Evaluation of the Accuracy and Reliability of Responses Generated by Artificial Intelligence Related to Clinical Pharmacology
Abstract
1. Introduction
2. Materials and Methods
2.1. Models and Datasets Used
- -
- A set of 20 descriptions with documented patient cases that were successfully treated with pharmacotherapy [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]. The articles were selected in such a way as to include an unambiguous description of the applied treatment that led to the patient’s recovery. The following formula was used to search scientific articles on PubMed: (“case reports” [Publication Type] OR “case study” [Title/Abstract]) AND (“pharmacotherapy” [MeSH Terms] OR “drug therapy” [MeSH Terms] OR “pharmacological treatment” [Title/Abstract]) AND (“successful treatment” [Title/Abstract] OR “recovery” [Title/Abstract] OR “cured” [Title/Abstract] OR “complete remission” [Title/Abstract]). The time range of the analyzed articles covers the years 2018–2025. The query intended for the AI models was accompanied by a description of the patient’s medical history taken from the publication.
- -
- A set of 20 descriptions containing clinical cases of patients in whom drug–drug interactions were diagnosed [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]. In each case, the cause was diagnosed and an effective therapeutic intervention leading to recovery was applied. The following formula was used to search scientific articles on PubMed: “drug interaction” AND “case report” AND (resolved OR treated OR successful). At the same time, the time range of the analyzed articles was set to the years 2018–2025. The query was accompanied by a description of the patient’s medical history.
- -
- A set of PESF test questions, hospital pharmacy, spring session 2018 and autumn session 2019, each containing 120 questions [52].
2.2. Study of Pharmacotherapy Accuracy
2.3. Evaluation of the Importance of Prompting in Generating Responses by AI Models
- -
- Question 6: “Imagine you are a physician. A patient presents at your hospital. After reviewing his medical records, propose a patient-specific treatment plan, keeping in mind our hospital’s budget constraints and lack of cutting-edge technology. The following photo illustrates the patient’s appearance. Suggest the optimal solution.”
- -
- Question 7: “What therapy can be proposed for the patient, considering their medical history as presented in the following text? What is the recommended medication dosage and duration?”
- -
- Question 8: “Explain the reasoning behind your choice of the most appropriate therapy for the patient. Why is this therapy the best option?”
- -
- Question 9: “Provide the source of the information and assure me that I can easily find it on the internet.”
2.4. Study of Drug Interactions
2.5. Study of the Accuracy of Answers to the Hospital Pharmacy Examination
2.6. Statistical Analysis
3. Results
3.1. Correctness of Pharmacotherapy
3.2. Detailed Questions Concerning Pharmacotherapy
- -
- For the first analyzed question, the ChatGPT-4o tool obtained a higher mean of given answers compared to Gemini Advanced 2.0 (p = 0.02).
- -
- For the first analyzed question, the Gemini Advanced 2.0 tool obtained a lower mean of given answers compared to DeepSeek (p = 0.007).
- -
- For the third analyzed question, the ChatGPT-4o tool obtained a higher mean of given answers compared to Gemini Advanced 2.0 (p < 0.001).
- -
- For the third analyzed question, the Gemini Advanced 2.0 tool obtained a lower mean of given answers compared to ChatGPT-3.5 (p = 0.003) and DeepSeek (p < 0.001).
- -
- For the fourth analyzed question, the ChatGPT-4o tool obtained a higher mean of given answers compared to each of all the other tools (p < 0.001).
- -
- The ChatGPT-4o tool, for the second question, obtained a lower mean of correct answers compared to question 1 (p < 0.001), 3 (p = 0.001), and 4 (p < 0.001).
- -
- The ChatGPT-3.5 tool, for the second question, obtained a lower mean of correct answers compared to question 1 (p = 0.001) and 3 (p = 0.002). The same applies to the comparison of question 4 to 3 (p < 0.001).
- -
- The Gemini Advanced 2.0 tool obtained a higher mean of correct answers for question 1 compared to question 2 (p = 0.03) and 4 (p < 0.001).
