Advancements and Innovations in Keratoconus Management: A Review of Current Practices
Abstract
1. Introduction
2. Contact Lenses
2.1. Specialized Contact Lenses
2.2. Modern Scleral Lenses
3. Corneal Crosslinking (CXL)
3.1. Conventional Protocol
3.2. Accelerated Protocols
3.3. Pulsed Crosslinking
3.4. Epithelium-On Protocols
3.5. Iontophoresis-Assisted Crosslinking
3.6. Crosslinking in Thin Corneas
3.7. Customized Crosslinking
3.8. Crosslinking Plus
4. Intrastromal Implants
4.1. Intracorneal Ring Segments (ICRS)
4.2. Corneal Allogeneic Intrastromal Ring Segments (CAIRS)
5. Corneal Transplantation
5.1. Penetrating Keratoplasty (PKP)
5.2. Deep Anterior Lamellar Keratoplasty (DALK)
6. Stromal Keratophakia
6.1. Bowman Layer Transplantation (BLT)
6.2. Stromal Lenticule Addition Keratoplasty (SLAK)
6.3. Bandage Therapeutic Optical Keratoplasty (BTOK)
7. Future Perspectives
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ferdi, A.C.; Nguyen, V.; Gore, D.M.; Allan, B.D.; Rozema, J.J.; Watson, S.L. Keratoconus Natural Progression: A Systematic Review and Meta-analysis of 11,529 Eyes. Ophthalmology 2019, 126, 935–945. [Google Scholar] [CrossRef]
- Hashemi, H.; Heydarian, S.; Hooshmand, E.; Saatchi, M.; Yekta, A.; Aghamirsalim, M.; Valadkhan, M.; Mortazavi, M.; Hashemi, A.; Khabazkhoob, M. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2020, 39, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Szczotka, L.B.; Barr, J.T.; Zadnik, K. A summary of the findings from the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. CLEK Study Group. Optometry 2001, 72, 574–584. [Google Scholar] [PubMed]
- Barnett, M.; Mannis, M.J. Contact lenses in the management of keratoconus. Cornea 2011, 30, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, Z.; Cohen, E.J. Use of intralimbal rigid gas-permeable lenses for pellucid marginal degeneration, keratoconus, and after penetrating keratoplasty. Eye Contact Lens 2006, 32, 33–36. [Google Scholar] [CrossRef]
- Sengor, T.; Kurna, S.A.; Aki, S.; Ozkurt, Y. High Dk piggyback contact lens system for contact lens-intolerant keratoconus patients. Clin. Ophthalmol. 2011, 5, 331–335. [Google Scholar] [CrossRef]
- Cromelin, C.; Russell, B.; Lambert, S.R. Improved Vision and Contact Lens Wear Time with Piggy-Back Contact Lens Systems in Children After Penetrating Corneal Trauma. Eye Contact Lens 2017, 43, e10–e12. [Google Scholar] [CrossRef]
- Nau, A.C. A comparison of synergeyes versus traditional rigid gas permeable lens designs for patients with irregular corneas. Eye Contact Lens 2008, 34, 198–200. [Google Scholar] [CrossRef]
- Hashemi, H.; Shaygan, N.; Asgari, S.; Rezvan, F.; Asgari, S. ClearKone-Synergeyes or rigid gas-permeable contact lens in keratoconic patients: A clinical decision. Eye Contact Lens 2014, 40, 95–98. [Google Scholar] [CrossRef]
- Schornack, M.M.; Patel, S.V. Scleral lenses in the management of keratoconus. Eye Contact Lens 2010, 36, 39–44. [Google Scholar] [CrossRef]
- Dimit, R.; Gire, A.; Pflugfelder, S.C.; Bergmanson, J.P.G. Patient ocular conditions and clinical outcomes using a PROSE scleral device. Cont. Lens Anterior Eye J. Br. Contact Lens Assoc. 2013, 36, 159–163. [Google Scholar] [CrossRef]
- Stason, W.B.; Razavi, M.; Jacobs, D.S.; Shepard, D.S.; Suaya, J.A.; Johns, L.; Rosenthal, P. Clinical benefits of the Boston Ocular Surface Prosthesis. Am. J. Ophthalmol. 2010, 149, 54–61. [Google Scholar] [CrossRef]
- Nguyen, M.T.B.; Thakrar, V.; Chan, C.C. EyePrintPRO therapeutic scleral contact lens: Indications and outcomes. Can. J. Ophthalmol. 2018, 53, 66–70. [Google Scholar] [CrossRef]
