson, A. An Update on Cellular MicroRNA Expression in Human Papillomavirus-Associated Head and Neck Squamous Cell Carcinoma. Oncology 2018, 95, 193–201. [Google Scholar] [CrossRef]
- McKenna, D.J.; Patel, D.; McCance, D.J. miR-24 and miR-205 Expression Is Dependent on HPV Onco-Protein Expression in Keratinocytes. Virology 2014, 448, 210–216. [Google Scholar] [CrossRef]
- Kulkarni, V.; Uttamani, J.R.; Naqvi, A.R.; Nares, S. microRNAs: Emerging Players in Oral Cancers and Inflammatory Disorders. Tumour Biol. 2017, 39, 1010428317698379. [Google Scholar] [CrossRef]
- Bartosik, M.; Moranova, L.; Izadi, N.; Strmiskova, J.; Sebuyoya, R.; Holcakova, J.; Hrstka, R. Advanced Technologies towards Improved HPV Diagnostics. J. Med. Virol. 2024, 96, e29409. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, K.; Ishikawa, S.; Krishnan, R.; Sugimoto, M. Salivary Metabolomics for Oral Cancer Detection: A Narrative Review. Metabolites 2022, 12, 436. [Google Scholar] [CrossRef]
- Wang, Z.; Li, F.; Rufo, J.; Chen, C.; Yang, S.; Li, L.; Zhang, J.; Cheng, J.; Kim, Y.; Wu, M.; et al. Acoustofluidic Salivary Exosome Isolation: A Liquid Biopsy Compatible Approach for Human Papillomavirus-Associated Oropharyngeal Cancer Detection. J. Mol. Diagn. 2020, 22, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Song, F.; Zheng, Y.L.; Lv, J.; Wang, Q.F.; Xu, N. Exosomes in Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 894. [Google Scholar] [CrossRef]
- Guenat, D.; Hermetet, F.; Prétet, J.-L.; Mougin, C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses 2017, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Fontana, S.; Mauceri, R.; Novara, M.E.; Alessandro, R.; Campisi, G. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 11160. [Google Scholar] [CrossRef]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key Players in Cancer and Potential Therapeutic Strategy. Signal Transduct. Target. Ther. 2020, 5, 145. [Google Scholar] [CrossRef]
- Nguyen, B.; Meehan, K.; Pereira, M.R.; Mirzai, B.; Lim, S.H.; Leslie, C.; Clark, M.; Sader, C.; Friedland, P.; Lindsay, A.; et al. A Comparative Study of Extracellular Vesicle-Associated and Cell-Free DNA and RNA for HPV Detection in Oropharyngeal Squamous Cell Carcinoma. Sci. Rep. 2020, 10, 6083. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.M.; Chan, J.Y.K.; Zhang, Z.; Wang, H.; Khan, Z.; Bishop, J.A.; Westra, W.; Koch, W.M.; Califano, J.A. Saliva and Plasma Quantitative Polymerase Chain Reaction-Based Detection and Surveillance of Human Papillomavirus-Related Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 846–854. [Google Scholar] [CrossRef]
- Ferrier, S.T.; Tsering, T.; Sadeghi, N.; Zeitouni, A.; Burnier, J.V. Blood and Saliva-Derived ctDNA Is a Marker of Residual Disease after Treatment and Correlates with Recurrence in Human Papillomavirus-Associated Head and Neck Cancer. Cancer Med. 2023, 12, 15777–15787. [Google Scholar] [CrossRef] [PubMed]
- Lang Kuhs, K.A.; Brenner, J.C.; Holsinger, F.C.; Rettig, E.M. Circulating Tumor HPV DNA for Surveillance of HPV-Positive Oropharyngeal Squamous Cell Carcinoma: A Narrative Review. JAMA Oncol. 2023, 9, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Chera, B.S.; Kumar, S.; Beaty, B.T.; Marron, D.; Jefferys, S.; Green, R.; Goldman, E.C.; Amdur, R.; Sheets, N.; Dagan, R.; et al. Rapid Clearance Profile of Plasma Circulating Tumor HPV Type 16 DNA during Chemoradiotherapy Correlates with Disease Control in HPV-Associated Oropharyngeal Cancer. Clin. Cancer Res. 2019, 25, 4682–4690. [Google Scholar] [CrossRef]