- -
- The DeepSeek tool obtained a lower mean of correct answers for question 4 compared to each of the remaining questions (p < 0.001).

3.3. Correctness of Answers from PESF—Hospital Pharmacy
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Family Med. Prim. Care. 2019, 8, 2328–2331. [Google Scholar] [CrossRef]
- Alhejaily, A.G. Artificial intelligence in healthcare (Review). Biomed. Rep. 2024, 22, 11. [Google Scholar] [CrossRef]
- Chalasani, S.H.; Syed, J.; Ramesh, M.; Patil, V.; Pramod Kumar, T.M. Artificial intelligence in the field of pharmacy practice: A literature review. Explor. Res. Clin. Soc. Pharm. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Poweleit, E.A.; Vinks, A.A.; Mizuno, T. Artificial Intelligence and Machine Learning Approaches to Facilitate Therapeutic Drug Management and Model-Informed Precision Dosing. Ther. Drug Monit. 2023, 45, 143–150. [Google Scholar] [CrossRef]
- Bräm, D.S.; Parrott, N.; Hutchinson, L.; Steiert, B. Introduction of an artificial neural network-based method for concentration-time predictions. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 745–754. [Google Scholar] [CrossRef]
- Roosan, D.; Padua, P.; Khan, R.; Khan, H.; Verzosa, C.; Wu, Y. Effectiveness of ChatGPT in clinical pharmacy and the role of artificial intelligence in medication therapy management. J. Am. Pharm. Assoc. 2024, 64, 422–428.e8. [Google Scholar] [CrossRef] [PubMed]
- van Nuland, M.; Lobbezoo, A.H.; van de Garde, E.M.W.; Herbrink, M.; van Heijl, I.; Bognàr, T.; Houwen, J.P.A.; Dekens, M.; Wannet, D.; Egberts, T.; et al. Assessing accuracy of ChatGPT in response to questions from day to day pharmaceutical care in hospitals. Explor. Res. Clin. Soc. Pharm. 2024, 15, 100464. [Google Scholar] [CrossRef] [PubMed]
- Fournier, A.; Fallet, C.; Sadeghipour, F.; Perrottet, N. Assessing the applicability and appropriateness of ChatGPT in answering clinical pharmacy questions. Ann. Pharm. Fr. 2024, 82, 507–513. [Google Scholar] [CrossRef]
- Morath, B.; Chiriac, U.; Jaszkowski, E.; Deiß, C.; Nürnberg, H.; Hörth, K.; Hoppe-Tichy, T.; Green, K. Performance and risks of ChatGPT used in drug information: An exploratory real-world analysis. Eur. J. Hosp. Pharm. 2024, 31, 491–497. [Google Scholar] [CrossRef]
- Bazzari, A.H.; Bazzari, F.H. Assessing the ability of GPT-4o to visually recognize medications and provide patient education. Sci. Rep. 2024, 14, 26749. [Google Scholar] [CrossRef] [PubMed]
- Ruchiatan, K.; Avriyanti, E.; Hindritiani, R.; Puspitosari, D.; Suwarsa, O.; Gunawan, H. Successful Therapy of Alopecia Universalis Using a Combination of Systemic Methotrexate and Corticosteroids and Topical 5% Minoxidil. Clin. Cosmet. Investig. Dermatol. 2022, 15, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sheng, A.; Xu, A.E. Successful treatment of vitiligo with crisaborole ointment: A report of two cases. Br. J. Dermatol. 2023, 188, 436–437. [Google Scholar] [CrossRef]