- Silverman, J.I.M.; Huffman, J.M.; Zimmerman, M.B.; Ling, J.J.; Greiner, M.A. Indications for Wear, Visual Outcomes, and Complications of Custom Imprint 3D Scanned Scleral Contact Lens Use. Cornea 2021, 40, 596–602. [Google Scholar] [CrossRef]
- Spoerl, E.; Huhle, M.; Seiler, T. Induction of cross-links in corneal tissue. Exp. Eye Res. 1998, 66, 97–103. [Google Scholar] [CrossRef]
- Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, S.A.; Hersh, P.S. Update on corneal crosslinking for keratoconus and corneal ectasia. Curr. Opin. Ophthalmol. 2024, 35, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Hersh, P.S.; Stulting, R.D.; Muller, D.; Durrie, D.S.; Rajpal, R.K. United States Crosslinking Study Group United States Multicenter Clinical Trial of Corneal Collagen Crosslinking for Keratoconus Treatment. Ophthalmology 2017, 124, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.J.; Messmer, E.M.; Geerling, G.; Mackert, M.J.; Brunner, T.; Dollak, S.; Kutchoukov, B.; Böhringer, D.; Reinhard, T.; Maier, P. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol. 2015, 15, 78. [Google Scholar] [CrossRef]
- Brindley, G.S. The Bunsen-Roscoe law for the human eye at very short durations. J. Physiol. 1952, 118, 135–139. [Google Scholar] [CrossRef]
- Mita, M.; Waring, G.O.; Tomita, M. High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: Six-month results. J. Cataract Refract. Surg. 2014, 40, 1032–1040. [Google Scholar] [CrossRef]
- Lang, P.Z.; Hafezi, N.L.; Khandelwal, S.S.; Torres-Netto, E.A.; Hafezi, F.; Randleman, J.B. Comparative Functional Outcomes After Corneal Crosslinking Using Standard, Accelerated, and Accelerated with Higher Total Fluence Protocols. Cornea 2019, 38, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Omar Yousif, M.; Elkitkat, R.S.; Abdelsadek Alaarag, N.; Moustafa Seleet, M.; Hassan Soliman, A. Comparison Between Pulsed and Continuous Accelerated Corneal Cross-Linking Protocols. Clin. Ophthalmol. 2023, 17, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, C.; Pandolfi, A.; Ferrise, M. Progressive high-fluence epithelium-on accelerated corneal crosslinking: A novel corneal photodynamic therapy for early progressive keratoconus. Front. Med. 2023, 10, 1198246. [Google Scholar] [CrossRef] [PubMed]
- Niyazmand, H.; McKelvie, J.; Li, Y.; McLintock, C. Comparison of Visual and Tomographic Outcomes of Epithelium-On and Epithelium-Off Accelerated Corneal Crosslinking: A Longitudinal Study. Cornea 2021, 40, 643–647. [Google Scholar] [CrossRef]
- Kobashi, H.; Tsubota, K. Accelerated Versus Standard Corneal Cross-Linking for Progressive Keratoconus: A Meta-Analysis of Randomized Controlled Trials. Cornea 2020, 39, 172–180. [Google Scholar] [CrossRef]
- Shajari, M.; Kolb, C.M.; Agha, B.; Steinwender, G.; Müller, M.; Herrmann, E.; Schmack, I.; Mayer, W.J.; Kohnen, T. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: A meta-analysis. Acta Ophthalmol. 2019, 97, e22–e35. [Google Scholar] [CrossRef]
- Hatch, W.; El-Defrawy, S.; Ong Tone, S.; Stein, R.; Slomovic, A.R.; Rootman, D.S.; Rabinovitch, T.; Kranemann, C.; Chew, H.F.; Chan, C.C.; et al. Accelerated Corneal Cross-Linking: Efficacy, Risk of Progression, and Characteristics Affecting Outcomes. A Large, Single-Center Prospective Study. Am. J. Ophthalmol. 2020, 213, 76–87. [Google Scholar] [CrossRef]
- Krueger, R.R.; Herekar, S.; Spoerl, E. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet a cross-linking with equivalent energy exposure. Eye Contact Lens 2014, 40, 353–357. [Google Scholar] [CrossRef]
- Mazzotta, C.; Traversi, C.; Paradiso, A.L.; Latronico, M.E.; Rechichi, M. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results. J. Ophthalmol. 2014, 2014, 604731. [Google Scholar] [CrossRef]