- Zhang, Y.; Waterboer, T.; Haddad, R.I.; Miles, B.A.; Wentz, A.; Gross, N.D.; Fakhry, C.; Quon, H.; Lorch, J.H.; Gourin, C.G.; et al. Human Papillomavirus (HPV) 16 Antibodies at Diagnosis of HPV-Related Oropharyngeal Cancer and Antibody Trajectories after Treatment. Oral Oncol. 2017, 67, 77–82. [Google Scholar] [CrossRef]
- Krebs, M.G.; Metcalf, R.L.; Carter, L.; Brady, G.; Blackhall, F.H.; Dive, C. Molecular Analysis of Circulating Tumour Cells-Biology and Biomarkers. Nat. Rev. Clin. Oncol. 2014, 11, 129–144. [Google Scholar] [CrossRef]
- Cabel, L.; Proudhon, C.; Gortais, H.; Loirat, D.; Coussy, F.; Pierga, J.-Y.; Bidard, F.-C. Circulating Tumor Cells: Clinical Validity and Utility. Int. J. Clin. Oncol. 2017, 22, 421–430. [Google Scholar] [CrossRef]
- Economopoulou, P.; Koutsodontis, G.; Avgeris, M.; Strati, A.; Kroupis, C.; Pateras, I.; Kirodimos, E.; Giotakis, E.; Kotsantis, I.; Maragoudakis, P.; et al. HPV16 E6/E7 Expression in Circulating Tumor Cells in Oropharyngeal Squamous Cell Cancers: A Pilot Study. PLoS ONE 2019, 14, e0215984. [Google Scholar] [CrossRef]
- Poellmann, M.J.; Bu, J.; Kim, D.; Iida, M.; Hong, H.; Wang, A.Z.; Wheeler, D.L.; Kimple, R.J.; Hong, S. Circulating Tumor Cell Abundance in Head and Neck Squamous Cell Carcinoma Decreases with Successful Chemoradiation and Cetuximab Treatment. Cancer Lett. 2023, 562, 216187. [Google Scholar] [CrossRef]
- McCoon, P.; Wang, Y.; Lai, Z.; Zhang, Q.; Li, W.; Wildsmith, S.; Morsli, N.; Raja, R.; Holoweckyj, N.; Walker, J.; et al. Mutational Landscape of Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma and Association with Immune Checkpoint Inhibitor Outcomes. Clin. Cancer Res. 2025, 31, 1931–1942. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S.; Jiang, L.; Wang, X.; He, X. Genome-Wide Copy Number Variation of Circulating Cell-Free DNA as a Biomarker in Head and Neck Cancer Patients Treated with Immunotherapy. SSRN J. 2021, 32, S1384. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Brea-Iglesias, J.; Rodríguez-Casanova, A.; Bao-Caamano, A.; López-Cedrún, J.-L.; Triana-Martínez, G.; Díaz-Peña, R.; Santos, M.A.; López-López, R.; Muinelo-Romay, L.; et al. Somatic Mutations in Tumor and Plasma of Locoregional Recurrent and/or Metastatic Head and Neck Cancer Using a next-Generation Sequencing Panel: A Preliminary Study. Cancer Med. 2023, 12, 6615–6622. [Google Scholar] [CrossRef] [PubMed]
- Rettig, E.M.; Schoenfeld, J.D.; Miller, J.; Sargent, B.; Carey, E.; Margalit, D.N.; Sehgal, K.; Sethi, R.K.V.; Uppaluri, R.; Tishler, R.B.; et al. A Prospective Trial of Biomarker-Guided Surveillance for HPV-Positive Oropharynx Cancer Using Plasma Tumor Tissue-Modified Viral HPV DNA. Clin. Cancer Res. 2025, 31, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Vittone, J.; Gill, D.; Goldsmith, A.; Klein, E.A.; Karlitz, J.J. A Multi-Cancer Early Detection Blood Test Using Machine Learning Detects Early-Stage Cancers Lacking USPSTF-Recommended Screening. NPJ Precis. Oncol. 2024, 8, 91. [Google Scholar] [CrossRef]
- Maitra, S.; Mukerjee, N.; Alharbi, H.M.; Ghosh, A.; Alexiou, A.; Thorat, N.D. Targeted Therapies for HPV-Associated Cervical Cancer: Harnessing the Potential of Exosome-Based Chipsets in Combating Leukemia and HPV-Mediated Cervical Cancer. J. Med. Virol. 2024, 96, e29596. [Google Scholar] [CrossRef]
- Emmett, S.E.; Stark, M.S.; Pandeya, N.; Panizza, B.; Whiteman, D.C.; Antonsson, A. MicroRNA Expression Is Associated with Human Papillomavirus Status and Prognosis in Mucosal Head and Neck Squamous Cell Carcinomas. Oral Oncol. 2021, 113, 105136. [Google Scholar] [CrossRef]