- Akahane, K.; Watanabe, A.; Somazu, S.; Harama, D.; Shinohara, T.; Kasai, S.; Oshiro, H.; Goi, K.; Hasuda, N.; Ozawa, C.; et al. Successful treatment of intractable gastrointestinal tract graft-vs-host disease with oral beclomethasone dipropionate in pediatric and young adult patients: Case reports. Medicine 2022, 101, e29327. [Google Scholar] [CrossRef]
- Uchi, T.; Konno, S.; Kihara, H.; Sugimoto, H. Successful Control of Myasthenic Crisis After the Introduction of Ravulizumab in Myasthenia Gravis: A Case Report. Cureus 2024, 16, e74117. [Google Scholar] [CrossRef]
- Long, Z.; Ruan, M.; Wu, W.; Zeng, Q.; Li, Q.; Huang, Z. The successful combination of grapefruit juice and venetoclax in an unfit acute myeloid leukemia patient with adverse risk: A case report. Front. Oncol. 2022, 12, 912696. [Google Scholar] [CrossRef]
- Abeck, F.; Hansen, I.; Rünger, A.; Booken, N.; Schneider, S.W. Successful treatment of non-uremic calciphylaxis with combination therapy with sodium thiosulfate, iloprost, and heparin. Int. J. Dermatol. 2024, 63, 962–963. [Google Scholar] [CrossRef]
- Lahiri, D.; Seixas-Lima, B.; Roncero, C.; Stokes, K.; Panda, S.S.; Chertkow, H. Psychotropic Polypharmacy Leading to Reversible Dementia: A Case Report. Cogn. Behav. Neurol. 2024, 37, 220–225. [Google Scholar] [CrossRef]
- Duan, M.; Sundararaghavan, S.; Koh, A.L.; Soh, S.Y. Neonatal rhabdomyoma with cardiac dysfunction: Favourable response to sirolimus. BMJ Case Rep. 2022, 15, e247697. [Google Scholar] [CrossRef]
- Kawahara, S.; Watanabe, K.; Inazumi, K.; Kimura, M.; Hirose, Y.; Koishikawa, H. Successful treatment with olanzapine and aripiprazole of a schizophrenic patient who developed priapism after switching from risperidone to paliperidone. Neuropsychopharmacol. Rep. 2024, 44, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Pasca, L.; Gardani, A.; Paoletti, M.; Velardo, D.; Berardinelli, A. Good response to the late treatment with ataluren in a boy with Duchenne muscular dystrophy: Could the previous mild course of the disease have affected the outcome? Acta Myol. 2022, 41, 121–125. [Google Scholar]
- Ahmed, H.; Petkar, M.; Steinhoff, M. Successful treatment of rare linear lichen planopilaris with Ixekizumab. J. Dermatol. Treat. 2023, 34, 2201364. [Google Scholar] [CrossRef] [PubMed]
- Higashida-Konishi, M.; Akiyama, M.; Shimada, T.; Hama, S.; Oshige, T.; Izumi, K.; Oshima, H.; Okano, Y. Giant cell arteritis successfully treated with subcutaneous tocilizumab monotherapy. Rheumatol. Int. 2023, 43, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Kearney, N.; Raichura, S.; Houghton, J.; O’Kane, D. Old drug, new tricks—Successful treatment of Hailey-Hailey disease with thalidomide. Australas. J. Dermatol. 2021, 62, 94–96. [Google Scholar] [CrossRef]
- Zheng, B.Q.; Yan, Y.L.; Ou, M.; Wang, X.H. Successful treatment of acquired cutis laxa with urticarial eruption by diphenyl sulfone. Clin. Exp. Dermatol. 2021, 46, 599–603. [Google Scholar] [CrossRef]