- Kang, M.-J.; Hwang, J.; Chung, S.-H. Comparison of pulsed and continuous accelerated corneal crosslinking for keratoconus: 1-year results at a single center. J. Cataract Refract. Surg. 2021, 47, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Luckmann, M.; Böhm, M.; Hemkeppler, E.; Kohnen, T. Pulsed light epithelium-off accelerated corneal collagen crosslinking with 30mW/cm2 irradiance and 7.2 J/cm2 radiant exposure: 2-year results. Int. Ophthalmol. 2025, 45, 156. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.; Watson, S.L.; Kandel, H. Pulsed corneal crosslinking in the treatment of Keratoconus: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 589–601. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, F.; Palazón, A.; Alio, J.L. Corneal collagen cross-linking epithelium-on vs. epithelium-off: A systematic review and meta-analysis. Eye Vis. 2021, 8, 34. [Google Scholar] [CrossRef]
- Soeters, N.; Wisse, R.P.L.; Godefrooij, D.A.; Imhof, S.M.; Tahzib, N.G. Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: A randomized controlled trial. Am. J. Ophthalmol. 2015, 159, 821–828.e3. [Google Scholar] [CrossRef]
- Nath, S.; Shen, C.; Koziarz, A.; Banfield, L.; Nowrouzi-Kia, B.; Fava, M.A.; Hodge, W.G. Transepithelial versus Epithelium-off Corneal Collagen Cross-linking for Corneal Ectasia: A Systematic Review and Meta-analysis. Ophthalmology 2021, 128, 1150–1160. [Google Scholar] [CrossRef]
- Borchert, G.A.; Watson, S.L.; Kandel, H. Oxygen in Corneal Collagen Crosslinking to Treat Keratoconus: A Systematic Review and Meta-Analysis. Asia Pac. J. Ophthalmol. 2022, 11, 453–459. [Google Scholar] [CrossRef]
- Mazzotta, C.; Sgheri, A.; Bagaglia, S.A.; Rechichi, M.; Di Maggio, A. Customized corneal crosslinking for treatment of progressive keratoconus: Clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J. Cataract Refract. Surg. 2020, 46, 1582–1587. [Google Scholar] [CrossRef]
- Vinciguerra, P.; Randleman, J.B.; Romano, V.; Legrottaglie, E.F.; Rosetta, P.; Camesasca, F.I.; Piscopo, R.; Azzolini, C.; Vinciguerra, R. Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: Initial clinical outcomes. J. Refract. Surg. 2014, 30, 746–753. [Google Scholar] [CrossRef]
- Vinciguerra, P.; Montericcio, A.; Catania, F.; Fossati, G.; Raimondi, R.; Legrottaglie, E.F.; Vinciguerra, R. New perspectives in keratoconus treatment: An update on iontophoresis-assisted corneal collagen crosslinking. Int. Ophthalmol. 2021, 41, 1909–1916. [Google Scholar] [CrossRef]
- Wan, K.H.; Ip, C.K.Y.; Kua, W.N.; Chow, V.W.S.; Chong, K.K.L.; Young, A.L.; Cheng, G.P.M.; Jhanji, V. Transepithelial corneal collagen cross-linking using iontophoresis versus the Dresden protocol in progressive keratoconus: A meta-analysis. Clin. Exp. Ophthalmol. 2021, 49, 228–241. [Google Scholar] [CrossRef]
- Napolitano, P.; Tranfa, F.; D’Andrea, L.; Caruso, C.; Rinaldi, M.; Mazzucco, A.; Ciampa, N.; Melenzane, A.; Costagliola, C. Topographic Outcomes in Keratoconus Surgery: Epi-on versus Epi-off Iontophoresis Corneal Collagen Cross-Linking. J. Clin. Med. 2022, 11, 1785. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Legrottaglie, E.F.; Tredici, C.; Mazzotta, C.; Rosetta, P.; Vinciguerra, P. Transepithelial Iontophoresis-Assisted Cross Linking for Progressive Keratoconus: Up to 7 Years of Follow Up. J. Clin. Med. 2022, 11, 678. [Google Scholar] [CrossRef]
- Wollensak, G.; Spörl, E.; Reber, F.; Pillunat, L.; Funk, R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003, 35, 324–328. [Google Scholar] [CrossRef]