- Wei, F.; Fang, R.; Lyu, K.; Liao, J.; Long, Y.; Yang, J.; Wen, W.; Sun, W. Exosomal PD-L1 Derived from Head and Neck Squamous Cell Carcinoma Promotes Immune Evasion by Activating the Positive Feedback Loop of Activated Regulatory T Cell-M2 Macrophage. Oral Oncol. 2023, 145, 106532. [Google Scholar] [CrossRef] [PubMed]
- Skoczylas, Ł.; Gawin, M.; Fochtman, D.; Widłak, P.; Whiteside, T.L.; Pietrowska, M. Immune Capture and Protein Profiling of Small Extracellular Vesicles from Human Plasma. Proteomics 2024, 24, e2300180. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, Y.; Li, S.; Dai, C.; Wei, H.; Chen, D.; Zhao, Y.; Liu, H.; Li, D.; Chen, P.; et al. Deep Learning-Enhanced Hand-Driven Microfluidic Chip for Multiplexed Nucleic Acid Detection Based on RPA/CRISPR. Adv. Sci. 2025, 12, e2414918. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.C.; Miller, J.A.; Walker, G.V.; Moeller, B.J.; Koyfman, S.A.; Shah, C. The Economic Impact of Circulating Tumor-Tissue Modified HPV DNA for the Post-Treatment Surveillance of HPV-Driven Oropharyngeal Cancer: A Simulation. Oral Oncol. 2022, 126, 105721. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, A. AI Technology Platform with mRNA Analysis Designated as Breakthrough Device by FDA. CancerNetwork 2021. [Google Scholar]



| Biomarker Class | HPV+ Oral/OPSCC | Esophageal SCC (ESCC) | Non-Small Cell Lung Cancer | Breast Cancer |
|---|---|---|---|---|
| Tumor Virus DNA | HPV16/18 ctDNA is highly specific; detected in saliva & plasma of OPSCC. Enables early recurrence detection. | No analogous ubiquitous virus in ESCC (rare HPV or EBV in subsets; not routine). | No viral driver DNA in common (except rare EBV in some lymphoepitheliomas). Viral ctDNA not applicable. | No viral DNA marker (breast has no viral etiology). |
| Circulating tumor DNA (mutations) | Frequently detectable; lower mutation burden but PIK3CA, etc., appear in ctDNA. Saliva ctDNA often positive in oral cavity SCC. | Detected in plasma if advanced; common TP53 mutations can be probed. Research use (not yet clinical standard). | Well-established for genotyping (e.g., EGFR mutations for TKIs). Now used for MRD post-surgery in trials. | Under study for MRD & recurrence (e.g., PIK3CA mutations for monitoring). Not routine yet, but emerging (especially in advanced cases). |
| Circulating Tumor Cells (CTCs) | Present but rare. p16+ and HPV E6/E7 mRNA+ CTCs found in some OPSCC. No clinical use yet. | Present in advanced ESCC; EpCAM+ CTCs correlate with stage. Still research phase for clinical utility. | FDA-approved CellSearch for CTC count prognostic in metastatic (EpCAM+ CTCs)—not widely used for early lung. | FDA-approved CellSearch CTC count as prognostic in metastatic breast (≥5 CTCs = worse survival). Research on using CTCs to guide therapy. |
| Extracellular Vesicles (EVs) | High interest; salivary exosomes carry HPV DNA/RNA. EV PD-L1 and protein cargo being studied for recurrence risk. | EV biomarkers (proteins, microRNAs) explored in ESCC research, e.g., exosomal long RNAs for early detection (experimental). | Intensive research: exosomal EGFR or KRAS mutations in plasma correlating with response. Not yet in routine clinical use, but potential companion diagnostics (e.g., exo PD-L1). | Exosomal microRNA and protein signatures studied for early detection and metastasis (e.g., Her2+ exosomes). Not in clinical use yet. |
| MicroRNAs (circulating) | Saliva miR-9, miR-127, miR-363 upregulated in HPV+ tumors; panels distinguish cancer vs. control in research. Plasma miRs (e.g., miR-21) also studied. | Plasma miR-21, miR-223, others identified for ESCC diagnosis in studies—not standard. | Several plasma miRs (miR-21, miR-210, etc.) proposed as lung cancer markers; none yet guideline-approved. | miR-21, miR-155 etc. linked to breast cancer prognosis, but not used clinically; ongoing effort for miR signatures (e.g., for recurrence risk). |