- Mantadakis, E.; Totikidis, G.; Deftereos, S. Disseminated Cystic Echinococcosis Cured with Lengthy Albendazole and Praziquantel Oral Therapy. Pediatr. Infect. Dis. J. 2021, 40, e319–e322. [Google Scholar] [CrossRef] [PubMed]
- González-García, A.; García-Sánchez, I.; Lopes, V.; Moreno-Arrones, O.M.; Tortosa-Cabañas, M.; Elías-Sáenz, I.; Hernández-Rodríguez, J. Successful treatment of severe COVID-19 with subcutaneous anakinra as a sole treatment. Rheumatology 2020, 59, 2171–2173. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Kroodsma, C.T.; Mammen, A.L. Successful treatment of refractory mechanic’s hands with ustekinumab in a patient with the antisynthetase syndrome. Rheumatology 2019, 58, 1307–1308. [Google Scholar] [CrossRef]
- Lin, Z.; Piao, S.; Zhang, R.; Yu, C.; Hou, Z.; Wang, A. Successful treatment of SAPHO syndrome with oral abrocitinib: A case report. J. Dermatol. Treat. 2024, 35, 2437259. [Google Scholar] [CrossRef]
- Islam, M.; Nicholas, S.; Oakley, R.; Healy, B. Successful treatment of resistant HCV in a patient with Child-Pugh B cirrhosis using sofosbuvir and glecaprevir/pibrentasvir. BMJ Case Rep. 2020, 13, e235211. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, J.; Liu, L.; Zeng, Y.; Ma, J.; Jia, J.; Zhang, L.; Li, X.; Wu, P.; Wang, W.; et al. Successful treatment with pazopanib plus PD-1 inhibitor and RAK cells for advanced primary hepatic angiosarcoma: A case report. BMC Cancer 2018, 18, 212. [Google Scholar] [CrossRef]
- Singh, R.K.; Dillon, B.; Tatum, D.A.; Van Poppel, K.C.; Bonthius, D.J. Drug–Drug Interactions Between Cannabidiol and Lithium. Child Neurol. Open 2020, 7, 2329048X20947896. [Google Scholar] [CrossRef]
- Zand Irani, A.; Borchert, G.; Craven, B.; Gibbons, H. Flucloxacillin and paracetamol induced pyroglutamic acidosis. BMJ Case Rep. 2021, 14, e240244. [Google Scholar] [CrossRef]
- Gunaratne, K.; Austin, E.; Wu, P.E. Unintentional sulfonylurea toxicity due to a drug–drug interaction: A case report. BMC Res. Notes 2018, 11, 331. [Google Scholar] [CrossRef]
- Whitledge, J.D.; Watson, C.J.; Burns, M.M. Chronic Doxepin Toxicity Masquerading as Epilepsy in a 10-Year-Old Boy. J. Med. Toxicol. 2023, 19, 405–410. [Google Scholar] [CrossRef]
- Dernbach, M.R.; Carpenter, J.E.; Shah, N.; Carter, G.B. Black Cohosh Interactions with Prescription Medications Associated with Serotonin Toxicity and Rhabdomyolysis: A Case Report. J. Emerg. Med. 2024, 66, e592–e596. [Google Scholar] [CrossRef]
- Udomkarnjananun, S.; Townamchai, N.; Virojanawat, M.; Avihingsanon, Y.; Praditpornsilpa, K. An Unusual Manifestation of Calcineurin Inhibitor-Induced Pain Syndrome in Kidney Transplantation: A Case Report and Literature Review. Am. J. Case Rep. 2018, 19, 442–446. [Google Scholar] [CrossRef]
- Small, S.M.; Bacher, R.S.; Jost, S.A. Disulfiram-like Reaction Involving Ceftriaxone in a Pediatric Patient. J. Pediatr. Pharmacol. Ther. 2018, 23, 168–171. [Google Scholar] [CrossRef]