- Mazzotta, C.; Ramovecchi, V. Customized epithelial debridement for thin ectatic corneas undergoing corneal cross-linking: Epithelial island cross-linking technique. Clin. Ophthalmol. 2014, 8, 1337–1343. [Google Scholar] [CrossRef]
- Kymionis, G.D.; Diakonis, V.F.; Coskunseven, E.; Jankov, M.; Yoo, S.H.; Pallikaris, I.G. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, F.; Mrochen, M.; Iseli, H.P.; Seiler, T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J. Cataract Refract. Surg. 2009, 35, 621–624. [Google Scholar] [CrossRef]
- Jacob, S.; Kumar, D.A.; Agarwal, A.; Basu, S.; Sinha, P.; Agarwal, A. Contact lens-assisted collagen cross-linking (CACXL): A new technique for cross-linking thin corneas. J. Refract. Surg. 2014, 30, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, C.; Gupta, B.; Jain, A.K.; Dhar, S.; Gupta, A.; Balyan, M. Comparison of contact lens-assisted and transepithelial corneal crosslinking with standard epithelium-off crosslinking for progressive keratoconus: 24-month clinical results. J. Cataract Refract. Surg. 2022, 48, 199–207. [Google Scholar] [CrossRef]
- Wollensak, G.; Spörl, E.; Herbst, H. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Acta Ophthalmol. 2019, 97, e84–e90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Roozbahani, M.; Piccinini, A.L.; Golan, O.; Hafezi, F.; Scarcelli, G.; Randleman, J.B. Depth-Dependent Reduction of Biomechanical Efficacy of Contact Lens-Assisted Corneal Cross-linking Analyzed by Brillouin Microscopy. J. Refract. Surg. 2019, 35, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, M.S.; Gupta, D.; Sachdev, G.; Sachdev, R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J. Cataract Refract. Surg. 2015, 41, 918–923. [Google Scholar] [CrossRef]
- Cagini, C.; Riccitelli, F.; Messina, M.; Piccinelli, F.; Torroni, G.; Said, D.; Al Maazmi, A.; Dua, H.S. Epi-off-lenticule-on corneal collagen cross-linking in thin keratoconic corneas. Int. Ophthalmol. 2020, 40, 3403–3412. [Google Scholar] [CrossRef]
- Hafezi, F.; Kling, S.; Gilardoni, F.; Hafezi, N.; Hillen, M.; Abrishamchi, R.; Gomes, J.A.P.; Mazzotta, C.; Randleman, J.B.; Torres-Netto, E.A. Individualized Corneal Cross-linking with Riboflavin and UV-A in Ultrathin Corneas: The Sub400 Protocol. Am. J. Ophthalmol. 2021, 224, 133–142. [Google Scholar] [CrossRef]
- Sachdev, G.S.; Ramamurthy, S.; Soundariya, B.; Dandapani, R. Comparative Analysis of Safety and Efficacy of Topography-Guided Customized Cross-linking and Standard Cross-linking in the Treatment of Progressive Keratoconus. Cornea 2021, 40, 188–193. [Google Scholar] [CrossRef]
- Seiler, T.G.; Fischinger, I.; Koller, T.; Zapp, D.; Frueh, B.E.; Seiler, T. Customized Corneal Cross-linking: One-Year Results. Am. J. Ophthalmol. 2016, 166, 14–21. [Google Scholar] [CrossRef]
- Kymionis, G.D.; Portaliou, D.M.; Kounis, G.A.; Limnopoulou, A.N.; Kontadakis, G.A.; Grentzelos, M.A. Simultaneous topography-guided photorefractive keratectomy followed by corneal collagen cross-linking for keratoconus. Am. J. Ophthalmol. 2011, 152, 748–755. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J. Refract. Surg. 2009, 25, S812–S818. [Google Scholar] [CrossRef]
- Zhang, H.; Cantó-Cerdán, M.; Félix-Espinar, B.; Alió Del Barrio, J.L. Efficacy of Customized Photorefractive Keratectomy with Cross-Linking Versus Cross-Linking Alone in Progressive Keratoconus: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2025, 274, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Kymionis, G.D.; Grentzelos, M.A.; Kounis, G.A.; Diakonis, V.F.; Limnopoulou, A.N.; Panagopoulou, S.I. Combined transepithelial phototherapeutic keratectomy and corneal collagen cross-linking for progressive keratoconus. Ophthalmology 2012, 119, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Kapasi, M.; Dhaliwal, A.; Mintsioulis, G.; Jackson, W.B.; Baig, K. Long-Term Results of Phototherapeutic Keratectomy Versus Mechanical Epithelial Removal Followed by Corneal Collagen Cross-Linking for Keratoconus. Cornea 2016, 35, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, R.; Pagano, L.; Borgia, A.; Montericcio, A.; Legrottaglie, E.F.; Piscopo, R.; Rosetta, P.; Vinciguerra, P. Corneal Cross-linking for Progressive Keratoconus: Up to 13 Years of Follow-up. J. Refract. Surg. 2020, 36, 838–843. [Google Scholar] [CrossRef]
- Greenstein, S.A.; Yu, A.S.; Gelles, J.D.; Huang, S.; Hersh, P.S. Long-Term Outcomes After Corneal Cross-linking for Progressive Keratoconus and Corneal Ectasia: A 10-Year Follow-Up of the Pivotal Study. Eye Contact Lens 2023, 49, 411–416. [Google Scholar] [CrossRef]
- Godefrooij, D.A.; Soeters, N.; Imhof, S.M.; Wisse, R.P.L. Corneal Cross-Linking for Pediatric Keratoconus: Long-Term Results. Cornea 2016, 35, 954–958. [Google Scholar] [CrossRef]
- Daxer, A. Biomechanics of Corneal Ring Implants. Cornea 2015, 34, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Hersh, P.S.; Issa, R.; Greenstein, S.A. Corneal crosslinking and intracorneal ring segments for keratoconus: A randomized study of concurrent versus sequential surgery. J. Cataract Refract. Surg. 2019, 45, 830–839. [Google Scholar] [CrossRef]
- Coskunseven, E.; Kymionis, G.D.; Tsiklis, N.S.; Atun, S.; Arslan, E.; Siganos, C.S.; Jankov, M.; Pallikaris, I.G. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: A survey of 850 eyes with keratoconus. Acta Ophthalmol. 2011, 89, 54–57. [Google Scholar] [CrossRef]
- Torquetti, L.; Berbel, R.F.; Ferrara, P. Long-term follow-up of intrastromal corneal ring segments in keratoconus. J. Cataract Refract. Surg. 2009, 35, 1768–1773. [Google Scholar] [CrossRef]
- Jacob, S.; Patel, S.R.; Agarwal, A.; Ramalingam, A.; Saijimol, A.I.; Raj, J.M. Corneal Allogenic Intrastromal Ring Segments (CAIRS) Combined with Corneal Cross-linking for Keratoconus. J. Refract. Surg. 2018, 34, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Kirgiz, A.; Kemer Atik, B.; Emul, M.; Taskapili, M. Clinical outcomes of femtosecond laser-assisted corneal allogenic intrastromal ring segment (CAIRS) in the treatment of keratoconus. Clin. Exp. Ophthalmol. 2024, 52, 713–723. [Google Scholar] [CrossRef]
- Bteich, Y.; Assaf, J.F.; Mrad, A.A.; Jacob, S.; Hafezi, F.; Awwad, S.T. Corneal Allogenic Intrastromal Ring Segments (CAIRS) for Corneal Ectasia: A Comprehensive Segmental Tomography Evaluation. J. Refract. Surg. 2023, 39, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Agarwal, A.; Awwad, S.T.; Mazzotta, C.; Parashar, P.; Jambulingam, S. Customized corneal allogenic intrastromal ring segments (CAIRS) for keratoconus with decentered asymmetric cone. Indian. J. Ophthalmol. 2023, 71, 3723–3729. [Google Scholar] [CrossRef]
- Greenstein, S.A.; Yu, A.S.; Gelles, J.D.; Eshraghi, H.; Hersh, P.S. Corneal tissue addition keratoplasty: New intrastromal inlay procedure for keratoconus using femtosecond laser-shaped preserved corneal tissue. J. Cataract Refract. Surg. 2023, 49, 740–746. [Google Scholar] [CrossRef]
- Friedrich, M.; Auffarth, G.U.; Soiberman, U.; Augustin, V.A.; Khoramnia, R.; Son, H.-S. Visual and Topographic Outcomes After Corneal Allogeneic Intrastromal Ring Segments for Keratoconus: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2025, 276, 81–91. [Google Scholar] [CrossRef]
- Choi, J.A.; Lee, M.A.; Kim, M.-S. Long-term outcomes of penetrating keratoplasty in keratoconus: Analysis of the factors associated with final visual acuities. Int. J. Ophthalmol. 2014, 7, 517–521. [Google Scholar] [CrossRef]