| DNA Methylation Markers | Saliva: hypermethylation of tumor suppressors (p16, DAPK1, etc.) predicts oral cancer risk. Plasma: potential use in ctDNA (e.g., SOX17, ZNF genes)—research ongoing. | Several tissue markers (e.g., ZNF582) methylated in ESCC; plasma assays under exploration (early detection research). | Some blood tests in development (e.g., Lung EpiCheck) use methylation for lung CA detection; one FDA-approved lung screening blood test (2016) had methylated DNA markers. | Methylation-based multi-cancer detection (e.g., Galleri test) can pick up some breast cancers; breast-specific assays (like RASSF1A in blood) studied for recurrence. |
| Unique Considerations | Virus-driven: unique viral biomarkers enable high specificity. Local shedding: saliva tests critical. Lower overall mutation burden. | Tobacco/alcohol-driven: no virus; relies on mutation markers. Field cancerization means multiple areas may shed DNA. | Heterogeneity: high mutation load yields multiple ctDNA targets. Blood is primary fluid (no “lung saliva” equivalent). Many targeted therapies make ctDNA vital for resistance monitoring. | Multiple subtypes: (HR+ vs. Her2 vs. TNBC)—different shed patterns. CTCs more established in breast than other solid tumors. |
| Metric | Saliva (Oral Rinse/Swab) | Blood (Plasma) |
|---|---|---|
| Invasiveness & Ease | Non-invasive, painless collection (spit or swish). Can be self-collected in many cases. Good for frequent sampling and community screening. | Minimally invasive venipuncture. Requires phlebotomist or clinic visit. Repeat sampling limited by patient comfort and vein access. |
| Typical Volume | 5–10 mL oral rinse or <2 mL saliva yields adequate DNA for assays. Volume can vary (xerostomia patients produce less). | 10 mL whole blood (yields ~4–5 mL plasma) often used for ctDNA assays. Special tubes allow up to 20–30 mL draws for higher yields. |
| Tumor Analyte Concentration | Often enriched for local tumor DNA if lesion present (saliva can contain >100 pg/mL tumor DNA in oral CA). HPV DNA copies high in oral fluids for OPSCC. But background human DNA from oral mucosa and microbiome also high, diluting signal. | Generally lower absolute tumor DNA concentrations (especially in early disease). In advanced cancer, ctDNA might be 0.1–1% of total cfDNA. High background of wild-type cfDNA from normal cell turnover. |
| Major Contaminants | Food debris, oral bacteria (bacterial DNA can comprise >90% of DNA in raw saliva). Enzymes like DNases/RNases from saliva and bacteria can degrade nucleic acids if not stabilized. Viscous mucins can inhibit PCR if not purified. | Genomic DNA from leukocyte lysis (if blood not processed quickly or if using improper tubes). Hemolysis can interfere with assays (e.g., spectrophotometry) and release proteases. Anti-coagulants (EDTA or Streck tube reagents) must be appropriate for downstream assay (heparin can inhibit PCR). |
| Stability (Time & Temp) | Fresh saliva should be processed or stabilized within ~2 h for RNA; DNA is somewhat more stable but bacterial growth can alter sample. Commercial kits (Oragene, etc.) provide buffers that preserve DNA for days at ambient temp. Freeze/thaw of saliva can shear DNA, so usually one freeze recommended. | Plasma cfDNA is stable for ~6–8 h at room temp in EDTA; after that, WBC lysis dramatically increases background DNA. Specialized cfDNA tubes (Streck) stabilize samples up to ~48 h. Plasma should be double-spun and stored at –80 °C for long-term. cfDNA tolerates one freeze–thaw; CTCs/EVs require gentler handling. |