- Monoe, C.; Shimizu, H.; Kitaguchi, K.; Funakoshi, H. Severe Bradycardia Induced by Sofosbuvir and Amiodarone which Resolved after the Discontinuation of Both Drugs. Intern. Med. 2020, 59, 2619–2622. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, T.; Song, S.; Li, J. Combinations of compound cold medicines should be used with caution: A case series. Front. Med. 2025, 12, 1513019. [Google Scholar] [CrossRef]
- Kataoka, K.; Nakajima, S.; Nomura, T.; Kabashima, K. Acneiform Eruptions Possibly Triggered by Clarithromycin During Sirolimus Treatment. Cureus 2024, 16, e61084. [Google Scholar] [CrossRef] [PubMed]
- Centeno-Hoil, G.; Mousavi, H. Probable pharmacological interaction between sulfonylurea and beta-blocker in a patient with DM-II. A case report. Farm. Comunitarios 2024, 16, 37–42. [Google Scholar]
- Chiu, C.Y.; Sarwal, A.; Munir, R.A.; Widjaja, M.; Khalid, A.; Khanna, R. Syndrome of Inappropriate Antidiuretic Hormone (SIADH) Induced by Long-Term Use of Citalopram and Short-Term Use of Naproxen. Am. J. Case Rep. 2020, 21, e926561. [Google Scholar] [CrossRef] [PubMed]
- Berge, M.; Giraud, J.S.; De Percin, S.; Puszkiel, A.; Thomas-Schoemann, A.; Blanchet, B. Pharmacokinetic drug–drug interaction between olaparib and apixaban: A case report. Cancer Chemother. Pharmacol. 2024, 93, 519–521. [Google Scholar] [CrossRef]
- Parramón-Teixidó, C.J.; Pau-Parra, A.; Burgos, J.; Campany, D. Voriconazole and tamsulosin: A clinically relevant drug–drug interaction. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2021, 39, 361–363. [Google Scholar] [CrossRef]
- Emerson, A.; Gonski, P. Polypharmacy induced myositis. Intern. Med. J. 2020, 50, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, Y.M. Rifampin–Risperidone and Divalproex Drug–drug Interaction: A Case Report. Clin. Psychopharmacol. Neurosci. 2023, 21, 391–394. [Google Scholar] [CrossRef]
- Demir, E.; Sütcüoğlu, O.; Demir, B.; Ünsal, O.; Yazıcı, O. A possible interaction between favipiravir and methotrexate: Drug-induced hepatotoxicity in a patient with osteosarcoma. J. Oncol. Pharm. Pract. 2022, 28, 445–448. [Google Scholar] [CrossRef]
- Wu, C.; Pan, H.; Feng, S.; Wang, X.; Liu, Z.; Zhao, B. Low-dose topiramate and hydrochlorothiazide-associated early acute myopia and angle narrowing: A case report. Front. Med. 2023, 10, 1062160. [Google Scholar] [CrossRef]
- Meszaros, E.P.; Stancu, C.; Costanza, A.; Besson, M.; Sarasin, F.; Bondolfi, G.; Ambrosetti, J. Antibiomania: A case report of clarithromycin and amoxicillin–clavulanic acid induced manic episodes separately. BMC Psychiatry 2021, 21, 399. [Google Scholar] [CrossRef]
- Agarwal, N.; Mangla, A. Elderberry interaction with pazopanib in a patient with soft-tissue sarcoma: A case report and literature review. Mol. Clin. Oncol. 2024, 20, 36. [Google Scholar] [CrossRef]
- Łodzi CEMw. [Sesja Wiosenna 2018 Farmacja Szpitalna]. Available online: https://www.cem.edu.pl/pytcem/baza_farmacja.php (accessed on 1 April 2025).