- Reinhart, W.J.; Musch, D.C.; Jacobs, D.S.; Lee, W.B.; Kaufman, S.C.; Shtein, R.M. Deep Anterior Lamellar Keratoplasty as an Alternative to Penetrating Keratoplasty. Ophthalmology 2011, 118, 209–218. [Google Scholar] [CrossRef]
- Borderie, V.M.; Georgeon, C.; Sandali, O.; Bouheraoua, N. Long-term outcomes of deep anterior lamellar versus penetrating keratoplasty for keratoconus. Br. J. Ophthalmol. 2023, 108, 10–16. [Google Scholar] [CrossRef]
- Gadhvi, K.A.; Romano, V.; Fernández-Vega Cueto, L.; Aiello, F.; Day, A.C.; Allan, B.D. Deep Anterior Lamellar Keratoplasty for Keratoconus: Multisurgeon Results. Am. J. Ophthalmol. 2019, 201, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Lucchino, L.; Visioli, G.; Scarinci, F.; Colabelli Gisoldi, R.A.M.; Komaiha, C.; Marenco, M.; Pocobelli, G.; Lambiase, A.; Pocobelli, A. Tomographic and topographic predictive factors of big bubble formation during deep anterior lamellar keratoplasty in keratoconus. Br. J. Ophthalmol. 2024, 108, 1486–1491. [Google Scholar] [CrossRef]
- Gadhvi, K.A.; Romano, V.; Fernández-Vega Cueto, L.; Aiello, F.; Day, A.C.; Gore, D.M.; Allan, B.D. Femtosecond Laser-Assisted Deep Anterior Lamellar Keratoplasty for Keratoconus: Multi-surgeon Results. Am. J. Ophthalmol. 2020, 220, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Son, H.-S.; Rigi, M.; Srikumaran, D.; Eberhart, C.G.; Jun, A.S.; Soiberman, U.S. “Groove and Peel” Deep Anterior Lamellar Keratoplasty: How Deep Can You Go? Cornea 2023, 42, 105–109. [Google Scholar] [CrossRef]
- Sarnicola, C.; Sarnicola, V.; Romani, A.; Sarnicola, E. Rediscovering a valuable manual Deep Anterior Lamellar Keratoplasty (DALK) technique: Outcomes of 42 “Peeling-off” DALK. Eur. J. Ophthalmol. 2022, 33, 900–904. [Google Scholar] [CrossRef]
- van Dijk, K.; Parker, J.; Tong, C.M.; Ham, L.; Lie, J.T.; Groeneveld-van Beek, E.A.; Melles, G.R.J. Midstromal isolated Bowman layer graft for reduction of advanced keratoconus: A technique to postpone penetrating or deep anterior lamellar keratoplasty. JAMA Ophthalmol. 2014, 132, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Rigi, M.; Son, H.-S.; Moon, L.; Matthaei, M.; Srikumaran, D.; Jun, A.S.; Eberhart, C.G.; Soiberman, U.S. Collagen type XII is undetectable in keratoconus Bowman’s layer. Br. J. Ophthalmol. 2024, 108, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Van der Star, L.; van Dijk, K.; Vasiliauskaitė, I.; Dapena, I.; Oellerich, S.; Melles, G.R.J. Long-Term Outcomes of Bowman Layer Inlay Transplantation for the Treatment of Progressive Keratoconus. Cornea 2022, 41, 1150–1157. [Google Scholar] [CrossRef]
- García de Oteyza, G.; González Dibildox, L.A.; Vázquez-Romo, K.A.; Tapia Vázquez, A.; Dávila Alquisiras, J.H.; Martínez-Báez, B.E.; García-Albisua, A.M.; Ramírez, M.; Hernández-Quintela, E. Bowman layer transplantation using a femtosecond laser. J. Cataract Refract. Surg. 2019, 45, 261–266. [Google Scholar] [CrossRef]
- Orive Bañuelos, A.; Santamaría Carro, A.; Feijóo Lera, R.; Etxebarria Ecenarro, J. Sterile corneal necrosis after bowman layer transplantation. Eur. J. Ophthalmol. 2023, 33, 1558–1566. [Google Scholar] [CrossRef]
- Dapena, I.; van der Star, L.; Groeneveld-van Beek, E.A.; Quilendrino, R.; van Dijk, K.; Parker, J.S.; Oellerich, S.; Melles, G.R.J. Bowman Layer Onlay Grafting: Proof-of-Concept of a New Technique to Flatten Corneal Curvature and Reduce Progression in Keratoconus. Cornea 2021, 40, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Van der Star, L.; Vasiliauskaitė, I.; Oellerich, S.; Groeneveld-van Beek, E.A.; Ghaly, M.; Laouani, A.; Vasanthananthan, K.; van Dijk, K.; Dapena, I.; Melles, G.R.J.; et al. Bowman Layer Onlay Grafting as a Minimally Invasive Treatment for the Most Challenging Cases in Keratoconus. Am. J. Ophthalmol. 2024, 261, 54–65. [Google Scholar] [CrossRef]