| Processing Requirements | Simple: patient can swish with buffer and spit into tube. Needs centrifugation to pellet debris if high clarity needed. Filtration can remove cells, but small tumor fragments might be lost. Often directly used in DNA extraction kits (silica columns, etc.). PCR inhibitors (mucus) might require dilution or additive (e.g., DTT). | Requires centrifugation (2-step: 1st to separate plasma, 2nd high-speed to remove any cell debris). Plasma then undergoes DNA extraction (column or beads). Volume scaling is linear—processing > 10 mL needs larger kits or multiple preps. Many labs use duplicate extractions to maximize yield. |
| Analytical Challenges | Abundance of background DNA/RNA from saliva microbiome can outcompete or confuse NGS analysis (need human-specific or viral-specific primers). High viscosity can cause sample loss in pipetting. Quantification of low-level mutant DNA tricky due to oral flora genetic diversity (false positives in shotgun sequencing). | Extremely low mutant allele fractions demand ultra-deep sequencing or digital PCR. Risk of false positives from clonal hematopoiesis (CHIP)—e.g., a TP53 mutation in plasma might originate from blood cells, not tumor. Requires matched normal controls for somatic mutation calling in NGS. PCR inhibitors minimal in plasma, but volume of data can be large (human genome background). |
| Biosafety & Handling | Generally non-infectious unless patient has oral infections. However, salivary viruses (HBV, etc.) could be present; standard precautions (PPE) recommended. Easy transport for mail-in kits (saliva tubes often treated as non-biohazard if no additive reagent). | Treat as biohazard (bloodborne pathogens). Requires phlebotomy and proper sharps disposal. Shipping regulations apply if sending plasma/serum (usually UN3373 Biological Substance Category B). Stabilizing tubes have fixatives (to prevent cell lysis)—handle chemical contents per safety sheets. |
| Cost Considerations | Very low collection cost (no personnel needed if self-collected; <$5 for a collection kit). Extraction costs similar to plasma (~$50–$100/sample for kit reagents). Overall cheaper for screening large populations. | Collection cost involves staff and phlebotomy supplies; minor (~$20). Lab processing and extraction similar cost to saliva. Often requires centralized lab for analysis (if using NGS). High-throughput processing (e.g., automated cfDNA extractors) are available but expensive initially. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warnakulasuriya, S.; Patil, S. Salivary and Serum Liquid Biopsy Biomarkers for HPV-Associated Oral and Oropharyngeal Cancer: A Narrative Review. J. Clin. Med. 2025, 14, 7598. https://doi.org/10.3390/jcm14217598
Warnakulasuriya S, Patil S. Salivary and Serum Liquid Biopsy Biomarkers for HPV-Associated Oral and Oropharyngeal Cancer: A Narrative Review. Journal of Clinical Medicine. 2025; 14(21):7598. https://doi.org/10.3390/jcm14217598
Chicago/Turabian StyleWarnakulasuriya, Saman, and Shankargouda Patil. 2025. "Salivary and Serum Liquid Biopsy Biomarkers for HPV-Associated Oral and Oropharyngeal Cancer: A Narrative Review" Journal of Clinical Medicine 14, no. 21: 7598. https://doi.org/10.3390/jcm14217598
APA StyleWarnakulasuriya, S., & Patil, S. (2025). Salivary and Serum Liquid Biopsy Biomarkers for HPV-Associated Oral and Oropharyngeal Cancer: A Narrative Review. Journal of Clinical Medicine, 14(21), 7598. https://doi.org/10.3390/jcm14217598