- Sivarajkumar, S.; Kelley, M.; Samolyk-Mazzanti, A.; Visweswaran, S.; Wang, Y. An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing: Algorithm Development and Validation Study. JMIR Med. Inform. 2024, 12, e55318. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Deng, X.; Wen, H.; You, M.; Liu, W.; Li, Q.; Li, J. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. npj Digit. Med. 2024, 7, 41. [Google Scholar] [CrossRef]
- Salman, I.M.; Ameer, O.Z.; Khanfar, M.A.; Hsieh, Y.H. Artificial intelligence in healthcare education: Evaluating the accuracy of ChatGPT, Copilot, and Google Gemini in cardiovascular pharmacology. Front. Med. 2025, 12, 1495378. [Google Scholar] [CrossRef]
- Juhi, A.; Pipil, N.; Santra, S.; Mondal, S.; Behera, J.K.; Mondal, H. The Capability of ChatGPT in Predicting and Explaining Common Drug-Drug Interactions. Cureus 2023, 15, e36272. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Zhang, Y.; Chu, Y.; Ding, Y.; Liu, Z.; Zhao, X.; Wang, Y.; Wan, J.; Ding, Y.; Tiwari, P.; et al. Application of Artificial Intelligence in Drug-target Interactions Prediction: A Review. npj Biomed. Innov. 2025, 2, 1. [Google Scholar] [CrossRef]
- Al-Ashwal, F.Y.; Zawiah, M.; Gharaibeh, L.; Abu-Farha, R.; Bitar, A.N. Evaluating the Sensitivity, Specificity, and Accuracy of ChatGPT-3.5, ChatGPT-4, Bing AI, and Bard Against Conventional Drug-Drug Interactions Clinical Tools. Drug Healthc. Patient Saf. 2023, 15, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Radha Krishnan, R.P.; Hung, E.H.; Ashford, M.; Edillo, C.E.; Gardner, C.; Hatrick, H.B.; Kim, B.; Lai, A.W.Y.; Li, X.; Zhao, Y.X.; et al. Evaluating the capability of ChatGPT in predicting drug-drug interactions: Real-world evidence using hospitalized patient data. Br. J. Clin. Pharmacol. 2024, 90, 3361–3366. [Google Scholar] [CrossRef]
- Jin, H.K.; Kim, E. Performance of GPT-3.5 and GPT-4 on the Korean Pharmacist Licensing Examination: Comparison Study. JMIR Med. Educ. 2024, 10, e57451. [Google Scholar] [CrossRef]
- Wang, Y.M.; Shen, H.W.; Chen, T.J. Performance of ChatGPT on the pharmacist licensing examination in Taiwan. J. Chin. Med. Assoc. 2023, 86, 653–658. [Google Scholar] [CrossRef]
- Sato, H.; Ogasawara, K. ChatGPT (GPT-4) passed the Japanese National License Examination for Pharmacists in 2022, answering all items including those with diagrams: A descriptive study. J. Educ. Eval. Health Prof. 2024, 21, 4. [Google Scholar] [CrossRef] [PubMed]








| Narzędzie AI | M | SD | Min | Max | Q1 | Me | Q3 |
|---|---|---|---|---|---|---|---|
| ChatGPT-4o | 7.13 | 1.75 | 2 | 10 | 6 | 7 | 9 |
| ChatGPT 3.5 | 7.3 | 1.67 | 3 | 10 | 6 | 7 | 8.75 |
| Gemini Advanced 2.0 | 5.33 | 1.97 | 1 | 9 | 4 | 5 | 7 |
| DeepSeek | 6.49 | 2.04 | 2 | 10 | 5 | 6.5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordak, M.; Adamczyk, J.; Oskroba, A.; Majewski, M.; Nasierowski, T. Evaluation of the Accuracy and Reliability of Responses Generated by Artificial Intelligence Related to Clinical Pharmacology. J. Clin. Med. 2025, 14, 7563. https://doi.org/10.3390/jcm14217563
Ordak M, Adamczyk J, Oskroba A, Majewski M, Nasierowski T. Evaluation of the Accuracy and Reliability of Responses Generated by Artificial Intelligence Related to Clinical Pharmacology. Journal of Clinical Medicine. 2025; 14(21):7563. https://doi.org/10.3390/jcm14217563
Chicago/Turabian StyleOrdak, Michal, Julia Adamczyk, Agata Oskroba, Michal Majewski, and Tadeusz Nasierowski. 2025. "Evaluation of the Accuracy and Reliability of Responses Generated by Artificial Intelligence Related to Clinical Pharmacology" Journal of Clinical Medicine 14, no. 21: 7563. https://doi.org/10.3390/jcm14217563
APA StyleOrdak, M., Adamczyk, J., Oskroba, A., Majewski, M., & Nasierowski, T. (2025). Evaluation of the Accuracy and Reliability of Responses Generated by Artificial Intelligence Related to Clinical Pharmacology. Journal of Clinical Medicine, 14(21), 7563. https://doi.org/10.3390/jcm14217563