- Son, H.-S.; Moon, L.; Wang, J.; Eberhart, C.G.; Jun, A.S.; Srikumaran, D.; Soiberman, U.S. Histological Comparative Analysis of Bowman Layer Grafts Procured Using 3 Different Techniques. Cornea 2023, 42, 888–893. [Google Scholar] [CrossRef]
- Riau, A.K.; Htoon, H.M.; Alió Del Barrio, J.L.; Nubile, M.; El Zarif, M.; Mastropasqua, L.; Alió, J.L.; Mehta, J.S. Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis. Int. Ophthalmol. 2021, 41, 1965–1979. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Nubile, M.; Salgari, N.; Mastropasqua, R. Femtosecond Laser-Assisted Stromal Lenticule Addition Keratoplasty for the Treatment of Advanced Keratoconus: A Preliminary Study. J. Refract. Surg. 2018, 34, 36–44. [Google Scholar] [CrossRef]
- Nubile, M.; Salgari, N.; Mehta, J.S.; Calienno, R.; Erroi, E.; Bondì, J.; Lanzini, M.; Liu, Y.-C.; Mastropasqua, L. Epithelial and stromal remodelling following femtosecond laser-assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus. Sci. Rep. 2021, 11, 2293. [Google Scholar] [CrossRef]
- Wei, Q.; Ding, H.; Nie, K.; Jin, H.; Zhong, T.; Yu, H.; Yang, Z.; Hu, S.; He, L.; Zhong, X. Long-Term Clinical Outcomes of Small-Incision Femtosecond Laser-Assisted Intracorneal Concave Lenticule Implantation in Patients with Keratoconus. J. Ophthalmol. 2022, 2022, 9774448. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Deng, Y.; Wang, L. Lenticule addition keratoplasty for the treatment of keratoconus: A systematic review and critical considerations. Indian. J. Ophthalmol. 2024, 72, S167–S175. [Google Scholar] [CrossRef]
- Avetisov, S.E.; Sheludchenko, V.M.; Osipyan, G.A.; Khraystin, K.; Abukerimova, A.K.; Dzhalili, R.A. Long-term outcomes of bandage therapeutic-optical keratoplasty in the treatment of keratoconus. Vestn. Oftalmol. 2022, 138, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Price, F.W.; Whitson, W.E.; Marks, R.G. Progression of visual acuity after penetrating keratoplasty. Ophthalmology 1991, 98, 1177–1185. [Google Scholar] [CrossRef]
- Feizi, S.; Javadi, M.A.; Karimian, F.; Bayat, K.; Bineshfar, N.; Esfandiari, H. Penetrating Keratoplasty Versus Deep Anterior Lamellar Keratoplasty for Advanced Stage of Keratoconus. Am. J. Ophthalmol. 2023, 248, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Sutton, G.; Hodge, C.; McGhee, C.N.J. Rapid visual recovery after penetrating keratoplasty for keratoconus. Clin. Exp. Ophthalmol. 2008, 36, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Mata, A.G.; Benedetti Sandner, M.; García de Oteyza, G.; Gutiérrez-García, D.K.; Nishimura-Crespo, A.; De la Torre González, C.E.; De Wit Carter, G.; García-Albisua, A.M. Bowman Layer Transplantation with Stromal Inclusion Using Femtosecond Laser: 3-Year Results. Cornea 2025, 44, 332–336. [Google Scholar] [CrossRef]
- Van Dijk, K.; Parker, J.S.; Baydoun, L.; Ilyas, A.; Dapena, I.; Groeneveld-van Beek, E.A.; Melles, G.R.J. Bowman layer transplantation: 5-year results. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Alió Del Barrio, J.L.; El Zarif, M.; de Miguel, M.P.; Azaar, A.; Makdissy, N.; Harb, W.; El Achkar, I.; Arnalich-Montiel, F.; Alió, J.L. Cellular Therapy with Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea 2017, 36, 952–960. [Google Scholar] [CrossRef]
- Moon, L.; Kaur, P.; Soiberman, U. WNT10A regulates COL12A1 in corneal epithelial cells and suggests Wnt signaling as a therapeutic target. Investig. Ophthalmol. Vis. Sci. 2024, 65, 4552. [Google Scholar]
- Moon, L.; Kaur, P.; Wang, J.; Sodhi, A.; Eberhart, C.; Soiberman, U. Mechanical Strain of Corneal Epithelium Influences the Expression of Genes Implicated in Keratoconus. Investig. Ophthalmol. Vis. Sci. 2025, 66, 52. [Google Scholar] [CrossRef]
- Bykhovskaya, Y.; Li, X.; Epifantseva, I.; Haritunians, T.; Siscovick, D.; Aldave, A.; Szczotka-Flynn, L.; Iyengar, S.K.; Taylor, K.D.; Rotter, J.I.; et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Molokhia, S.; Muddana, S.K.; Hauritz, H.; Qiu, Y.; Burr, M.; Chayet, A.; Ambati, B.K. IVMED 80 eye drops for treatment of keratoconus in patients -Phase 1/2a. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2587. [Google Scholar]
| Surgical Intervention | Selection Criteria | BCVA Outcome | Complications/Risks |
|---|---|---|---|
| Intracorneal Ring Segments (ICRS) | Clear Cornea and Pachymetry at implantation site >400 µm and mild-to-moderate KCN +/− CL intolerance | Improvement by 1–2 (up to 4) lines [96] | Glare, extrusion, corneal melting, infectious keratitis, neovascularization, DM perforation |
| Corneal Allogeneic Intrastromal Ring Segments (CAIRS)/Corneal Tissue Addition for Keratoplasty (CTAK) | Clear Cornea & Pachymetry at implantation site >350 µm and mild-to-moderate KCN +/− CL intolerance | Mean improvement by 4 lines [74] | One report of acute rejection, segment subluxation or extrusion |
| Penetrating Keratoplasty (PKP) | Central corneal scars or Severe KCN | Over 90% with BCVA of 0.3 logMAR [97,98,99] | Irregular astigmatism, graft rejection, ECL, ocular hypertension, intraoperative suprachoroidal hemorrhage and extrusion of intraocular contents |
| Deep Anterior Lamellar Keratoplasty (DALK) | Central corneal scars or Severe KCN | Mean BCVA: 0.29 ± 0.24 logMAR after one year [77] | Irregular astigmatism, less ECL and rejection rate than PKP, difficult technique, intraoperative conversion to PKP due to DM rupture |
| Bowman Layer Transplantation (BLT) | Clear Cornea and Severe KCN ineligible for CXL or ICRS/CAIRS | Mean improvement by 0.29–0.37 logMAR [100,101] | Sterile corneal necrosis, postoperative hydrops, KCN progression, intraoperative DM perforation |
| Stromal Lenticule Addition Keratoplasty (SLAK) | Clear Cornea and Severe KCN ineligible for CXL or ICRS/CAIRS and TCT > 300 µm | Mean improvement by 0.169 logMAR [91] | Difficult technique, haze, transient corneal edema, anterior corneal surface perforation |
| Bandage Therapeutic Optical Keratoplasty (BTOK) | Clear Cornea and Severe KCN ineligible for CXL or ICRS/CAIRS and Progression | Mean BCVA: ~0.7 decimal after one year [96] | Difficult technique, transient corneal edema, ectasia progression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.-S.; Friedrich, M.; Jun, A.S.; Soiberman, U.S. Advancements and Innovations in Keratoconus Management: A Review of Current Practices. J. Clin. Med. 2025, 14, 7491. https://doi.org/10.3390/jcm14217491
Son H-S, Friedrich M, Jun AS, Soiberman US. Advancements and Innovations in Keratoconus Management: A Review of Current Practices. Journal of Clinical Medicine. 2025; 14(21):7491. https://doi.org/10.3390/jcm14217491
Chicago/Turabian StyleSon, Hyeck-Soo, Maximilian Friedrich, Albert S. Jun, and Uri S. Soiberman. 2025. "Advancements and Innovations in Keratoconus Management: A Review of Current Practices" Journal of Clinical Medicine 14, no. 21: 7491. https://doi.org/10.3390/jcm14217491
APA StyleSon, H.-S., Friedrich, M., Jun, A. S., & Soiberman, U. S. (2025). Advancements and Innovations in Keratoconus Management: A Review of Current Practices. Journal of Clinical Medicine, 14(21), 7491. https://doi.org/10.3390/jcm14217491

